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ABSTRACT
Learning to coordinate is a hard task for reinforcement learning due

to a game-theoretic pathology known as relative overgeneralization.
To help deal with this, we propose two methods which apply forms

of imitation learning to the problem of learning coordinated behav-

iors. The proposed methods have a close connection to multiagent

actor-critic models, and will avoid relative overgeneralization if the

right demonstrations are given. We compare our algorithms with

MADDPG, a state-of-the-art approach, and show that our methods

achieve better coordination in multiagent cooperative tasks.
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1 INTRODUCTION
Multiagent Reinforcement Learning (or MARL) applies Reinforce-

ment Learning (RL) to more than one agent. Like RL, the envi-

ronment is some current state, which each agent can only sense

through observations; each agent performs some action while in

that state; the agents each receive some reward; the state transi-
tions to some new state, and the process repeats. In this paper we

focus on cooperative continuous stochastic games, that is, multiagent

reinforcement learning scenarios with continuous actions and an

identical reward signal for all agents.

It has been shown that the independent learner setting, where

agents are not told what the other agents have done, suffers from

a pathology called relative overgeneralization [8]. It has also been

shown that centralized training can also suffer from the same prob-

lem [6]. Some methods [5, 6] have been applied to deal with the

problem in simple games with small state or action spaces, but it

has not been solved for high dimensional or continuous stochastic

games typical of real problems. In this paper we will remedy this.

Relative overgeneralization occurs when a suboptimal Nash Equi-

librium in the joint space of actions is preferred over an optimal

one because each agent’s action in the suboptimal equilibrium is a

better choice on average when matched with arbitrary explorative

actions from collaborating agents. This pathology generally occurs
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when we use an average-based learner [5], that is, one which uses

the joint Q-values averaged over all the actions of other agents.

To overcome this problem, we apply Generative Adversarial Net-

works (GANs) [2] to cooperative stochastic games. GANs have been

successful in many domains. It has been shown that the variants of

GANs, Generative Adversarial Imitation Learning (GAIL) [3] and

Adversarial Inverse Reinforcement Learning (AIRL) [1] can be used

to train agents to achieve high performance in sequential decision-

making tasks with demonstration examples. Here we extend these

methods to the multiagent cooperative setting and show that they

can better coordinate the behaviors of the agents. We also show

that, with the right examples, the learned reward function can help

the learners avoid relative overgeneralization.

2 MULTIAGENT ADVERSARIAL INVERSE
REINFORCEMENT LEARNING

To see how AIRL and GAIL can be apply to cooperative games, we

first consider the situation where a coach wants to teach a coordi-

nation strategy to players. He may start with some demonstration,

then let the players practice following the demonstration while con-

tinuing to give advice to the agents during practice. This is much

like the training process of AIRL or GAIL with multiple agents: we

can think of a discriminator as a coach, and all the other agents

as players on the team. During practice, although each player can

only sense the environment through his own local observations, the

coach usually has more information either through expertise or via

a global view of the game state. Thus, if we want to apply AIRL and

GAIL to cooperative games, we can make a simple modification to

both algorithms by letting each agent have only a local observation

oi , and give the discriminator access to the full state information s .
We call these modified algorithms Multiagent AIRL (MAIRL) and

Multiagent GAIL (MGAIL). It can been shown with this assumption,

MAIRL and MGAIL can be viewed as applying MADDPG [4] to the

Maximum Entropy RL setting. See [7] for more details.

From a deeper investigation of the policy objective of the pro-

posed methods, we find that it can be decomposed into two parts:

a regular policy gradient term with averaged Qsoft (s,a), and an

entropy term. Since an average-based learner suffers from rel-

ative overgeneralization, our proposed method may as well. To

fix this, we notice that the difficulty comes from the Q-function.

Suppose agent i has two actions, a and b, in state s . When the

other agents are playing their best response policies π∗−i , and
Q (s,a,π∗−i ) > Q (s,b,π∗−i ), then agent i ought to prefer a over

b. However with an average-based learner it is possible that b is

preferred over a when Q (s,b) > Q (s,a) where Q is some averaged

Q-function. Thus, a simple way to avoid relative overgeneralization

is to make sure the rank ordering among the actions is maintained.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2265



(a) Marching domain. Agents
need to march through the exit.

(b) Narrow domain. Valid mov-
ing area is within the gray box.

Figure 1: Sequential Decision Making Tasks

Definition 2.1. A Q-function is relative overgeneralization free if

for any agent i and any of its two actions ai and bi , we always have
Ea−it ∼π −i (a

−i
t |o

−i
t )[Q (s,ai ,a−i )] > Ea−it ∼π −i (a

−i
t |o

−i
t )[Q (s,bi ,a−i )]

given that Q (s,ai ,a∗−i ) > Q (s,bi ,a∗−i ), where π−i (a−it |o
−i
t ) is

some arbitrary policy of all the other agents, and a∗−i is the best
response action of all the other agents.

A Q-function can be decomposed into an advantage function and

a state value function, and the state value function does not have

the action involved. Thus, we are really looking for an advantage

function that is relative overgeneralization free. A natural choice

would be a quadratic function with a block diagonal matrix.

Proposition 2.2. SupposeA(s, a⃗) = − 1

2
(a⃗− µ (s ))TM (s ) (a⃗− µ (s ))

is the advantage function for some state s and joint actions a⃗ of all n
agents, where M(s) is a positive definite block diagonal matrix with n
blocks with each block of size di by di , namely, the action dimension
of agent i . Then the corresponding state-action value function Q (s, a⃗)
is relative overgeneralization free. (See [7] for proof).

