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ABSTRACT
We study the φf -Outliers problem, where we are given an election
and are asked whether there are at most n̄ votes whose removal
leads to the existence of a k-committee of a desired quality under
the voting rule φf . We investigate the (parameterized) complexity
ofφf -Outliers for additivek-committee selection rules, in both the
general case and several special cases with respect to the incidence
graphs of the given elections.
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1 PRELIMINARIES
Approval-based k-committee selection rules, which aim to select k
winners based on the dichotomous preferences of voters over candi-
dates, have received a considerable amount of attention recently [1,
3, 7, 11–13] due to their significant applications in many areas.

Precisely, an election is a tuple (C,V ) where C is a set of candi-
dates and V is a multiset of votes. Each vote is a nonempty subset
of C . We say a vote v ∈ V approves a candidate c ∈ C if c ∈ v . For
a set S , 2S denotes the power set of S . A k-committee is a subset
ofC of cardinality k . A scoring k-committee selection rulemaps each
election (C,V ) to a k-committee. Particularly, let f : 2C × 2C → Q
be a scoring function, where for a vote v ⊆ C and a commit-
tee w ⊆ C , f (v,w) is the score of w obtained from v . By a slight
abuse of notation, for an election (C,V ) and a committee w , let
f (V ,w) =

∑
v ∈V f (v,w) be the score ofw in (C,V ). A minimizing

k-committee selection rule φf selects a k-committee with the mini-
mum score, with respect to f , as the winning committee. We say
that φf is additive if for every vote v and every nonempty commit-
teew it holds that f (v,w) =

∑
c ∈w f (v, {c}). In this paper, we study

only minimizing additive rules that subject to the following con-
straints. First, for allv ,w ,v ′,w ′ ⊆ C such that |v | = |v ′ |, |w | = |w ′ |,
and |v ∩w | = |v ′ ∩w ′ | it holds that f (v,w) = f (v ′,w ′). For sim-
plicity, we denote by f a function from {0, 1, . . . , |C |}3 to Q such
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Table 1: A summary of additive rules. Here, v ⊆ C is a vote
and w ⊆ C is a committee. In NSAV, if v approves all candi-
dates, i.e., v = C, we remove |w\v |

|C |− |v |
(i.e., we take |w\v |

|C |− |v |
= 0).

voting rules scoring functions f (v,w)

maximizing minimizing
Approval voting

|v ∩w |

|v \w | + |w \v |,
(AV) or, |w \v |,

or, |v \w |

Net-approval
|v ∩w | − |w \v | |w \v | − |v ∩w |voting (NAV)

Satisfaction approval |v∩w |

|v |

|v\w |+ |w\v |

|v |
, or

voting (SAV) |v\w |

|v |
, or |w\v |

|v |

Net-SAV (NSAV) |v∩w |

|v |
−

|w\v |

|C |− |v |

|w\v |

|C |− |v |
−

|v∩w |

|v |

that for every v,w ⊆ C it holds that f(|v |, |v ∩w |, |w |) = f (v,w).
We make the assumption that scoring functions f are given as ora-
cles and, moreover, given v ,w ⊆ C , f (v,w) and f(|v |, |v ∩w |, |w |)

can be returned in polynomial time in max{|v |, |w |}. Second, for
every vote v , it holds that f(|v |, 1, 1) < f(|v |, 0, 1). Therefore, for
feasible integers x , y, y′, z such that y > y′ ≥ 0 it holds that
f(x ,y, z) < f(x ,y′, z). All minimizing rules in Table 1 are additive
rules fulfilling the above constraints [8].

We study the problem of committee determination in the pres-
ence of outliers which models the scenario where a limited number
of voters, called outliers, are needed to be removed in order to find
a desired winning k-committee. The formal definition is as follows.

φf -Outliers

Given: An election (C, V ), two nonnegative integers k ≤ |C |

and n̄ < |V |, and a rational number t .
Question: Are thereU ⊆ V andw ⊆ C such that |w | = k , |U | ≤ n̄

and f (V ′, w ) ≤ t , where V ′ = V \U ?

The φf -Committee Determination problem (φf -CD) is a spe-
cial case of φf -Outliers where n̄ = 0. Throughout this paper,
letm = |C |, n = |V |, n∗ = n − n̄, and k̄ =m − k .

The φf -Outliers problem was first studied by Dey et al. [4] for
minimizing versions of AV and NAV. We study the class of additive
rules, which include many important rules not studied in [4]. More-
over, we mainly develop general theorems which hold for almost all
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additive rules. In addition, we explore the parameterized complexity
of this problem with respect to some structural parameters of the
incidence graphs of elections.

2 RESULTS IN THE GENERAL CASE
For φf -CD, polynomial-time algorithms have been developed for
some concrete additive rules [2, 4]. We give a general result.

Theorem 2.1. For an additive rule φf , an optimal k-committee
with respect to φf can be calculated in polynomial time.

Dey et al. [4] studied φf -Outliers for minimizing variants of
AV and NAV, and showed FPT results with respect tom and n. We
extend their result to all additive rules.

