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ABSTRACT
When a robot is operating in a dynamic environment, it cannot
be assumed that a tool required to solve a given task will always
be available. In case of a missing tool, an ideal response would be
to find a substitute to complete the task. In this paper, we present
a proof of concept of a grounded knowledge-based approach to
tool substitution where knowledge is generated in an unsupervised
manner from robot’s sensory data about objects. Such robot-centric
grounded knowledge is then used to identify a substitute from the
available objects in the environment.
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1 INTRODUCTION
When a robot is operating in a dynamic environment, it can not
be assumed that a particular tool required to solve a task will al-
ways be available. In such scenarios, capabilities are required to
mitigate the consequences of the absence of a tool by finding an
alternative as humans do. This skill is significant when operating
in a dynamic, uncertain environment because it allows a robot to
adapt to unforeseen situations. The question is: how can a robot
determine which object in the environment is a viable candidate for
a substitute? It would be time consuming if a robot interacts with
every single object in its environment to test its viability, which
makes this approach less practical. Our approach is inspired by
the way humans select a substitute for a missing tool (to a larger
degree) in a non-invasive manner. For instance, when choosing a
substitute between a plate and a mouse pad for a tray, humans take
into account the physical and functional properties of an object
[1]. A subset of these properties, however, are more relevant to
enable the ability of a tray to carry objects on it such as rigidity
and flatness. As a result, an ideal substitute would be the one that
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shares a maximum amount of relevant properties which in this case
would be a plate. In this work, we propose a prototypical system
named as ERSATZ (German word for substitute) where a robot-
centric knowledge-driven computation is performed to identify
the relevant properties of the missing tool and determine a sub-
stitute on the basis of shared relevant properties. A tool, in this
work, is defined as an artifact that is designed, manufactured, and
used in accordance with its designated purpose in the tasks such as
hammer for hammering or boxes for storing smaller objects. Our
research work primarily focuses on the selection of a substitute for
a conventional tool required in the ongoing task.

2 KNOWLEDGE ACQUISITION
The knowledge, in this work, consists of the physical and functional
properties reflected in the objects. The knowledge is generated in
a bottom-up manner where symbolic knowledge is generated au-
tonomously from the perception data. This is in contrast to the
top-down manner in existing knowledge bases, where the sym-
bolic knowledge is coded by people (human-centric) and symbol
grounding methods are used to ground this knowledge to a robot’s
perception data.

Generally, the instances of an object class tend to exhibit struc-
tural variations. Some variations will be observed in exceptional
cases while some variations will be observed in majority of the
cases which lead to a stereotypical understanding of an object.
Therefore, the provisions should be made in conceptual knowledge
about objects to model the stereotypical cases as well as exceptional
cases. Moreover, the presence of the properties (physical or func-
tional) can not be modeled simply in binary form, that is, true if the
property is present and false if the property is absent. Usually, the
properties are present in the object in various degrees and therefore
such variations in the property measures needs to be reflected in
the knowledge as well. These variations can be expressed using
qualitative measures

For a bottom-up approach towards robot-centric knowledge,
the primary input is measurements of a property extracted from
multi-modal perception data from the individual object instances.
A clustering approach is proposed to generate the symbols rep-
resenting the qualitative measures. These symbols represent the
degree with which a property is reflected by an object instance. Se-
mantically, these may be interpreted for example as light, medium
weight, and heavy. However, human-readable names are not given
to the generated qualitative measures.
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The knowledge about an object class is created by compiling
the knowledge about its instances where the fuzzy set formalism is
used to model the intra-class variations in the object class. A quali-
tative measure of a physical property is referred to as a physical
quality and that of a functional property as a functional quality. The
knowledge about each object instance is created by aggregating all
the physical and functional qualities assigned to the object instance
in the previous step. The knowledge about an object class is then
generated in two steps: In the first step, the frequency of each phys-
ical/functional quality across all the instances of the object class
is calculated using a Bi-variate Joint Frequency Distribution. In the
next step, a sample proportion of each physical/functional quality in
the object class is calculated. The proportion value allows to model
the intra-class variations in the objects. In addition to conceptual
knowledge about objects, knowledge about functional qualities,
termed as function model, is also created. A function model consists
of the frequency of each physical quality given the occurrence of a
functional quality across all the object instances followed by com-
puting a sample proportion given the frequency of the functional
quality.

