
Multiagent Monte Carlo Tree Search
Extended Abstract

Nicholas Zerbel
Oregon State University
Corvallis, Oregon, USA
zerbeln@oregonstate.edu

Logan Yliniemi∗
Amazon Robotics

Boston, Massachusetts, USA
loganyli@amazon.com

ABSTRACT
Monte Carlo Tree Search (MCTS) is a best-first search which is
efficient in large search spaces and is effective at balancing ex-
ploration versus exploitation. In this work, we introduce a novel
extension for MCTS, called Multiagent Monte Carlo Tree Search
(MAMCTS), which pairs MCTS with difference evaluations. We
demonstrate the performance of MAMCTS in a cooperative, multia-
gent path-planning domain called Multiagent Gridworld. We show
that MAMCTS using difference evaluations outperforms MAMCTS
using local rewards by up to 31.4% and MAMCTS using the global
reward by up to 88.9% for a system with 1,000 agents.

KEYWORDS
Multiagent Learning, Difference Evaluations; Monte Carlo Tree
Search
ACM Reference Format:
Nicholas Zerbel and Logan Yliniemi. 2019. Multiagent Monte Carlo Tree
Search. In Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 3 pages.

1 INTRODUCTION
Monte Carlo Tree Search (MCTS) is a best-first search which uses
Monte Carlo methods to probabilistically sample actions in a given
domain [2]. MCTS gained a lot of interest after being used to de-
velop game players for the game of Go which could compete with
some of the best human players on smaller Go boards [2, 6]. Since
then, MCTS has been used heavily in planning problems and com-
puterized games such as Poker, Settlers of Catan, Civilization, and
Shogi [3, 8–11].

MCTS has several qualities which make it ideal for application
within multiagent systems. For example, MCTS does not require
heuristics derived using domain-specific knowledge to find near-
optimal solutions [2]. MCTS is also very efficient at searching
through large search spaces while effectively balancing exploration
versus exploitation within the search space [2]. This gives MCTS an
advantage over other approaches, such as evolutionary algorithms,
which can be computationally expensive due to the extremely large
search space for agent policies within multiagent systems [1, 4, 7].

Although there are many works demonstrating the efficacy of
MCTS in multiagent environments, such as multiplayer games,
most of the literature is focused on developing strong players in
∗Work for this project was completed prior to joining Amazon Robotics.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

competitive multiagent systems. In this work, we propose a novel
extension to MCTS for cooperative multiagent systems, called Mul-
tiagent Monte Carlo Tree Search (MAMCTS), which pairs MCTS
with difference evaluations. We show that MAMCTS-based agents
are able to learn effective coordination strategies in a multiagent
path-planning domain called Multiagent Gridworld (MAG). We
also show that MAMCTS using difference rewards outperforms
MAMCTS using local rewards by up to 31.1% and MAMCTS using
the global reward by up to 88.9%.

2 MULTIAGENT MONTE CARLO TREE
SEARCH

In a cooperative multiagent system, individual agents must adopt
individual policies which allow them to coordinate effectively with
other agents in the system. Multiagent Monte Carlo Tree Search
(MAMCTS) pairs MCTS with difference evaluations which allows
agents to efficiently search through the space of possible policies
by focusing on those policies which positively contribute to the
overall system. MAMCTS is described in more detail by Algorithm
1. Steps 2-8 describe a standard MCTS which involves selection,
expansion, rollout, and back-propagation. These steps are done
at the individual agent level. In steps 9-12, each agent selects the
best policy found so far from within their search tree and takes
the actions stored within that policy. In steps 13-16, each policy is
evaluated using difference evaluations, and each agent updates their
search tree using the calculated difference reward before resetting
and continuing to the next episode.

Algorithm 1: Multiagent Monte Carlo Tree Search

1: for each Episode do
2: for each Aдent do
3: Selection
4: Check for terminal node
5: Expand tree if selected node is non-terminal
6: Rollout using default, random policy (πD )
7: Back-Propagation
8: end for
9: for each Aдent do
10: Select best policy from tree
11: Do actions in best policy
12: end for
13: for each Aдent do
14: Evaluate policy and update tree
15: end for
16: Reset agents to initial state
17: end for

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2309



3 EXPERIMENTAL SETUP
We test MAMCTS in a cooperative, multiagent path-planning do-
main known as Multiagent Gridworld (MAG). MAG is a discrete
environment in which agents can take one action per turn from
among the available actions: up, down, left, right, or null. The outer
boundaries of MAG are treated as an impassable wall. Any agent
attempting to move beyond these boundaries is “bumped” back
onto the grid. In MAG there are n agents and n goals. Each goal is
worth 100 points when captured; however, a reward is only received
for the first agent to capture a goal. Once an agent captures a goal,
it stays at the goal and does not continue to move. Therefore, the
optimal solution is for each agent to travel to a different goal and
capture it.

In this work we compare the performance of MAMCTS using
difference evaluations with MAMCTS using local rewards (which
is equivalent to only using MCTS) and MAMCTS using the global
reward for policy evaluations. All of the tests are run on a 100x100
MAG starting with a (200 agent, 200 goal) system and then scaling
up to a (1,000 agent, 1,000 goal) system. Data is collected over 30
statistical runs. Error bars are included in the plots; however, the
error bars are smaller than the data point markers used in the plot.
All error bars report the standard error of the mean.

