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ABSTRACT
Multiagent algorithms often aim to accurately predict the behaviors
of other agents and find a best response accordingly. Previous works
usually assume an opponent uses a stationary strategy or randomly
switches among several stationary ones. However, an opponentmay
exhibit more sophisticated behaviors by adopting more advanced
reasoning strategies, e.g., using a Bayesian reasoning strategy. This
paper proposes a novel approach called Bayes-ToMoP which can
efficiently detect the strategy of opponents using either stationary
or higher-level reasoning strategies. Bayes-ToMoP also supports the
detection of previously unseen policies and learning a best-response
policy accordingly. We also propose a deep version of Bayes-ToMoP
by extending Bayes-ToMoP with DRL techniques. Experimental
results show both Bayes-ToMoP and deep Bayes-ToMoP outperform
the state-of-the-art approaches when faced with different types of
opponents in two-agent competitive games.
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1 INTRODUCTION
In multiagent systems, the ideal behavior of an agent is contingent
on the behaviors of coexisting agents. However, agents may ex-
hibit different behaviors adaptively depending on the contexts they
encounter. Hence, it is critical for an agent to quickly predict or
recognize the behaviors of other agents, and make a best response
accordingly [1, 4, 9, 12].
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Several works extended the idea of Bayesian Policy Reuse (BPR)
[13], which was originally proposed to determine the best policy
when faced with different tasks, to multiagent settings to predict the
behaviors of the opponent [8, 10, 15]. However, all these approaches
assume that an opponent randomly switches its policies among
a class of stationary ones. In practice, an opponent can exhibit
more sophisticated behaviors by adoptingmore advanced reasoning
strategies, thus requiring more advanced techniques to beat such
kinds of sophisticated opponents.

The above problems can be partially addressed by introducing
the concept of Theory of Mind (ToM) [2, 6], which is a kind of
recursive reasoning technique [1] describing a cognitive mecha-
nism of explicitly attributing unobservable mental contents such as
beliefs to other players. Previous methods often use nested beliefs
and “simulate" the reasoning processes of other agents to predict
their actions [3, 5, 14]. However, these approaches are designed for
predicting the opponent’s primitive actions instead of high-level
strategies, resulting in slow adaptation to non-stationary opponents.
Furthermore, they show poor performance against an opponent
using previously unseen strategies.

To address the above challenges, we propose a novel algorithm,
named Bayesian Theory of Mind on Policy (Bayes-ToMoP) to beat
such sophisticated opponents. In contrast to BPR which is capable
of detecting non-stationary opponents only, Bayes-ToMoP incor-
porates ToM into BPR to quickly and accurately detect not only
non-stationary, and more sophisticated opponents and compute
a best response accordingly. Besides, Bayes-ToMoP also supports
detecting whether an opponent is using a previously unseen pol-
icy and learning an optimal response against it. We also propose
a deep version of Bayes-ToMoP by extending Bayes-ToMoP with
DRL techniques.

2 BAYES-TOMOP
We use the notation of Bayes-ToMoPk to denote an agent with the
ability of using Bayes-ToMoP up to thek-th order. Intuitively, Bayes-
ToMoPi with a higher-order theory of mind could take advantage
of any Bayes-ToMoPj with a lower-order one (i > j). We focus on
Bayes-Bayes-ToMoP1 in the following section and Bayer-TomoPk
(k > 1) can be naturally constructed by incorporating a higher-
order ToM idea into our framework.

Bayes-ToMoP1 Algorithm ABayes-ToMoP1 agentmaintains
its zero-order belief which is a probability that its opponent may
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adopt each strategy, and first-order belief, which is a probability
distribution that describes the probability that an agent believes
his opponent believes it will choose a policy. Bayes-ToMoP1 agent
first predicts the policy ĵ of its opponent assuming the opponent
maximizes its own utility under its first-order belief. Then, an in-
tegration function I is introduced to compute the final prediction
results following Equation 1 [3].

