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ABSTRACT
Zero-sum games are natural, if informal, analogues of closed physi-

cal systems where no energy/utility can enter or exit. This analogy

can be extended even further if we consider zero-sum network

(polymatrix) games where multiple agents interact in a closed econ-

omy. Typically, (network) zero-sum games are studied from the

perspective of Nash equilibria. Nevertheless, this comes in contrast

with the way we typically think about closed physical systems,

e.g., Earth-moon systems which move perpetually along recurrent

trajectories of constant energy.

We establish a formal and robust connection between multi-

agent systems and Hamiltonian dynamics – the same dynamics
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that describe conservative systems in physics. Specifically, we

show that no matter the size, or network structure of such closed

economies, even if agents use different online learning dynamics

from the standard class of Follow-the-Regularized-Leader, they

yield Hamiltonian dynamics. This approach generalizes the known

connection to Hamiltonians for the special case of replicator dy-

namics in two agent zero-sum games developed by Hofbauer [16].

Moreover, our results extend beyond zero-sum settings and provide

a type of a Rosetta stone (see e.g. Table 1) that helps to translate re-

sults and techniques between online optimization, convex analysis,

games theory, and physics.
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Table 1: The physics of Matching Pennies when updated with Gradient Descent.
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1 INTRODUCTION
Undoubtedly equilibrium is the main notion through which games

are studied and understood. Not only are Nash equilibria the main

solution concept but typically approaches that venture towards

understanding the behavior of adaptive agents in games still natu-

rally gravitate to slight modifications of the same idea. For example,

an evolutionary stable strategy [32] is a Nash equilibrium refine-

ment that captures attracting limit points of evolutionary learning

dynamics. In the other direction, coarse correlated equilibria are

generalizations of Nash equilibria with the property that the time

average of the behavior of no-regret dynamics converge to them in

general games [34].

Both of these equilibrium concepts, as well as many other ax-

iomatics refinements or generalizations to the notion of Nash equi-

librium share the same unifying attribute. All of these solution

concepts are points. When we think of a game, i.e., an interaction

of self-interested agents, we typically and almost unconsciously

argue about its behavior using static points. We wish to argue that

this way of thinking is limiting in a fundamental way as well as

propose an alternative way of thinking about these systems.

To consider the severity of these limitations, consider the fol-

lowing example: Suppose that you were challenged to describe

another many body interaction, e.g., the behavior of the Earth-

Moon system, or the behavior of two masses connected by an ideal

spring or even the behavior of coupled pendulums, but there was a

catch. You were forced to output a single point of the state space as

your description for this system. Clearly, this requirement is too

restrictive as any meaningful model must be allowed to express

non-equilibrium behavior and do so in a quantitative fashion (e.g.

what is the shape, energy of these orbits for different initial condi-

tions?). Instead, the behavior of these physical systems is captured

by dynamical systems, specifically, Hamiltonian dynamics.

Interestingly, when we study multi-agent games and learning

dynamics on them, we do not find this restriction such a stifling

roadblock, at least not intuitively. Thus we implicitly make the

assumption that the systems that we encounter when studying

learning in games are fundamentally different from any of the above.

After all what does gradient descent or multiplicative weights in

Matching Pennies have to do with an Earth-moon system?

In the contrast to our error prone intuition, laborious formal in-

quiries into the limitations of Nash equilibria, the foremost solution

concept, have revealed an increasingly pessimistic picture about

their applicability, at least as a general purpose model for general-

sum games. Not only are Nash equilibria hard to compute [8, 10, 18]

but they are also hard to approximate [27, 28, 31]. Even their commu-

nication complexity seems prohibitive for practical considerations

[1, 13]. Finally, a plethora of simple and even small games exists

where numerous learning dynamics do not converge but instead

can lead to cycles and other recurrent behavior [3, 9, 14, 17, 19, 23].

What are we to make of all these failures?

Our key take home message in this paper is that besides these

carefully documented formal failures of the Nash equilibrium, there

exists a much more insidious failure of intuition about the efficacy

of equilibrium, any sort of equilibrium, as a model even for the most

classic game theoretic instances. Revisiting our question, what does

gradient descent or multiplicative weights in Matching Pennies

have to do with a mass system on spring? Or more generally, what

is the connection between a n-body problem (e.g. our solar system)

and a closed economy with numerous (e.g. thousands or millions)

agents each possibly using different online learning algorithms

from a large and diverse family of dynamics such as Follow-the-

Regularized-Leader/Mirror-Descent [7, 15]? Surprisingly, we show

that they are in a specific sense instantiations of the same phenom-

enon! They are both Hamiltonian systems with notions of Hamil-

tonian energy that is preserved over time and which dictates the

shape of the system trajectories (see Table 1). Critically, this is not

merely an analogy but we present formal reductions from game

theoretic dynamics to Hamiltonian systems. This opens new ways

of thinking and arguing about games that circumvent altogether the

need of using equilibria as a stepping stone. Despite Hamiltonians

being an indispensable primitive in the study of most physical sys-

tems, this formal connection seems to have received little attention

with few notable exceptions for special cases of this phenomenon,

particularly for the case of replicator dynamics in zero-sum (as

well as coordination) games [4, 16, 29] and fictitious play [22, 33].

