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ABSTRACT
The Iterated Prisoner’s Dilemma (IPD) is a well-known benchmark

for studying rational agents’ long term behaviour such as how

cooperation can emerge among selfish and unrelated agents that

need to co-exist over long term. Many well-known strategies have

been studied, from the simple tit-for-tat (TFT) made famous by

Axelrod after his influential tournaments to more involved ones

like zero determinant and extortionate strategies studied recently

by Press and Dyson. In this paper, we consider what we call in-

vincible strategies. These are ones that will never lose against any

other strategy in terms of average payoff in the limit. We provide

a simple characterization of this class of strategies, and discuss its

relationship with some other classes of strategies.
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1 INTRODUCTION
The Iterated Prisoner’s Dilemma is a classic benchmark used to

study rational agents’ long term behavior. It involves two agents

playing repeatedly the Prisoner’s Dilemma (PD). In the PD, each

player can choose between Cooperate (C) and Defect (D). If both

choose C, they receive a payoff of R (rewards); If both choose D,

they receive a payoff of P (penalty); If one chooses C and the other

D, the defector receives a payoff ofT (temptation to defect) and the

cooperator receives a payoff of S (sucker’s payoff). The assumption

is that T > R > P > S .
The profile (D,D) is the dominant Nash equilibrium of this game.

But both players receive a higher payoff of R if they decide to

cooperate, hence the dilemma. There is no controversy about what

a rational agent should do when playing the PD. However, if the

game is repeated indefinitely, it is not clear which if any strategy is

the best. In fact, it is easy to see that there is no one best strategy

against all other possible ones [2].

Researchers from diverse disciplines have used the IPD to study

the emergence of cooperation among unrelated agents [2]. In 2012

Press and Dyson [14] dramatically changed people’s understanding
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of this game by deriving what they called zero determinant (ZD)
strategies. Among them, of particular interests are what they called

extortionate strategies that can enforce an extortionate linear rela-

tion between the players’ scores. We will show that extortionate

strategies are invincible, in the sense that no strategies can have a

higher average payoff when they play against them.

As it turned out, extortionate strategies are not the only ones

that are invincible. In this paper, we formally define the class of

invincible strategies, and show that they can be characterized by

three simple conditions.

Invincible strategies are interesting for at least the following

four reasons. Firstly, they have a very clear and intuitive definitions

- never lose a match. Secondly, they are surprisingly simple to

characterize - our main technical result in this paper is that they

can be captured by three simple conditions. Thirdly, they are closely

related with some other well-studied strategies such as extortionate

strategies and Akin’s good strategies [1]. Finally, as we will show

by some experiments, they can play some important roles during

the evolution of the emergence of cooperation.

2 ITERATED PRISONER’S DILEMMA
The IPD is the repeated PD under the constraint thatT > R > P > S
and 2R > T + S so that cooperation pays off in the long run. In a

repeated game like the IPD, a player’s strategy is a function from

histories of interactions to actions. Often one restricts strategies

to some specific forms, such as Turing machines [5, 10, 12], finite

automata [3, 6, 15, 17], ones with limited memories [4, 7, 11], and

other forms of bounded rationality (e.g. [13]).

For the IPD, Press and Dyson proved that the player with the

shortest memory set the rule of the game [14], and one needs only

consider memory-one mixed strategies. A memory-one (mixed)

strategy decides with certain probability what action to do based

on the outcome of the previous round. Thus it can be defined by the

probabilities pCC , pCD , pDC , and pDD of playing C when the previ-

ous outcomes are CC , CD, DC , and DD, respectively. In the follow-

ing, we write X’s (player 1’s) strategy p as a tuple in the order p =
(p1,p2,p3,p4) = (pCC ,pCD ,pDC ,pDD ), and Y’s strategy as a tuple

in the following order: q = (q1,q2,q3,q4) = (qCC ,qDC ,qCD ,qDD ).
Notice that the orders for X and Y are the same when they are

viewed from the player’s own perspective.

A probability distribution v on the set of outcomes is a non-

negative vector v = (v1,v2,v3,v4) = (vCC ,vCD ,vDC ,vDD ) with
unit sum: v1 + v2 + v3 + v4 = 1. Given an initial distribution, the

probability distribution after the r-th iteration is noted by vr .
An effective way to study memory-one strategies is to view their

interactions as Markov chains. Our following presentation follows

mostly after [14] and [1].
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If X uses initial probability p0 (for playing C) and strategy p =

(p1,p2,p3,p4), Y uses initial probability q0 and memory-one strat-

egy q = (q1,q2,q3,q4), then the probability distribution of the first

iteration is v1 = (p0q0,p0(1−q0), (1−p0)q0, (1−p0)(1−q0)) and the
successive outcomes follow a Markov chain with transition matrix

given by:

M =
©­­­«
p1q1 p1(1 − q1) (1 − p1)q1 (1 − p1)(1 − q1)
p2q3 p2(1 − q3) (1 − p2)q3 (1 − p2)(1 − q3)
p3q2 p3(1 − q2) (1 − p3)q2 (1 − p3)(1 − q2)
p4q4 p4(1 − q4) (1 − p4)q4 (1 − p4)(1 − q4)

ª®®®¬
Each entry ofM represents the probability of transition between

different states, and Mvr = vr+1. If Mv = v, then we say that

v is stationary. Following [1], we call M convergent when there

is a unique stationary distribution vector for M. Although the se-

quence of vi (i = 1, 2, ...) may cycle through several states and thus

not converge, the sequence of the Cesaro averages { 1n
∑n
i=1 v

i }

of the outcome distributions always converges to some stationary

distribution v. That is, if limn→∞
1

n
∑n
k=1 v

k = v then Mv = v.