3 DETERMINING A SUBSTITUTE
A representative physical model and a representative functional
model of an object class. consists of the physical and functional
qualities, respectively, that are regarded as representative qualities
of the object class if the corresponding sample proportion values
are greater than a representative model threshold. The relevance of a
representative functional quality is decided by examining whether
the function model of the representative functional quality of a
tool share similar physical qualities with a representative physical
model of the tool. The similarity between a functional quality model
and the object class of the tool is determined using the Jaccard Index.
The Jaccard Index determines a similarity and dissimilarity between
the two sets A and B where the similarity is calculated by dividing
themagnitude of the intersection of A and B by themagnitude of the
union of A and B. If the Jaccard Index is greater than the Minimum
Similarity Tolerance threshold, then a representative functional
quality is regarded as a relevant quality of the missing tool. The
representative physical qualities shared by the function model of
the relevant functional quality and a representative physical model
of the missing tool are considered relevant to the missing tool. The
substitutability of an available object is determined by computing a
similarity between a representative physical model of the available
object and the relevant model of the missing tool. The relevant
model of the missing tool consists of its relevant physical and
functional qualities.

4 EXPERIMENTS
For the experimental evaluation, we used the images from theWash-
ington Dataset [2] to generate human-based and machine-based
properties. We selected 22 object categories and for each category,
random images from the given instances of the category were
selected resulting into total of 692 images. The machine-centric
shape-related property measurements were generated using state-
of-art approach [3], which learns shape concepts from RGBD object
point clouds in a data-driven and unsupervised manner. For the

(a) Impact on matching substitute selection
by ERSATZ vs majority of the experts

(b) ERSATZ selections with similarity
to the missing tool

physical properties rigidity, weight, hollowness and functional prop-
erties support, blockage and containment, the measurement data
was generated synthetically using a human-centric intuitive model.
This measurement data was used to generated knowledge about
objects using k-means clustering technique. For evaluation, we
generated 22 queries based on the 22 object categories, where each
query consisted of a missing tool and 5 randomly selected objects
as available choices for a substitute. The queries were given to 14
human experts and were asked to select a substitute in each sce-
nario. The expert selections were aggregated and compared with
the selection of ERSATZ.

The first experiment focused on tuning of the system parameters:
Number of clusters, representative model threshold and minimum
similarity tolerance. For the parameter number of clusters, the values
were varied between 2 and 8. For representative property threshold
and acceptable similarity tolerance, the values were varied between
0.25 and 0.50. To identify the optimum values in the experiment, we
examine the effect of various permutations of the parameter values
on the selection of a substitute in the 22 missing-tool scenarios and
compare the result with the substitutes selected by the majority
of the experts in the similar scenarios. The result is illustrated
in the figure 1(a). Based on the outcomes shown in the plot, the
optimal values for the parameters number of clusters, representative
model threshold, and acceptable similarity tolerance were found to
be: 4, 0.30 and 0.40 respectively. The second experiment focused on
validating the substitutability of selected candidates by ERSATZ.
We compared the results with expert selection and the result is
illustrated using a heat plot shown in the Fig. 1(b). The grayed
cells in the plots mean the corresponding object categories were
not included in the available objects in the respective query. The
cells that are marked with represents the substitutes selected by
the experts and ERSATZ. Out of 22 scenarios, ERSATZ and all the
experts identified the same substitutes in 20 scenarios (91%). On
the other hand, the number of substitutes selected by the majority
of the experts and by ERSATZ were found to be 14 (64%).
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