I (β (0), ĵ, c1)(j) =

{
(1 − c1)β (0)(j) + c1 if j = ĵ

(1 − c1)β (0)(j) otherwise
(1)

where, 0 ≥ c1 ≤ 1 is the first-order confidence for the first-order
prediction. Next, Bayes-ToMoP1 agent computes the optimal policy
based on the integrated belief. The next issue is how to update
the value of c1 which can be seen as the exploration rate of using
first-order belief to predict the opponent’s strategies. We propose
an adaptive and generalized mechanism to adjust the value of c1,
formally we have:

c1 =


((1 − λ)c1 + λ)F(υi ) if υi ≥ υi−1

(
lдυi

lд(υi−δ )
c1)F(υi ) if δ < υi < υi−1

λF(υi ) if υi ≤ δ

(2)

where υi is the winning rate during most recent l episodes, δ is the
threshold of the winning rate υi , and F(υi ) is an indicator function
to control the direction of adjusting the value of c1:

F(υi ) :=

{
1 if (υi ≤ δ & F(υi ) = 0)
0 if (υi ≤ δ & F(υi ) = 1)

(3)

Bayes-ToMoP1 agent also detects whether the opponent is using
an unknown strategy, which is achieved by recording a fixed length
of game outcomes and using the winning rate θi over the most
recent h episodes as the signal indicating the average performance
over all policies till the current episode i . If the winning rate θi is
lower than a given threshold δ (θi < δ ), it indicates that all existing
policies show poor performance against the current opponent strat-
egy, in this way Bayes-ToMoPk agent infers that the opponent is
using a previously unseen policy outside the current policy library.

After detecting the opponent is using a new strategy, the agent
begins to learn the best-response policy against it. Since our learn-
ing framework is general, various RL approaches can be applied to
learn the optimal policy. Finally, the new policy and the estimated
opponent policy are added to the policy library and its opponent’s
policy library respectively.

3 SIMULATIONS
Bayes-ToMoP is evaluated on soccer [7, 11] compared with state-of-
the-art tabular approaches (BPR+ [10] and Bayes-Pepper [8]). For
deep Bayes-ToMoP, we compare with DRON [7] and deep BPR+
[15]. Three kinds of opponents are considered: (1) a Bayes-ToMoP0
opponent (OToMoP0 ); (2) an opponent that randomly switches its
policy among stationary strategies and lasts for an unknown num-
ber of episodes (Ons ) and (3) an opponent switching its strategy
between stationary strategies and Bayes-ToMoP0 (OToMoP0 -s).

Table 1 shows the average performance of various approaches
against different opponents. We can see that only Bayes-ToMoP1
can beat all kinds of opponents. However, BPR+, Bayes-Pepper, and
deep BPR+ can only detect the non-stationary opponents but fail

Table 1: Average winning rates with std.dev.(±) in soccer.

Opponents /
Approaches

OToMoP0 Ons OToMoP0 -s

BPR+ 49.78%±1.71% 99.37%±0.72% 66.8%±0.57%
Bayes-Pepper 49.45%±2.32% 99.47%±0.35% 66.2%±0.61%
DRON 74.75%±0.19% 76.54%±0.16% 75.22%±0.18%
Deep BPR+ 71.57%±1.26% 99.49%±0.51% 78.6%±0.76%
Bayes-ToMoP1 99.82%±0.18% 98.21%±0.37% 98.48%±0.54%
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Figure 1: Different approaches against an opponent using an
unknown policy in soccer game.

when the opponent switches its strategy to Bayes-ToMoP0. DRON
performs similarly against three kinds of opponents. However, it
fails to achieve the highest average winning rate against each par-
ticular type of opponents. Figure 1 (a-b) shows the dynamics of
average rewards of different approaches with the opponent starting
with one of the known strategies and switching to the new one
at the 200th episode. We can observe that Bayes-ToMoP1, BPR+
and Deep BPR+ can quickly detect the new opponent strategy, and
finally learn an optimal policy. However, Bayes-Pepper and DRON
fail.

4 CONCLUSION
This paper presents a novel algorithm called Bayes-ToMoP to han-
dle not only switching, non-stationary opponents and also more
sophisticated ones (e.g., BPR-based). Bayes-ToMoP also enables an
agent to learn a new optimal policy when encountering a previ-
ously unseen strategy. Extensive simulations show Bayes-ToMoP
outperforms the state-of-the-art approaches both in tabular and
deep learning environments. As future work, it is worth investigat-
ing how to accelerate the online new policy learning phase and how
to extend Bayes-ToMoP to multi-opponent scenarios. Furthermore,
higher order of Bayes-ToMoP is worth investigating to handle more
sophisticated opponents and apply to large scale, real scenarios.
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