We unify and generalize this understanding by exploiting connec-

tions between online learning and convex analysis. Along the way,

we provide a natural interpretation about the emergence of recur-

rent behavior in zero-sum games for numerous online learning

dynamics [11, 19, 21, 24, 25] and divergence from Nash equilibria in

discrete-time settings [2]. We briefly summarize our results below.

Our contribution. We analyze zero-sum and coordination two

agent normal-form games. We show that the dynamics created by

applying the Follow-the-Regularized-Leader (FTRL) algorithm are

Hamiltonian (Theorem 3.2). This reduction establishes the equiva-

lence between a mass on a spring and gradient descent applied to

Matching Pennies as shown in Table 1.

Moreover, we extend these results to all network zero-sum games

[5, 6] and all coordination bipartite network games (Theorem 4.4

and Corollary 4.2) demonstrating that the theory of Hamiltonian

dynamics extends to an expansive set of games. These results can

even be extended to a larger class of payoff functions (Theorems

6.1 and 6.2) which includes almost every two-agent, two-strategy,

normal-form game (Corollary 6.3). In fact, Corollary 6.3 only ex-

cludes trivial games where one of the agent’s payout is independent

of the other agent’s actions.

Finally, we import some of the tools from the physics literature

on Hamiltonians to unify several recent results on online learning

in games. We show that the strategies in a network zero-sum game

stay approximately equidistant from the Nash equilibrium when

updated by FTRL (Theorem 5.1). This generalizes a result from [25]

that was for replicator dynamics, a specific variant of FTRL. This

result follows from the “invariant-energy” property of Hamiltonian

systems. Another common property of Hamiltonians is Poincaré

recurrence which is formally shown for network zero-sum games in

[19, 25]. Finally, we revisit a recent result in [2] where it was shown

that the discrete-time version of FTRL in network zero-sum games

repels strategies from the Nash equilibrium. This result follows

intuitively from the fact that these discrete-time updates move

along the tangent of the boundary of the convex sublevel sets of the

Hamiltonian/energy. Thus, these trajectories have non-decreasing

energy (Theorem 5.3) and as a result move outwards towards the

boundary (Corollary 5.4).
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2 PRELIMINARIES
A network game (or graphical polymatrix) consists of a set of n
agentsN = {1, 2, ...,n}where agent i has a finite set of actionsSi to
choose from. Agent i may select a mixed strategy, xi , from the |Si |-

simplex Xi = {xi ∈ R
|Si |
≥0

:

∑
si ∈Si xisi = 1}. For each pair {i, j} ⊆

N , agent i has the payoff matrix A(i j)
such that agent i receives

utility x
ᵀ
i A

(i j)x j given agent i and j’s strategies xi and x j . This
results in n optimization problems where agents act strategically

and independently to maximize their payouts.

max

xi ∈Xi
x
ᵀ
i

∑
j,i

A(i j)x j ∀i ∈ N (Network Game)

A solution to a network game is a Nash equilibrium x∗. It satisfies

x∗i

∑
j,i

A(i j)x∗j ≥ xi
∑
j,i

A(i j)x∗j ∀xi ∈ Xi ∀i ∈ N . (1)

Moreover, if x∗i is in the relative interior of Xi for each i then it is

fully-mixed and (1) holds with equality.

A separable zero-sum multi-agent game (zero-sum graphical

game) [6] is a graphical polymatrix (network) game in which the

sum of all agent payoffs is always zero (

∑
i ∈N xi

∑
j,i A

(i j)x j =
0 ∀x ∈

>
Xi ). These are games that encode closed systems, an

economy where no resources/utility can enter or exit and instead

there is only exchange of utility between the agents. Although in

this game formulation the edge games are not necessarily zero-sum

there exists [6] a (polynomial-time computable) payoff preserv-

ing transformation from every separable zero-sum multi-agent

game to a pairwise constant-sum polymatrix game (i.e., a graphical
polymatrix (network) game such that for each pair of agents i, j :

A(ji) = c {j ,i }1 −
(
A(i j))T

and 1 the all-one matrix). Removing the

constants c {j ,i }1 from each edge game does not affect the strategic

nature of the game nor the learning dynamics that we will consider.

Hence for the rest of the paper we will focus on games in the form

A(i j) = −

(
A(ji)

)ᵀ
, i.e., polymatrix (network) zero-sum games [12].

On the antipode of zero-sum games are coordination/partnership
games where at each outcome both agents get the same utility. We

can represent both of them using the notation A(i j) = σ
(
A(i j))T

where σ = 1 for coordination games and σ = −1 for zero-sum

games.

2.1 Follow-the-Regularized-Leader (FTRL)
In many settings, agents do not know the payoff matrices nor the

Nash equilibrium. In such settings, agents adaptively update their

strategies. The most well known class of algorithms for online

learning and optimization is Follow-the-Regularized-Leader. Given

initial payoff vector yi (0), agent i in (Network Game) updates their

strategies at time t according to

yi (t) = yi (0) +

∫ t

0

∑
j,i

A(i j)x j (s)ds

xi (t) = argmax

xi ∈Xi
{⟨xi ,yi (t)⟩ − hi (xi )}

(FTRL)

where hi is strongly convex and continuously differentiable. The

cumulative payoff vector yi (t) indicates the cumulative payouts

until time t – if agent i had played strategy si constantly since time

t = 0, then agent i would receive a cumulative payout of yisi (t).