3 EXPERIMENTS
We applied three problems to test our methods:Max of Two Quadrat-
ics (described in [6]); andMarching and Narrow, sequential decision
making tasks which pose difficulties in cooperation in simple games.

In the Marching and Narrow games there are two agents, each

with a radius of 0.05. Both games terminate after 200 steps. In

Marching the agents must march towards a red dot. A shaped

reward is provided for the two agents based on the distance between

the agent’s center point and the red dot. The agents receive a large

penalty (-10) if they collide or are too far from one another (the

distance between them is ≥0.11), and receive a large reward (10) if

they reach the red dot. The purpose of this game is to test whether

the agents can coordinate their moving speeds.

Narrow requires the two agents to swap positions. They start

at opposite ends in an aisle, and must pass one another to reach

their goals. The aisle is narrow and requires coordination between

two agents, because when they collide they receive a large penalty

(-10). If both agents reach their goal positions, they both receive a

large reward (10). We considered several variations of this game,

with different aisle width and shaped reward functions.

Table 1 shows the results of the proposed algorithms in different

domains compared against other algorithms. In the repeated game

Max of Two Quadratics, MADDPG generally converged to a sub-

optimal Nash Equilibrium, while MAIRL and MGAIL made use of

the demonstration and converged to the optimal Nash Equilibrium.

In Marching, MGAIL performed the best. Although MADDPG and

MAIRL MGAIL MADDPG TRPO
Max of Two

Quadratics
9.78 ±0.07 8.98 ±0.35 -0.03 ±0.02

Marching -152.88±129.76 -80.88±52.08 -178.36±89.46 -324.58±111.88

Narrow

(u, 0.2)
5.99 ±0.84 5.49 ±1.79 -2.00 ±0.00 -2.00 ±0.00

Narrow

(u, 0.205)
4.53 ±2.51 5.54 ±2.15 -2.00 ±0.00 -2.08 ±0.16

Narrow

(sh, 0.2)
-4.40 ±0.85 -4.94 ±1.80 -23.46 ±6.10 -79.21 ±6.96

Narrow

(sh, 0.205)
-6.76 ±3.78 -5.23 ±2.13 -39.98±37.06 -79.34 ±4.54

Narrow

(s, 0.2)
5.95 ±0.83 5.44 ±1.78 -2.80 ±1.32 -2.63 ±0.14

Narrow

(s, 0.205)
4.50 ±2.51 5.50 ±2.15 -3.68 ±1.04 -2.66 ±0.17

u=unshaped reward sh=shaped reward s=scaled shaped reward
Number in the parentheses marks the width of the field.

Table 1: Convergence results of algorithms by domain, show-
ing the mean ± standard error over 5 trials. The best-
performing algorithms on each task are shown in boldface.

TRPO learned to march to the exit and to avoid relative overgener-

alization, they had to make many collisions during movement.

In all cases of Narrow, MGAIL and MAIRL agents successfully

reached the target. However, in the unshaped reward and scaled

shaped reward setting, both MADDPG and TRPO agents failed to

learn to pass one another. To understand the difference, we noticed

that our imitation learning agents used an advantage function as

reward, and Asoft (s,a) = Es ′[R (s,a) + Vsoft (s
′) − Vsoft (s )], which

can be thought of as an original reward function shaped by a soft

value function. Thus, our imitation learners were receiving a better

reward signal for exploration.

4 CONCLUSION AND FUTUREWORK
In this paper we proposed two methods to achieve better coordina-

tion in cooperative continuous games based on imitation learning.

We showed that the proposed combined with coordination samples

can avoid relative overgeneralization in cooperative games. A draw-

back of our approach is that the input space of our discriminator

can grow linearly with the number of agents. We will investigate

how to solve this issue in future work.

REFERENCES
[1] Justin Fu, Katie Luo, and Sergey Levine. 2018. Learning Robust Rewards with Ad-

verserial Inverse Reinforcement Learning. In International Conference on Learning
Representations.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In Advances in neural information processing systems. 2672–2680.
[3] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.

In Advances in Neural Information Processing Systems. 4565–4573.
[4] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. In Advances in Neural Information Processing Systems. 6382–6393.
[5] Ermo Wei and Sean Luke. 2016. Lenient Learning in Independent-Learner Sto-

chastic Cooperative Games. Journal of Machine Learning Research 17, 84 (2016),

1–42.

[6] Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. 2018. Multiagent Soft

Q-Learning. In AAAI Fall Symposium on Data Efficient Reinforcement Learning.
[7] Ermo Wei, Drew Wicke, and Sean Luke. 2019. Multiagent Adversarial Inverse

Reinforcement Learning. Technical Report GMU-CS-TR-2019-2. Department of

Computer Science, George Mason University, 4400 University Drive MSN 4A5,

Fairfax, VA 22030-4444 USA.

[8] Rudolph Paul Wiegand. 2004. An Analysis of Cooperative Coevolutionary Algo-
rithms. Ph.D. Dissertation. Department of Computer Science, George Mason

University.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2266


	Abstract
	1 Introduction
	2 Multiagent Adversarial Inverse Reinforcement Learning
	3 Experiments
	4 Conclusion and Future Work
	References