Theorem 2.2. For an additive rule φf , φf -Outliers is FPT with
respect to bothm and n.

As n̄ + n∗ = n and k̄ + k =m, it remains to study the combined
parameters n∗ + k , n∗ + k̄ , n̄ + k , and n̄ + k̄ . Concerning the param-
eters n∗ + k and n̄ + k̄ , Dey et al. [4] showed that φf -Outliers for
minimizing variants of AV and NAV is W[1]-hard. In particular,
for n∗ + k the result holds even when every voter approves only
two candidates. However, for the parameter n̄ + k̄ , their reduction
does not apply to this special case.

Theorem 2.3. Let f be an additive function such that for every
k ≥ 3 it holds that f(2, 1,k) > 0. Then, φf -Outliers is W[1]-hard
with respect to n∗ + k and n̄ + k̄ , even when every voter approves at
most two candidates.

The above theorem applies to all rules in Table 1 except NSAV.

Theorem 2.4. NSAV-Outliers is W[1]-hard with respect to both
n̄ + k̄ and n∗ + k .

Regarding n∗ + k̄ and n̄ + k , in the W[1]-hardness proof for
the minimizing variants of AV in [4], all voters approve the same
number of candidates. In this case, the minimizing variants of SAV
and AV are equivalent. However, this is not the case for NSAV.

Theorem 2.5. NSAV-Outliers is W[1]-hard with respect to the
parameters n∗ + k̄ and n̄ + k .

Let △ = maxv ∈V {|v |}; hence, every voter approves at most △
candidates. As shown in Theorem 2.3, φf -Outliers cannot be FPT
evenwith respect to the combined parametersn∗+k+△ and n̄+k̄+△
unless FPT=W[1]. In the following, we show an FPT-algorithm for
φf -Outliers with respect to the parameter n̄ + k + △.

Theorem 2.6. φf -Outliers for additive rules φf is FPT with
respect to the combined parameter n̄ + k + △.

3 RESTRICTED INCIDENCE GRAPHS
For an election E = (C,V ), its incidence graph GE = (C ∪V ,A) is
a bipartite graph with the vertex bipartition (C,V ) and edge set
A = {(c,v) | c ∈ C,v ∈ V , c ∈ v}. We study some structural
parameters of GE . First, we have the following result.

Theorem 3.1. For an additive rule φf , φf -Outliers is FPT with
respect to the size of the maximum matching of the incidence graph
of the given election.

Now we identify several special classes of incidence graphs re-
stricted to which φf -Outliers is polynomial-time solvable. For two
graphs H and H ′, we say that H is H ′-free if H contains no induced
subgraph that is isomorphic to H ′. For two graph classes H and
H ′,H isH ′-free if none ofH has an induced subgraph isomorphic
to some graph inH ′. A star with r leaves is denoted by K1,r , and a
path of length r (the number of vertices in it) is denoted by Pr .

Theorem 3.2. φf -Outliers is polynomial-time solvable if the
incidence graph of the given election is K1,3-free.

Onemaywonder whether we can extend the above result toK1,r -
free incidence graphs for some other constants r ≥ 4. Unfortunately,
we show that this is not the case.

Theorem 3.3. For an additive function f such that f(2, 1,k) > 0
for every k ≥ 3, φf -Outliers is NP-hard even if the incidence graph
of the given election is K1,4-free.

Based on the following lemma, we show that φf -Outliers for
many additive rules is polynomial-time solvable when the incidence
graph is P5-free. A non-trivial connected component is a connected
component with at least two vertices.

Lemma 3.4. Let G = (C ∪ V ,A) be a P5-free bipartite graph,
and H a non-trivial connected component of G. Then, there is an
order (c1, . . . , cx ) of the candidates in H such that for each v ∈ V
there is a positive integer τ (v) ≤ x such that v is adjacent to ci if
and only if 1 ≤ i ≤ τ (v). Moreover, such an order can be found in
polynomial time.

In fact, the above lemma shows that any electionwhose incidence
graph is P5-free is a special case of the so-called Candidate Interval
(CI) election studied in the literature [5, 6, 9, 10].

Theorem 3.5. φf -Outliers is polynomial-time solvable if the
incidence graph is P5-free.

4 A GENERAL FPT RESULT
For a graph classH , let FH be the class of allH -free graphs. For
an integer r > 0, let Fr+

H
be the class of graphs which include at

most r induced subgraphs isomorphic to graphs inH in total. φf -
Outliers restricted to a graph class G means that the incidence
graphs of the given elections are in G.

Theorem 4.1. Let H be a set consisting of a constant number
of graphs each of which contains at least one edge and at most d
vertices, where d ≥ 2 is a constant. If φf -Outliers restricted to FH is
polynomial-time solvable for all additive rules φf , then, φf -Outliers
restricted to Fr+

H
is FPT for all additive rules φf , with respect to r .

Due to Theorems 3.2, 3.5, and 4.1, we have the following result.
Corollary 4.2. For an additive rule φf , φf -Outliers is FPT with

respect to the number of induced claw/P5 in the incidence graph of
the given election.
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