Strong convexity of hi and convexity and compactness of Xi
guarantee (FTRL) has a unique solution and therefore xi (t) is well-
defined. It is also well known that xi (t) = ∇h∗i (yi (t)) [30] where

h∗i (yi ) = max

xi ∈Xi
{⟨xi ,yi ⟩ − hi (xi )} (2)

is the convex conjugate of hi . The two most well-known versions of

(FTRL) are the gradient descent algorithm with hi (xi ) = | |xi | |
2

2
and

the multiplicative weights algorithm, equivalently the replicator

dynamics, with hi (xi ) =
∑
si ∈Si xisi logxisi .

2.2 Hamiltonian dynamics
Aphysical systemmay consist of several interacting, moving objects

(sometimes referred to as bodies or particles). To study each object,

we track its position and momentum/velocity at time t , q(t) and p(t)
respectively. For simplicity we will assume that its mass is equal

to one (m = 1) so that momentum and velocity are equal. In many

systems, there exist natural laws preserving a relationship between

the q(t) and p(t). Two such systems include a mass attached to a

spring and a pendulum.

q(t)

(a) A mass applied with force
from a spring.

q(t )

(b) A mass applied with force
from gravity (a pendulum).

Figure 1: Physical systems of motion.

A well known concept from physics is “conservation of energy”.

If no outside force acts on the system, then energy is invariant at

all times. Given a spring with constant k , a body with massm = 1,

conservation of energy implies

1

2

kq2(0) +
1

2

p2(0) =
1

2

kq2(t) +
1

2

p2(t) (Energy of a Spring)

where
1

2
kq2(t) denotes the potential energy (the energy due to

position) at time t and 1

2
p2(t) denotes the kinetic energy (the energy

due to motion) at time t .
By definition, velocity is related to position with p = Ûq. How-

ever, in some systems it is simpler to track the body’s motion with

something other than Ûq. For instance, a common way to track the

pendulum is with the velocity of the body, p(t), and to define the

position, q(t), as the angle the string forms with respect to the

normal direction. Since q(t) ∈ R and p(t) ∈ R2
, p , Ûq. As such, we

refer to p(t) more generally as the motion of the system.

Hamiltonian dynamics are an important subset of physical sys-

tems that includes systems as small as a mass on a spring or a

pendulum and as large as the planetary orbits. Every Hamiltonian

dynamic has a Hamiltonian H (q,p) such that

∂H

∂p
=
dq

dt
= Ûq

−
∂H

∂q
=
dp

dt
= Ûp

(Hamilton’s equations)

Session: 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

235



Hamiltonians have a variety of well known properties including

conservation of energy (time invariance of the Hamiltonian) and

volume preservation. There are even large families of integrators

especially well suited for approximating solutions to system of

differential equations given by (Hamilton’s equations). We discuss

these properties later in Section 5 as they relate to network games.

3 THE PHYSICS OF TWO-PLAYER GAMES
We begin our analysis with two player games. The position we will

track in FTRL is agent 1’s cumulative strategy X1(t) =
∫ t
0
x1(s)ds .

Motion drives the change in position. As defined in (FTRL), yt
1

drives the change in X t
1
. Formally,

d
dt X1(t) = x1(t) = ∇h∗

1
(y1(t))

and it is natural to define y1(t) as the motion of the system.

Observe thaty2(t) = y2(0)+
∫ t
0
A(21)x1(s)ds = y2(0)+A

(21)X1(t).
Therefore tracking y1(t) and X1(t) gives us information about both

agents via the perspective of agent 1. Symmetrically, position and

motion can be defined from the perspective of agent 2 withy2(t) and
X2(t) instead. The idea of defining the system from the perspective

a single agent comes naturally when we consider the dynamics

in Table 1. The position of the mass on the spring corresponds to

the agent 1’s strategy and we associate the mass with agent 1. The

velocity of the mass corresponds to agent 2’s strategy. However,

by associating the mass with agent 1, we have already framed our

understanding of the system through agent 1’s perspective.

Given that agent strategies are often the object of interest when

discussing the dynamics of games, it may be surprising that we

are not tracking the actual strategy xi (t). However, the mapping

∇h∗i : yi → xi is surjective but not injective. Therefore we only
gain information by tracking yi instead of xi suggesting that we

can better understand the system using yi .
Now that we have an understanding of the position and mo-

tion of the system, we can define the potential and kinetic ener-

gies. Just as gravity pulls an object toward the center of the Earth,

the regularizer h2 pulls x2(t) to the minimizer of h2. Similarly, h∗
2

pulls y2(t) = y2(0) +A
(21)X1(t) to the minimizer of h∗

2
and we use

−σh∗
2

(
y2(0) +A

(21)X1(t)
)
to represent the potential energy in the

system. Analogously, the energy due to motion, i.e., kinetic energy,

is h∗
1
(y1(t)). Thus, the total energy in the system at time t is

H (X1,y1) = h
∗
1
(y1(t)) − σh∗

2

(
y2(0) +A

(21)X1(t)
)

(3)

Theorem 3.1. The total energy H (X1,y1) is invariant when a
two-agent coordination or zero-sum (Network Game) is updated with
(FTRL).