4 RESULTS AND DISCUSSION
In the 100x100 MAG, we test the scalability and performance of
MAMCTS by steadily increasing the number of agents and goals
within the system. Starting with 200 agents and 200 goals, we record
the percentage of goals captured by the agents after 500 episodes of
searching. These results are reported by Figure 1 which show the
quantity of agents and goals in the system and the percentage of
goals captured when each agent uses their best policy. The average
goal capture rate is approximately 79.2% for MAMCTS using dif-
ference evaluations, 38.6% for MAMCTS using the global reward,
and 61.7% for MAMCTS using local rewards. The results presented
in Figure 1 show that the percentage of goals captured improves
as more agents and goals are added into the system. At 200 agents
and 200 goals, the goals are more widely dispersed throughout
the world. We believe this makes it difficult for agents to discover
policies leading to goals which are further away. When we add
more goals into the system, there is a higher goal density making
it easier for agents to discover policies leading to goal states even
though there are also more agents in the system.

For the system containing 1,000 agents and 1,000 goals, we record
the system score at the end of each search episode. This allows
us to assess agent learning by tracking the improvement in the
system score each episode as seen in Figure 2. By comparing the
final system reward of MAMCTS using difference rewards to the
final system reward achieved by MAMCTS using local rewards,
we see that MAMCTS using difference evaluations outperforms
MAMCTS using local rewards by 31.4%. Additionally, we see that
MAMCTS using difference evaluations outperforms MAMCTS us-
ing the global reward by 88.9%. Using the global reward to update
agent search trees, we see that the system score converges to a low
value very quickly and never improves. Interestingly, the agents
using MAMCTS with local rewards achieve a decent system-level
performance. However, this performance eventually converges to

200 400 600 800 1000

Number of Agents and Goals

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n

ta
g

e
 o

f 
G

o
a
ls

 C
a
p

tu
re

d

Figure 1: Percentage of goals captured by agents for increas-
ing numbers of agents and goals on a 100x100 MAG.

0 100 200 300 400 500

Episodes

1

2

3

4

5

6

7

8

9

S
y
s
te

m
 R

e
w

a
rd

 G
(s

)

10
4

Figure 2: Learning curves for 1,000 agent and 1,000 goal sys-
tem comparingMAMCTSusing difference evaluations, local
reward, and the global reward for policy evaluation.

a final value after which no further improvement occurs. Using
difference evaluations, we see that system performance is not only
better overall, but that system performance continues to improve by
the 500th episode. These results are consistent with examples from
the literature comparing difference evaluations with local rewards
and global rewards [5, 12, 13].

5 CONCLUSIONS
In this work we introduced a novel enhancement to MCTS for co-
operative multiagent systems called Multiagent Monte Carlo Tree
Search. MAMCTS pairs MCTS with difference evaluations which
enables agents to learn effective coordination strategies in loosely
coupled, cooperative multiagent environments such as MAG. In
MAG, we demonstrated that MAMCTS using difference rewards
outperforms MAMCTS using the global reward by up to 88.9% and
MAMCTS using local rewards by up to 31.4%. Finally, we demon-
strated the impressive scalability of MAMCTS by achieving near-
optimal performance in a 100x100 MAG with up to 1,000 agents.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2310



REFERENCES
[1] Adrian Agogino and Kagan Tumer. 2008. Efficient evaluation functions for

evolving coordination. Evolutionary Computation 16, 2 (2008), 257–288.
[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games 4, 1 (2012), 1–43.

[3] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. 2008. Monte-
Carlo Tree Search: A New Framework for Game AI.. In Artificial Intelligence for
Interactive Digital Entertainment. AAAI.

[4] Mitchell Colby, Jen Jen Chung, and Kagan Tumer. 2015. Implicit adaptive multi-
robot coordination in dynamic environments. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 5168–5173.

[5] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. 2014. Potential-
based difference rewards for multiagent reinforcement learning. In Proceedings of
the 2014 international conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 165–
172.

[6] Sylvain Gelly and David Silver. 2008. Achieving Master Level Play in 9 x 9
Computer Go.. In Proceedings of the 2008 AAAI Conference, Vol. 8. 1537–1540.

[7] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of
the art. Autonomous Agents and Multiagent Systems 11, 3 (2005), 387–434.

[8] Marc Ponsen, Geert Gerritsen, and Guillaume Chaslot. 2010. Integrating opponent
models with monte-carlo tree search in poker. InWorkshops at the Twenty-Fourth
AAAI Conference on Artificial Intelligence.

[9] David Robles, Philipp Rohlfshagen, and Simon M Lucas. 2011. Learning non-
random moves for playing Othello: Improving Monte Carlo tree search. In 2011
IEEE Conference on Computational Intelligence and Games (CIG’11). IEEE, 305–312.

[10] Yoshikuni Sato, Daisuke Takahashi, and Reijer Grimbergen. 2010. A shogi pro-
gram based onmonte-carlo tree search. International Computer Games Association
Journal 33, 2 (2010), 80–92.

[11] István Szita, Guillaume Chaslot, and Pieter Spronck. 2009. Monte-carlo tree
search in settlers of catan. In Advances in Computer Games. Springer, 21–32.

[12] Michael Wooldridge. 2009. An introduction to multiagent systems. John Wiley &
Sons.

[13] Logan Yliniemi and Kagan Tumer. 2016. Multi-objective multiagent credit as-
signment in reinforcement learning and NSGA-II. Soft Computing 20, 10 (2016),
3869–3887.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2311


	Abstract
	1 Introduction
	2 Multiagent Monte Carlo Tree Search
	3 Experimental Setup
	4 Results and Discussion
	5 Conclusions
	References



