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ABSTRACT
Shared ownership of computing resources has long been in the

practice; here, multiple agents pool their resources together to

achieve high utility and low wastefulness. Sharing incentive, non-

wastefulness and strategyproofness are three of the most desirable

properties for a feasible system. However, Freeman et al. [2018]

showed the fact that these three properties are incompatible in a dy-

namic setting and thus, a trade off must be maintained. In this work,

we propose a dynamic allocation mechanism which fairly allocates

the shared resources among the agents, and partially satisfies the

above desiderata. Our mechanism outperforms the mechanisms

proposed by Freeman et al. [2018] in the single resource case in

terms of social welfare both in synthetic and real-life data. We also

show that in the single resource case, our mechanism allocates

the resources in a way that creates a market equilibrium and thus

naturally satisfies several additional properties.
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1 INTRODUCTION
The CS department in the University of X has a happy problem:

several research labs used their grant funding to purchase servers,

where they run their experiments or store data. Each server offers

several computing resources (CPU, RAM, cache, storage etc.) in

differing amounts. The labs’ resource demands vary over time; a lab

may require a lot of resources at some point of time (say, before an

AI conference deadline), and at others their servers are idle. It may

very well be the case that at some point in time, a lab would actually

require more resources than it currently has available, and would

be happy to use other labs’ available server time. This imbalance is

naturally undesirable: servers are expensive to maintain and letting

them go unused at times when they could be utilized by others is

highly wasteful. A resource pooling mechanism is a natural solution

to this problem.
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Consider, for example, a scenario with three research labs, de-

noted 1, 2, 3, who require a single type of resource. Labs 1 and 2 own

10 units of the resource, and lab 3 owns 40. In order to complete

their tasks, they each require 20 units per round; clearly, offering 20

units of the unused resources of lab 3 to labs 1 and 2 would be signif-

icantly more efficient. In order to reap the benefits of cooperation

the department has to devise a satisfactory allocation mechanism;

in this work, we propose and analyze such a mechanism.

1.1 Our Contribution
We consider a dynamic model where agents contribute some fixed

amount of resources to a public pool at each round, whichmust then

be allocated to each agent according to their demands. Our mecha-

nism satisfies the sharing incentive (SI) property: this baseline de-
mand requires that agents receive at least as much resources as they

have available. The mechanism also satisfies the non-wastefulness

property: there is no agent with unfulfilled demands when there are

unused resources in the system. Our mechanism is strategyproof

(SP) for myopic agents: truthful reporting is a dominant strategy

each round, assuming that agents only think about their utility

in the current round rather than their long-term reward; we call

it turn wise strategyproofness. However, when agents care about

their future rewards, it is entirely possible that they will be incen-

tivized to misreport their current demands in order to achieve high

future gains. This is unavoidable, as SI, SP and non-wastefulness

are incompatible [8]. That said, our mechanism only incentivizes

under-reporting of one’s demands, and never over-reporting; in

other words, our mechanism may reward agents for utilizing less

resources in early rounds, in order to reap higher rewards when

they anticipate a greater need in later rounds. Unlike prior work,

our mechanism allocates resources to agents based on the amount

of resources they contributed, rather than the amount of resources

they own. Our mechanism ensures some notion of long-term strat-

egyproofness by making agents’ allocation at time t is dependent
on their contributions up to time t − 1; thus, agents are incentivized

to release unused resources to the common pool, though they may

be incentivized to release more resources at some rounds in order

to reap future rewards. We also show that our mechanism allocates

the shared resources among the demanding agents in a way that it

creates a market equilibrium and thus inherits some other desirable

fairness and efficiency guarantees like Pareto Optimality (PO) and

an approximate notion of Maximin share guarantee (MMS) [2]. We

empirically compare our mechanisms to the mechanisms proposed

by Freeman et al. [2018]; our mechanism outperforms the current

state of the art in terms of social welfare.
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1.2 Related Work
Computational resource allocation is a well-studied problem [3, 9,

19]; the work by Freeman et al. [2018] most closely relates to our

own: like this work, [8] study allocation mechanisms for heteroge-

neous, dynamic demands.

Several otherworks study resource allocationmechanisms [6, 10–

12, 16]; however, most of them consider a static setting. Ghodsi et al.

[2011] propose a mechanism based on the maximin fairness policy

for multiple types of resources, maximizing the minimum dominant

share amongst agents. This mechanism satisfies several desiderata,

but does not consider the problem in a dynamic setting. In addi-

tion, Ghodsi et al. [2011] do not consider agents who contribute

to a joint pool. Parkes et al. [2015] extend the framework of Gh-

odsi et al. [2011], and consider a notion of personal endowment;

however, like [10], they do not consider the dynamic case. Kash

et al. [2014] study fair division of multiple types of resources over

dynamic setting. Like [10], they also consider agent demands fol-

lowing Leontief preferences. They introduce the notion of dynamic
Pareto optimallity (DPO) andDynamic envy freeness (DEF) and show
that their proposedDynamicDRFmechanism satisfies SI, DEF, DOP

and SP. However, their mechanism is not appropriate for the setting

where agents contribute resources to the system.