Proof. The result follows by taking the derivative of H with

respect to t .

dH

dt
= ∇h∗

1
(y1(t))

ᵀ d

dt
y1(t) − σ∇h∗

2

(
y2(0) +A

(21)X1(t)
)ᵀ

A(21)x1(t)

(4)

= x1(t)
ᵀA(12)x2(t) − ∇h∗

2
(y2(t))

ᵀ
(
A(12)

)ᵀ
x1(t) (5)

= x1(t)
ᵀA(12)x2(t) − x2(t)

ᵀ
(
A(12)

)ᵀ
x1(t) (6)

= 0 (7)

completing the proof of the theorem. �

3.1 Hamiltonian dynamics of two-agent games
Recall the mass attached to the spring from Section 2.2. Thus far,

we have only discussed the position and motion of the mass as

they relate to the total energy in the system and not the dynamical

system created by the spring. However, in this case, the dynamical

system is described entirely by the energy in the system. Since the

mass ism = 1, the energy of the spring is invariant and given by

H (q,p) =
1

2

kq2(t) +
1

2

p2(t). (8)

Recall that F = Ûp where F is force and Ûp is acceleration (time

derivative of momentum). The force enacted on a spring given

position q(t) is −kq(t). Therefore

Ûp = F = −kq(t) = −
∂H

∂q
. (9)

Similarly,

Ûq = p(t) =
∂H

∂p
. (10)

Thus the system is Hamiltonian. Similarly, (FTRL) is a Hamilton-

ian system.

Theorem 3.2. The dynamics (FTRL) on a two-agent coordina-
tion or zero-sum (Network Game) are Hamiltonian with invariant
H (X1,y1).

Proof. The proof simply follows by taking the partial derivative

of H (X1,y1) with respect to y1 and X1.

∂H

∂y1

= ∇h∗(y1(t)) = x1(t) =
d

dt
X1(t) (11)

−
∂H

∂X1

= σ
(
A(21)

)ᵀ
∇h∗

2

(
y2(0) +A

(21)X2(t)
)

(12)

= A(12)∇h∗
2
(y2(t)) (13)

= A(12)xt
2
=

d

dt
y1(t) (14)

H (X1,y1), X1, and y1 satisfy (Hamilton’s equations). Therefore, the

system is Hamiltonian with invariant energy H (X1,y1). �

4 THE PHYSICS OF NETWORK GAMES
In this section, we extend Theorems 3.1 and 3.2 to network games

with an arbitrary number of agents. First we extend our results to

coordination and zero-sum bipartite network games. In a bipartite

network game, agents are partitioned into disjoint N1 and N2. For

agents {i, j} ⊆ Nk , A
(i j)

is uniformly zero, i.e., there is no inter-

action between agents in the same partition. Second, we extend

Theorem 3.2 to all zero-sum versions of (Network Game).

4.1 Coordination and Zero-Sum Bipartite
Network Games

To extend the results to bipartite network games, we study the

system from the perspectives of all agents in N1 via the variables

yi (t) and Xi (t) for i ∈ N1. We define the energy in the system as

H (X ,y) =
∑
i ∈N1

h∗i (yi (t)) − σ
∑
j ∈N2

h∗j
©«yj (0) +

∑
i ∈N1

A(ji)Xi (t)
ª®¬ .
(15)
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With these definitions, we can immediately extend Theorem 3.2

to bipartite network games.

Corollary 4.1. H (X ,y) is time-invariant when (FTRL) is applied
to a bipartite coordination or zero-sum (Network Game).

Corollary 4.2. The dynamics (FTRL) on a bipartite coordination
or zero-sum (Network Game) are Hamiltonian with invariantH (X ,y).

We prove both corollaries by reducing a bipartite network game

to a two-agent game.

Proof. By generalizing the idea of a strategy space, a bipartite

game can be expressed as a two-agent game. A bipartite game is

written as

max

xi ∈Xi

xᵀi
∑
j ∈N2

A(i j)x j

 ∀i ∈ N1 (16)

max

x j ∈Xj

xᵀj
∑
j ∈N1

A(ji)xi

 ∀j ∈ N2 (17)

Since there is no interaction between agents i and j when {i, j} ⊆
Nk , their optimization problem can be rewritten as

max

{xi }i∈N
1
∈
>

i∈N
1
Xi


∑
i ∈N1

x
ᵀ
i

∑
j ∈N2

A(i j)x j

 (18)

max

{x j }j∈N
2
∈
>

j∈N
2
Xj


∑
j ∈N2

x
ᵀ
j

∑
i ∈N1

A(ji)xi

 (19)

which is a two-agent game with the more general strategy space>
i ∈Nk

Xi . Informally, this corresponds to two meta-agents 1 and

2 that simultaneously make decisions for agents in N1 and N2

respectively. Moreover, (FTRL) yields the same dynamics on both

formulations since the corresponding optimization problems are

separable.

Corollaries 4.1 and 4.2 now follow directly from Theorems 3.1

and 3.2. First, observe that the proofs of Theorems 3.1 and 3.2 only

makes use of the fact that the strategy space is convex and compact

to obtain the equality xi (t) = ∇h∗i (yi (t)). Thus, both theorems

extend to games with arbitrary convex, compact strategy spaces and

therefore to the bipartite network game described in (18-19). �

4.2 Zero-Sum Network Games
Unlike two-agent and bipartite network games, there is no clear

side/perspective to study the dynamics from in general network

games. As result, we simultaneously examine all perspectives via

Xi and yi for all i ∈ N . This yields the energy function

H (X ,y) =
∑
i ∈N

h∗i (yi (t)) − σ
∑
j ∈N

h∗j
©«yj (0) +

∑
i,j

A(ji)Xi (t)
ª®¬ . (20)

Theorem 4.3. The total energy H (X ,y) is invariant when a zero-
sum (Network Game) is updated with (FTRL).