3 INVINCIBLE STRATEGIES
Definition 3.1 (Invincible Strategy). Player X plays a memory-

one strategy p against player Y who plays memory-one strategy q.
Player X and Y get the average payoff of sX and sY respectively. A

memory-one strategy p is invincible if against any other memory-

one strategy q, for any initial distribution v0, the players’ payoffs
satisfy sX ≥ sY .

Lemma 3.2. Assume v = (v1,v2,v3,v4) is the unique stationary
distribution. Under T > S , sX ≥ sY iff v2 ≤ v3.

Theorem 3.3. A strategy p is invincible iff

p2 + p3 ≤ 1,p4 = 0,p2 , 1 (1)

Invincible strategies account for a large proportion of all strate-

gies. Half of firm strategies (p4 = 0) are invincible since the hyper

plane p2 + p3 ≤ 1 bisects the 3D cube (p1,p2,p3) ∈ [0, 1] when

p4 = 0. Well-known strategies that are invincible include Tit-for-Tat
(1, 0, 1, 0) which equalizes the payoff of both players, and Always
Defect which never allow itself to be taken advantage of.

Theorem 3.4. All extortionate strategies are invincible strategies.

Extortionate strategies are also zero determinate. However, not

all zero determinate strategies are invincible. For example, p =
(3/7, 0, 5/7, 2/7) is a zero determinant strategy that sets the co-

player’s score to a fixed value, but itself can receive a lower payoff.

While we have shown that all extortionate strategies are invin-

cible, not all invincible strategies are extortionate. For example,

p=(0.5,0.2,0.7,0) is invincible, but this strategy is neither zero deter-

minant nor extortionate.

The invincible strategies include extortionate ones. But they also

include nice ones like the TFT, which is also a good one according
to Akin [1]. While not all invincible strategies are Akin’s good

strategies, all agreeable ones are.

Definition 3.5 (Akin’s Good Strategies [1]). X’s strategy p is agree-

able if p1 = 1. It is good if it is agreeable and for any strategy chosen

by Y, we have that

if SY ≥ R then SY = SX = R.

Notice that p1 = 1 means that this strategy always cooperate

when the previous outcome is CC . Such strategies are also called

nice strategies, which are never the first to defect.

Theorem 3.6. If a strategy is both agreeable and invincible, then
it is good.

However, not all good strategies are invincible. This follows from

Akin’s Theorem 1.5 in [1].

4 EXPERIMENT
Since Press and Dyson’s work, there have been several experiments

about ZD and extortionate strategies. One was by Stewart and

Plotkin [16] who ran a Axelrod-style tournaments that include a

few extortionate strategies. One of the notable results of Stewart

and Plotkin’s tournament is that the extortionate strategy named

Extort-2 won the secondmost head-to-head matches. We now know

this is not really surprising given that extortionate strategies are

invincible. Actually, no invincible strategy will loose a head-to-head

match if the game is repeated for sufficient number of rounds.

Another was by Hilbe et al. [8] who ran an experiment to ana-

lyze the evolutionary performance of extortionate strategies. They

concluded that extortionate strategies can act as catalysts for the

evolution of cooperation but that they themselves are not the stable

outcome of natural selection.We rerun their experiment and replace

extortionate strategy with the invincible strategy (0.9,0.7,0.2,0), and

the result turns out to be similar. Notice that (0.9,0.7,0.2,0) is just

invincible. It is not even a zero determinant strategy.

The Axelrod python library [9] make it easy to run experiments

about the IPD. We run four experiments similar to some of those

in [8] but with extortionate strategies replaced by invincible ones.

The evolutionary behavior of invincible strategies turn out to be

similar to that of extortionate ones.

(a) The population begins with cooperative strategyWin-Stay-Lose-
Shift and defective strategy Always Defect. After 70 iterations, de-
fective strategies dominates this population.

(b) After adding agents of invincible strategy (0.9,0.7,0.2,0), defectors

are firstly eliminated, followed by invincible strategy. Cooperative

strategy becomes the stable outcome. Thus, invincible strategy acts

as catalyst of cooperation, but is not a stable outcome of evolution.

(c) In another experiment, several strategies evolve in one pop-

ulation, where all agents play the IPD with every other agents,

cooperative strategies becomes the winner.

(d) After invincible strategies ally and play against the alliance of

other strategies (agents in the same alliance won’t play with each

other), the population of invincible strategies dominates the other.

5 CONCLUSION
Inspired by our initial observation that no strategies can defeat

an extortionate strategy, we went on to study the class of all such

strategies that will never lose a head-to-head match and call them

invincible. Our main technical result is a precise characterization

of this class of strategies by three simple conditions. We have also

related this class of strategies to others and considered their role

in the emergence of cooperation. We have extended this class to a

more general form of repeated games and will report our results

elsewhere.
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