Other works compute competitive equilibria obtained via artificial
currency, in order to arrive at fair allocations [2, 14, 15]. Artificial

currency is particularly appealing in domains such as ours, where

the mechanism designer has no interest in maximizing revenue, and

the use of actual money is prohibited (labs normally purchase re-

sources via grant funding, and charging others for their use is often

illegal/highly unethical). While the presence of CE has been proven

in almost all cases of divisible goods [1, 18], this is not the case

for indivisible goods. Competitive equilibrium from equal incomes
(CEEI) is useful in producing outcomes where all agents should

be treated equally; its market equilibrium properties immediately

imply that the resulting allocation is Pareto efficient and envy-free

in the case of divisible goods [7]; Budish [2011] studies approxi-

mate CEEI, where agents’ budgets are perturbed, and some items

remain unallocated. Nisan et al. [2007] consider a more general

case and prove the existence of equilibria for a small number of

items and agents, a result that was subsequently improved upon by

Segal-Halevi [2018].

2 PRELIMINARIES
Let N = {1, . . . ,n} be a set of agents and each of them owns ri ∈
Z+ resources. At round t , each agent wishes to complete taskti
copies of a single task; each instance of the task requires dti ∈

Z+ resources. At round t , a mechanism takes as input the agents’

reported demands per task and the number of task copies; it outputs

an allocation vector. Let, ati is the amount of resources received

by agent i at round t . We assume that tasks could be partially

completed. This is captured by the following utility model:

uti (d
t
i ,a

t
i , task

t
i ) = min

{
taskti ,

ati
dti

}
(1)

Current algorithmic approaches [8, 16] equate an agent’s contri-

bution with the amount of resources they contribute to the server,

regardless of their consumption. However, we argue that agents’

contribution should be measured in terms of the resources they

actually make available to others. If at round t , the shareable units
of resources are et , at the end of each round, the contribution pa-

rameter cti of each agent i is calculated as follows:

cti =

{
ri−ati
e t if et > 0

0 Otherwise.

(2)

At the end of each round, the cumulative contribution parameter,

Ct
i is updated, i.e. C

t
i = C

t−1
i + cti .

3 OUR MECHANISM
Wepropose a dynamic allocationmechanismwhich allocates shared

resources among agents based on their demands and contributions.

We begin by allocating each agent an amount of resources that guar-

antees their welfare is at least what they can achieve on their own.

Next, the excess resources, et are distributed among the agents who

have excess demands. The agents are allocated resources in propor-

tion to their past contributions if these are positive. First, Algorithm

allocates resources to agents whoseCt−1
i are strictly positive; if such

agents exist, they are assigned a share of et proportional to Ct−1
i ;

once these agents’ demands are fulfilled, Algorithm divides the

remaining resources among the agents with Ct
i ≤ 0. We proof that

our mechanism has sharing incentive, resource non-wastefulness

and turn-wise strategyproof.

3.1 Market Setting
The concept of competitive equilibrium (CE) has long been used

in the literature of fairly allocating resources [2, 5, 15]; in a com-

petitive equilibrium, we set prices to items and allocate bundles

to agents so that everyone considers their bundle to be the best

possible bundle within their budget. This immediately implies that

competitive equilibria satisfy some highly desirable fairness and

efficiency properties.

In this work, we show that our mechanism allocates resources

in a way that induces a market equilibrium and thus, naturally

inherits several properties of competitive market equilibrium like

an approximate notion of the maximin share (MMS) guarantee [2],

and Pareto Optimality (PO).

4 CONCLUSION
We propose a novel dynamic resource allocation mechanism, which

is based on agents’ contribution. Our notion of agent contribution

ensures that only agents’ actual contributions to the system are

measured, as opposed to the amount of resources that they own.

We show that our mechanism ensures sharing incentives, resource

non-wastefulness and turn-wise strategyproofness. Our mechanism

outperforms other mechanisms in the literature in terms of social

welfare, on both synthetic and real-life data. We also show that

the allocation of our mechanism induces a market equilibrium

among the demanding agents and thus, naturally satisfies some

other fairness and efficiency guarantees like Pareto optimality, and

l-out-of-d maximin share. However, as our model works for both

single and multiple types of resources, it would be interesting to see

what guarantees does our mechanism have in the multiple types of

resource case.
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