Theorem 4.4. The dynamics (FTRL) on a zero-sum (Network
Game) are Hamiltonian with invariant H (X ,y).

The proof of the theorems follow identically to Theorems 3.1 and

3.2 respectively. Interestingly, the theorems also hold for coordina-

tion network games. However, the energy functionH (X ,y) is mean-

ingless in such settings. Recall that yi (t) = yi (0) +
∑
j,i A

(i j)X j (t).
Thus, the energy function can be rewritten as

H (X ,y) = (1 − σ )
∑
i ∈N

h∗i (yi (t)) =

{
2

∑
i ∈N h∗i (yi (t)) (σ = −1)

0 (σ = 1)

(21)

In the case of zero-sum network games (σ = −1), we are effectively

double counting the energy in the system. However, in coordination

network games (σ = 1), the total energy is uniformly zero for every

possible trajectory of (FTRL) which provides no information about

the actual dynamics.

5 USING TOOLS FROM PHYSICS TO GAIN
INSIGHT ABOUT ONLINE LEARNING

Typically, the study of games is centered around the Nash equilib-

rium. As such, it may be surprising that the Nash equilibrium never

appears in our analysis of the behavior of learning dynamics in

games. However, as we see in this section, our analysis has many

implications regarding learning dynamics and the Nash equilibrium.

Recall, every solution to (Network Game) is a Nash equilibrium

x∗i ∈ Xi and is such that

x∗i

∑
i,j

A(i j)x∗j ≥ xi
∑
i,j

A(i j)x∗j ∀xi ∈ Xi (22)

Moreover, if x∗ is in the relative interior of X, then we refer to x∗

as fully-mixed and (22) holds with equality.

5.1 Conservation of energy
It is well known that Hamiltonians preserve energy, providing an

alternative proof of Theorem 3.1. This conservation has signifi-

cant implications for online learning in zero-sum games. In many

settings, such as economics, the “market” is studied from the per-

spective of the Nash equilibrium. However, conservation of energy

implies that agent strategies never get too close to a fully-mixed

Nash equilibrium when agents are adaptive. Therefore adaptive

agents never actually realize equilibrium behavior and may exhibit

behaviors that are unforeseen to equilibrium analysis.

Theorem 5.1. Suppose x∗ is a fully-mixed Nash equilibrium of a
zero-sum (Network Game), xi andyi are updated according to (FTRL),
and x(0) , x∗. There exists a d > 0 such that the Bregman distance
from x∗ to x(t) is always at least d . Moreover, if the trajectory remains
in the interior of the simplex for all times t then the Bregman distance
from x∗ to x(t) is time-invariant.

Proof. We start by iterating on a slight variation of an argument

made in [19] that the Fenchel-coupling (specifically in the sense of

[20]) between x∗ and y(t) is time-invariant. The Fenchel-coupling

is defined as

F (x∗,y(t)) ≡
∑
i ∈N

(
h∗i (yi (t)) − ⟨yi (t), x

∗
i ⟩ + hi (x

∗
i )
)

(23)
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First, observe that

∑
i ∈N ⟨yi (t), x

∗
i ⟩ is time-invariant:∑

i ∈N

⟨yi (t), x
∗
i ⟩ =

∑
i ∈N

⟨yi (0), x
∗
i ⟩ +

∑
i ∈N

∫ t

0

(
x∗i

)ᵀ∑
j,i

A(i j)x j (s)ds

(24)

=
∑
i ∈N

⟨yi (0), x
∗
i ⟩ +

∫ t

0

∑
i ∈N

∑
j,i

(
x∗i

)ᵀ
A(i j)x j (s)ds

(25)

=
∑
i ∈N

⟨yi (0), x
∗
i ⟩ +

∫ t

0

∑
j ∈N

∑
i,j

(
x∗i

)ᵀ
A(i j)x j (s)ds

(26)

=
∑
i ∈N

⟨yi (0), x
∗
i ⟩ +

∫ t

0

∑
j ∈N

∑
i,j

(
x∗i

)ᵀ
A(i j)x∗j (27)

=
∑
i ∈N

⟨yi (0), x
∗
i ⟩ (28)

where (27) follows since x∗ is fully-mixed and (28) follows since

the game is zero-sum. By definition of Xi (t) and yi (t), H (X ,y) =
2

∑
i ∈N h∗i (yi (t)). Therefore, the Fenchel-coupling is

F (x∗,y(t)) =
∑
i ∈N

(
h∗i (yi (t)) − ⟨yi (t), x

∗
i ⟩ + hi (x

∗
i )
)

(29)

=
∑
i ∈N

(
h∗i (yi (t)) − ⟨yi (0), x

∗
i ⟩ + hi (x

∗
i )
)

(30)

=
1

2

· H (X ,y) +
∑
i ∈N

(
hi (x

∗
i ) − ⟨yi (0), x

∗
i ⟩
)
. (31)

Thus, the Fenchel-coupling and half of the energy in the system

differ by a constant implying the Fenchel-coupling is time-invariant.

The Bregman distance from x∗ to x(t) is defined as

D(x∗ | |x) ≡
∑
i ∈N

(
hi (x

∗
i ) − hi (xi (t)) − ⟨∇hi (xi (t)), x

∗
i − xi (t)⟩

)
.

