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ABSTRACT
In this paper, we proposed evaluation index considering safety of
pedestrian. This evaluation index, it is possible to evaluate all of
pedestrian traveling time, unfairness and congestion degree. We
also confirm that the guidance control method optimized by CMA–
ES can realized better than real guidance.
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1 INTRODUCTION
Multi–Agent Simulation(MAS) is widely used in fields, such as
tourism, transportation, and town planning, during large-scale
events. In general, these studies are used for evacuation [1][2][3][4]
and cost management [5][6][7], and are not widely used for safety
considerations such as at alleviating congestion and guiding pedes-
trians to safety in the event of a disaster. In recent years in Japan,
the Tokyo Olympic are about to begin in 2020. Large facilities such
as stadiums will be used for Olympic games; such facilities require
safe and efficient management. However, in order to realize them, it
is necessary to evaluate the real (manual) guidance control method,
and resolving the optimization problem for the high dimensional
space of the MAS is very important.

Typically, performing large-scale optimization in a high dimen-
sional space is difficult. Parameter search has been used for manual
search, grid search, and random search [8]. To efficiently determine
an optimal mathematical solution, researchers have proposed so-
lutions such as Bayesian optimization [9] and Covariance Matrix
Adaptation Evolution Strategy(CMA–ES) [10]. To improve the per-
formance of the machine-learning classifier, Ozaki et al. evaluated
hyperparameter optimization [11]. They prove that the Nelder–
Mead method [12], a direct search method, is superior to other
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methods. However, in general, the Nelder–Mead method is used to
quickly find a local solution. Bayesian optimization and CMA–ES
are known to have superior performance in global optimization. In
this research, to control the flow of tens of thousands of people, we
used an optimization method using CMA–ES, which is superior to
the global optimal solution search.

Additionally, by proposing evaluation index considering safety,
it is possible to evaluate all of pedestrian traveling time, unfairness
and congestion degree. We also confirm that the guidance control
method optimized by CMA–ES can realize better induction than
the real guidance control method.

2 METHOD
2.1 Guidance control method
Fig. 1(a) shows guidance control location of the event staff. This
guidance controls system implemented the “stopping / advanc-
ing” control at eight locations and the “straight forward / detour”
controls at two locations; i.e., there were controls at 10 locations.
Fig. 1(b) shows the state of the simulation using this guidance
control. Green dots show that people are moving smoothly and red
dots show that people are caught up in congestion.

In general, complicated rules such as “After proceeding for 2
min, stop for 3 min, then proceed for 5 min and stop for 2 min”
are not realistic owing to a high probability of confusion. In this
research, to apply guidance control commands in the field, we
divided the total induction time into sections of N . Within that
section, guidance control information was expressed by repeating
“stopping / advancing” or “straight forward / detour” at Open min
and Close min. We called these commands the guidance control
method. In the guidance control method, the control time of the n-
th section of the control location p = {1, 2, · · · , P } was represented
by Opennp and Closenp . In optimization of the guidance control
method for fireworks display, parameter used a two-type command
time (Opennp , Closenp ) with ten control points (P = 10) and three
control divisions (N = 3).

2.2 Evaluation of the guidance control method
In general, in a congested environment, stress levels increase when
the wait time is long. We defined the delay time as the difference
between the average arrival time Travelc (t ) of people during a
fixed period and the arrival time MinTc of people on each route
in the absence of congestion. However, this delay time does not
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(a) Guidance control locations in
2016

(b) Simulation after the fire-
works display.

Figure 1: Map showing the layout of the fireworks display

consider the place where people wait, and waiting in front of the
goal is deemed better. Therefore, in this research, each route was
divided into Sc sections, and the delay time was calculated as the
square of the difference (Reдrets,c (t )):

Reдrets,c (t ) = (Travels,c (t ) −MinTs,c )
2. (1)

The Root Mean Square Regret (RMSR) of the evaluation index was
calculated as follows:

RMSR =

√√√√√√√√√√√√√√√√√√√
C∑
c=1

T∑
t=1

Flowc (t )×

Sc∑
s=1

Reдrets,c (t )

C∑
c=1

T∑
t=1

Flowc (t )

. (2)

RMSR is extended equation of the Root Mean Square Error(RMSE).
The number of people arriving at the station through the route c
at the time t is Flowc (t ). RMSR were optimized through CMA-ES
using the 60 (2 × 10 × 3)-dimensional parameters.

The real guidance and our optimized guidance are compared
with the following three criteria: E (t )ave , E (t )dif , and E (t )crowd .
E (t )ave evaluates the average time it takes for all people to walk
to the station:

E (t )ave =

C∑
c=1

Travelc (t ) × Flowc (t )

C∑
c=1

Flowc (t )

. (3)

E (t )dif evaluates the maximum value of time difference between
routes:

E (t )dif = { max
c ∈{1, ...,C }

(Travelc (t )) − min
c ∈{1, ...,C }

(Travelc (t ))}. (4)

This value indicates unfairness. E (t )crowd is the number of people
in the high density area:

E (t )crowd =

C∑
c=1

F lowc (t )∑
n=1




1 (if Densityn (t ) > 1.08)
0 (otherwise)

. (5)

This criterion represents the number of people at risk.
Where, Densityn (t ) represents the population density of the n-

th person. The high density was defined as 1.08 [ped / m2] or more
based on Fruin’s standard level services [13].
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Figure 2: RMSR of optimization results and compare of the
real guidance and the best solution guidance

3 EXPERIMENT AND DISCUSSION
In this experiments, we simulated the crowd flow at the Kanmon
Strait fireworks display in 2016 using the pedestrian simulator
CrowdWalk[14]. The distribution of the initial crowd at the end of
the fireworks was measured using the stereo cameras and handy
GPSs. Fig. 2(a) shows the result of the optimization of the guidance
control method. The horizontal axis shows the generation number,
and the vertical axis shows for Eq. (2). For each generation result of
Fig. 2(a), we describe the best value among the calculation results
obtained in the past. CMA–ES is represented by red, and the random
search is represented by green. The real guidance control method
is represented by blue. Random search and CMA–ES could find a
better guidance method than the real guidance control method in 1
generation (i.e., 100 trials). In other words, the real guidance control
method is still a result that can be improved. Using CMA–ES, we
could find a better guidance method than the guidance control
method in used in random search in 20 generation (i.e., 2000 trials).
Also, the calculation result of the 100th generation by CMA–ES,
RMSR became approximately 1/2 that of real method, it became
approximately 2/3 of random search(100th generation).

Next, we comparisoned of real guidance and the best solution of
CMA–ES. The horizontal axes of three the graphs in Fig. 2(b)–(d)
show the time. The vertical axes of Fig. 2(b), (c), and (d) shows,
Eq. (3), (4), and (5) respectively. The red line denotes the best
guidance control method in CMA–ES. The blue line denotes the
real guidance method. When comparing the simulation results with
the real guidance method, simulation results are superior than real
guidance in all comparison results.
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