(32)

The distance D is uniquely minimized at x = x∗ with D(x∗ | |x∗) = 0.

Moreover, since the boundary of X is compact and D is contin-

uous, there exists a d > 0 such that D(x∗ | |x) ≥ d for all x on

the boundary. By [20], F (x∗,y(t)) ≥ D(x∗ | |x(t)) where equality

holds whenever x(t) is fully mixed. Therefore, when x(t) is fully
mixed, D(x∗ | |x(t)) = F (x∗,y(t)) = F (x∗,y(0)) ≥ D(x∗ | |x(0)) >
0 since F is time-invariant and x(0) , x∗. Thus, D(x∗ | |x(t)) ≥

min{d,D(x∗ | |x(0))} > 0. If the trajectory remains in the interior of

the simplex for all t then D(x∗ | |x(t)) = F (x∗,y(t)) is constant for
all t , completing the proof. �

Corollary 5.2 (Piliouras and Shamma [25]). Suppose x∗ is a
fully-mixed Nash equilibrium of a zero-sum (Network Game). Then
the KL-divergence between x∗ and x(t) is time-invariant when x and
y are updated with the replicator dynamics.

Proof. Replicator dynamics and the KL-divergence are spe-

cial cases of (FTRL) and the Bregman distance respectively where

h(xi ) = xi logxi . Moreover, replicator dynamics guarantee that

xi (t) is interior for all t and the result follows from Theorem 5.1. �

5.2 Recurrence in adversarial learning
Poincaré proved that in certain systems almost all trajectories return

arbitrarily close to their initial position infinitely often, i.e., exhibit

Poincaré recurrence [26]. Recurrent behavior is important in the

applications of online learning because it implies that the behavior

(approximately) repeats itself, becoming more predictable overtime.

Poincaré recurrence is typically shown via two properties: vol-

ume preservation and bounded orbits. [19, 25] argue both of these

properties directly to establish recurrence in the setting of network

zero-sum games. However, Hamiltonians provide the intuition for

both of these arguments. Volume preservation is a property held by

all Hamiltonian systems. Moreover, many natural Hamiltonian sys-

tems have bounded orbits and therefore are Poincaré recurrent. In

the case of zero-sum games, as we discussed in the previous section,

the energy in the system corresponds to the total distance from

the Nash equilibrium and, unsurprisingly, (FTRL) on network zero-

sum games with interior Nash has bounded orbits
1
and therefore

is Poincaré recurrent.

5.3 Divergence from equilibrium in
discrete-time

The results in continuous-time make it clear that the Nash equilib-

rium is not always an appropriate tool to analyze a system where

agents adaptively update their strategies. The study of Hamiltoni-

ans also shows thats the Nash equilibrium can be a poor solution

concept in the discrete-time. Specifically, in (FTRL), agent strategies

tend to be repelled from the Nash equilibrium in zero-sum games.

Theorem 5.3. Suppose a continuous dynamic y(t) has an invari-
ant energy H (y). If H is continuous with convex sublevel sets then
the energy in the corresponding discrete-time dynamic obtained via
Euler’s method/integration is non-decreasing.

Proof. Let t denote the current time instant. Euler’s method

with step-size η yields an approximation of y(t + η) with

ŷt+η = y(t) + η
d

dt
y(t) (33)

We will show H (ŷt+η ) ≥ H (y(t)). Suppose H (y(t)) = c and with-
out loss of generality, assume {y : H (y) ≤ c} is full-dimensional.

Since {y : H (y) ≤ c} is convex, there exists a supporting hy-

perplane {y : aᵀy = aᵀy(t)} such that aᵀy ≤ aᵀy(t) for all

y ∈ {y : H (y) ≤ c}. Therefore,

aᵀ
(
d

dt
y(t)

)
= aᵀ

(
lim

s→0
+

y(t) − y(t − s)

s

)
(34)

=

(
lim

s→0
+

aᵀy(t) − aᵀy(t − s)

s

)
(35)

≥

(
lim

s→0
+

aᵀy(t) − aᵀy(t)

s

)
= 0, (36)

1
In general, yi (t ) drifts according to

∑
j,i A(i j )x ∗

j and therefore often is not bounded.

However, adding a constant to the payoff matrix does not change the dynamics of

x (t ) and therefore we may always assume

∑
j,i A(i j )x ∗

j = 0 and yi (t ) is bounded.
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implying

aᵀŷt+η = aᵀy(t) + aᵀ
(
η
d

dt
y(t)

)
(37)

≥ aᵀy(t). (38)

For contradiction, suppose H (ŷt+η ) < c . By continuity of H , for

sufficiently small ϵ > 0, ŷt+η + ϵa ∈ {y : H (y) ≤ c}. However,

aᵀ(ŷt+η + ϵa) ≥ aᵀy(t) + ϵ | |a | |2
2
> aᵀy(t) (39)

contradicting that {y : aᵀy = aᵀy(t)} is a supporting hyperplane.
Thus, the statement of the theorem holds. �

Corollary 5.4 (Bailey and Piliouras [2]). If x∗ is fully-mixed
Nash equilibrium of a zero-sum (Network Game), then the Fenchel-
coupling between y and x∗ is non-decreasing in the discrete-time
version of (FTRL).

Proof. The discrete-time version of (FTRL) is simply Euler’s

method applied to the continuous time dynamics. The convex-

conjugate h∗i is convex by definition and therefore the energy func-

tionH (y) =
∑
i ∈N h∗i (yi (t)) is also convex and therefore continuous.

Hence, for y,y′ ∈ {y : H (y) ≤ c},

H (αy + (1 − α)y′) ≤ αH (y) + (1 − α)H (y′) ≤ c . (40)

Therefore αy+(1−α)y′ ∈ {y : H (y) ≤ c} andH has convex sublevel

sets. By Theorem 4.4, the dynamic y(t) has invariant energy H (y).
Therefore by Theorem 5.3, the energy in the discrete-time dynamics

is non-decreasing. In the proof of Theorem 5.1, it was shown the

Fenchel-coupling differs from the energy in the system by a constant

when x∗ is fully-mixed. Therefore, the Fenchel-coupling is non-

decreasing. �

The main result of [2] is that the strategies come arbitrarily close

to the boundary infinitely often. This can also be shown using

Hamiltonians; Theorem 5.3 becomes strictly increasing with strict

convexity. Using continuity and compactness arguments, Corollary

5.4 can be strengthened to show that the Fenchel-coupling and

Bregman distance strictly increases by a positive constant whenever

x(t) is in a compact region in the relative interior of Xi . Since

the Bregman distance is continuous, every compact region in the

relative interior of Xi has a finite maximum Bregman distance and

therefore x(t) must leave the region infinitely often. This holds for

every compact region in the relative interior of Xi and therefore

x(t) must come arbitrarily close to the boundary infinitely often.

5.4 Intuitive, accessible explanations of
learning dynamics

Online learning is used in practice as a black box for adaptive, low

regret decision making. We have shown that Hamiltonians systems

provide tools to significantly advance our understanding of such

learning dynamics. Just as importantly, Hamiltonians provide the

tools to explain the results of learning dynamics to someone with

no understanding of differential equations or analysis and only a

basic understanding of physics.

Our analysis draws analogues between agent strategies, the NE,

and the regularizer in (FTRL) and the Earth, sun, and gravity respec-

tively. In our solar system, the Earth’s momentum, propels the Earth

in a direction normal to the sun, and gravity pulls the Earth inwards

towards the resulting in a stable periodic orbit. This equivalence

perfectly explains the non-convergent, recurrent behavior of (FTRL)

in a (Network Game). Further, a basic understanding of calculus

provides intuition for discrete-time dynamics. The discrete-time

dynamics are obtained simply by “moving tangentially to the curve”.

Since continuous time strategies orbit around the Nash equilibrium,

discrete-time dynamics must diverge as in Corollary 5.4.

6 GENERALIZATIONS OF GAMES
In this section, we extend the theory to a more general class of

games. As we discussed in Section 4.1, our results hold for any

convex, compact strategy space, Xi . We further extend the results

for the more general payoff function

max

xi ∈Xi


∑
j,i

(
x
ᵀ
i A

(i j)x j + b
(i j) · xi + d

(i j) · x j + c
(i j)

) ∀i

(Generalized Network Game)

where A(i j) = σ
(
A(ji)

)ᵀ
. Again σ = 1 corresponds to a coordina-

tion (Generalized Network Game) and σ = −1 corresponds to a

zero-sum (Generalized Network Game).

With this new utility function, the dynamics of (FTRL) must be

redefined. Observe that agent i only has control of x
ᵀ
i A

(i j)x j +b
(i j) ·

xi and therefore only learns according to this component of their

utility function. Thus, (FTRL) is rewritten as

yi (t) = yi (0) +

∫ t

0

∑
j,i

(
A(i j)x j (s) + b

(i j)
)
ds

xi (t) = argmax

xi ∈Xi
{⟨xi ,yi (t)⟩ − hi (xi )}.

(FTRL2)

Similar to (FTRL), agent i is still learning against agent j via the

payoff matrix A(i j)
. However, unlike a (Network Game), a (Gener-

alized Network Game) is not a closed system; additional energy

is introduced into the dynamical system via b(i j). Nonetheless,
(FTRL2) also admits Hamiltonian dynamics after describing motion

with yti and position with Xi (t). However, we modify the energy

function to remove the additional energy introduced by b(i j):

H (X ,y) =
∑
i ∈N

h∗i (yi (t)) − σ
∑
j ∈N

h∗j
©«yj (0) +

∑
i,j

(
A(ji)Xi (t) + b

(ji)
)ª®¬

−
∑
i ∈N

∑
j,j

b(i j) · Xi (t).

(41)

Theorem 6.1. Given any set of convex, compact Xi , the dynamics
(FTRL2) on a zero-sum (Generalized Network Game) are Hamiltonian
with invariant H (X ,y).

The proof follows identically to Theorem 4.4.

Similar to Theorem 3.2 and Corollary 4.2, we can define the

energy from one side of the network for coordination games in

two-agent and bipartite (Generalized Network Game).
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H̄ (X ,y) =
∑
i ∈N1

h∗i (yi (t)) − σ
∑
j ∈N2

h∗j
©«yj (0) +

∑
i ∈Ni

(
A(ji)Xi (t) + b

(ji)
)ª®¬

−
∑
i ∈N1

∑
j ∈N2

b(i j) · Xi (t).

(42)

Theorem 6.2. Given any set of convex, compact Xi , the dynamics
(FTRL2) on a coordination or zero-sum, two-agent or bipartite (Gener-
alized Network Game) are Hamiltonian with invariant H̄ (X ,y).

It may not be immediately clear how the results on (Generalized

Network Game) fits into the literature on learning theory. Certainly,

the results imply our results in the setting of (Network Game) by

taking b(i j) = d(i j) = c(i j) = 0 and Xi to be the standard simplex.

However, there is a more nuanced reduction from (Network Game)

to (Generalized Network Game) that allows us to extend our results

to a larger class of network games.

In (Network Game), the strategy space is Xi = {xi ∈ R
|Si |
≥0

:∑
si ∈Si xisi = 1}. After selecting si ∈ Si arbitrarily for each i ,

substituting xisi = 1−
∑
s ′i ∈Si \{si }

xis ′i into (Network Game) yields

max

x̄i ∈ ¯Xi


∑
j,i

(
x̄
ᵀ
i Ā

(i j)x̄ j + b
(i j) · x̄i + d

(i j) · x̄ j + c
(i j)

) ∀i (43)

where
¯Xi = {x̄i ∈ R

|Si |−1

≥0
:

∑
s ′i ∈Si \{si }

x̄is ′i ≤ 1}. It is straightfor-

ward to verify that this substitution preserves the dynamics {xt }∞t=0

since the optimizer of a function does not change after a variable

substitution. Under this formulation, the dynamics are Hamiltonian

if Ā(i j) = σ
(
Ā(ji)

)ᵀ
even if the condition does not hold for the

original payoff matrix A(i j)
. As a result, almost every two agent,

two strategy game admits Hamiltonian dynamics under (FTRL).

Corollary 6.3. Suppose Xi = {xi ∈ R2

≥0
: xi1 + xi2 = 1}.

Then almost every two-agent, two-strategy (Network Game) can be
expressed as a coordination or zero-sum version of (Generalized Net-
work Game) and therefore has Hamiltonian dynamics.

Proof. Suppose the agents’ payoff matrices are given by

A(12) =

(
a b
c d

)
A(21) =

(
α β
γ δ

)
. (44)

After performing the substitution xi2 = 1−xi1, the two-agent game

can be rewritten as

max

x11∈[0,1]
{(a + d − b − c)x11x21 + (b − d)x11 + (c − d)x21 + d} (45)

max

x21∈[0,1]
{(α + δ − β − γ )x11x21 + (β − δ )x21 + (γ − δ )x11 + δ }.

(46)

When performing this variable substitution, we must also update

our definitions of yi (0) and hi :

xi (0) = argmax

xi ∈Xi
{⟨xi ,yi (0)⟩ − hi (xi )} (47)

= argmax

xi ∈Xi
{xi1 · yi1(0) + xi2 · yi2(0) − hi (xi1, xi2)} (48)

= argmax

xi ∈Xi
{xi1 · yi1(0) + (1 − xi1) · yi2(0) − hi (xi1, 1 − xi1)}

(49)

= argmax

xi ∈Xi
{xi1 · (yi1(0) − yi2(0)) − hi (xi1, 1 − xi1)} (50)

Therefore the new regularizer is
¯hi (xi1) = h(xi1, 1−xi1) and the new

initial payoff vector is ȳi (0) = yi1(0) − yi2(0). It is straightforward
to verify that these substitutions yield the same dynamics xi (t). For
simplicity, we write xi1 as xi , ȳi as yi , ¯hi as hi . Further, we rewrite
(45-46) as

max

x1∈[0,1]
{a1x1x2 + b

1x1 + d
1x2 + c

1} (51)

max

x2∈[0,1]
{a2x1x2 + b

2x2 + d
2x1 + c

2}. (52)

For Theorem 6.1 to apply to this game, we need for a1 = σa2
for

some σ ∈ {±1}. To accomplish this, we will further modify agent

2’s payoff function, initial payoff vector ȳ2(0), and regularizer ¯h2 in

a way that preserves the dynamics of (FTRL2). First, observe that for

almost every two-agent, two-strategy game, a1 = a + d − b − c , 0

and a2 = α + δ − β − γ , 0. Therefore, we can rewrite agent 2’s

portion of the game as

max

x2∈[0,1]

{
|a1 |

|a2 |
a2x1x2 +

|a1 |

|a2 |
b2x2 +

|a1 |

|a2 |
d2x1 +

|a1 |

|a2 |
c2

}
(53)

= max

x2∈[0,1]

{
σa1x1x2 + ¯b2x2 + ¯d2x1 + c̄

2
}

(54)

where σ ∈ {±1}. To preserve the dynamics x2(t), we must pass

the change in the payoff function into the initial payoff vector

y2(0) and regularizer h2. This is accomplished with ȳ2 =
|a1 |

|a2 |
y2

and
¯h2 =

|a1 |

|a2 |
h2. Once again, the dynamics {xt }∞t=0

are preserved

since the substitutions rescale the maximization problem by the

positive constant
|a1 |

|a2 |
. Thus, after performing these substitutions,

the dynamics are Hamiltonian by Theorem 6.1. �

7 CONCLUSIONS
We have shown that online learning in games is a Hamiltonian dy-

namical system. Moreover, this characterization provides a deeper

understanding of games played in both continuous and discrete

time. In fact, several of the recent results on online learning can

be described simply as a byproduct of the Hamiltonian behavior.

Research on Hamiltonian dynamics is rich and encompasses far

more than what is discussed in this paper. What are the other con-

sequences of Hamiltonian dynamics and what do they mean about

online learning in games?
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