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ABSTRACT
Truth inference, a method that resolves conflicts amongmulti-agent

data, has been widely studied in the field of AI. Most existing truth

inference methods use iterative approaches to achieve high accu-

racy, but are inefficient to infer object truths over data streams. The

methods developed for streaming data can achieve high efficiency

but suffer from low accuracy. In this paper, we propose a novel truth

inference method, Dynamic Source Weight Computation truth in-

ference (DSWC), that can work with a wide range of iterative-based

truth inference methods to dynamically compute source weights

over data streams. Specifically, we use Taylor expansion to analyze

the unit error of object truths inferred by source weights computed

at a previous timestamp. If the source weight at present is pre-

dicted to be able to limit the error under a threshold, we use the

source weights computed previously to approximate object truths

at present to avoid the expensive source weight computation step.

Compared with the existing work, the proposed method is more

effective in predicting source weights and can be applied to a wider

range of applications. Experimental results based on four real-world

datasets demonstrate that DSWC is both accurate and efficient for

truth inference over data streams.
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1 INTRODUCTION
In the era of big data, it is easy to obtain data for the same ob-

jects from multiple agents, e.g., websites, crowd workers and social

sensors. Each agent, performed as a data source
1
, can provide her

observations, views or answers to the objects that we are inter-

ested in. Unfortunately, the multi-source data on the same object

is usually conflicting. Generally, the multi-source data cannot be

used as inputs by machine learning or analytic tasks because poor

quality data could have a negative impact on the performance of

the learning algorithms. Thus, truth inference has emerged and it

aims at inferring the truth of each object from multi-source data.

1
We will use agent and source interchangeably in this paper.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Most studies on truth inference infer object truths by modeling

source reliabilities. The principle is that sources which frequently

provide trustworthy information are reliable and has high weights,

while the information supported by reliable sources is identified as

the truth for each object. Motivated by this principle, significant

progress has been made to address truth inference in the applica-

tions of crowdsourcing [30], world wide web [14], social sensing

[1, 22], healthcare [17], information extraction [9, 27] and knowl-

edge base construction [4, 6, 7]. Most existing researches on truth

inference focus on static data where no temporal dimension is in-

volved [8, 10, 11, 18, 22–24, 28, 29]. It is assumed that all the data

is available in a batch before the truth inference algorithm is con-

ducted. Iterative approaches are usually adopted by these methods

to learn accurate agent quality and object truths simultaneously.

In recent years, significant advances have been made in mobile

and web technologies. It has led to the proliferation of many stream-

ing data intensive applications, in which data in streaming format

is being collected sequentially in large volume and high speed from

multiple agents. Effective and efficient truth inference methods for

such high-speed data streams are important to a wide range of

applications. Although the iterative-based methods can be applied

to the streaming data directly, they are computationally expensive

to process streaming data. Therefore, it is demanded to have effi-

cient methods which process the streaming data in short response

time. In light of this challenge, some incremental truth inference

methods are designed specifically for streaming data [15, 16]. One

disadvantage of the incremental methods is that they assume the

source weight converges to a certain value over time. However, the

source weights are changing constantly [21]. Therefore, they can-

not compute the source weights accurately at each timestamp. As a

result, the incremental methods are not accurate at inferring object

truths over data streams. Recently, the authors in [12] developed

ASRA that adopts iterative-based methods to infer object truths

over data streams. ASRA neglects the source weight computation

step at certain timestamps if the error of truth inference caused

by not changing source weights is predicted to be small. However,

ASRA is limited that it can only be applied to few applications and is

not able to incorporate prior beliefs to compute source weights and

object truths. Furthermore, its estimation model cannot estimate

source weights correctly over data streams, which results in large

errors and more iterative processes conducted.

To address the accuracy and efficiency issues of streaming data

truth inference and the limitation of ASRA, we develop a novel truth

inference method, Dynamic SourceWeight Computation (DSWC)

truth inference, which is able to work with a wide range of itera-

tive truth inference methods for both high accuracy and efficiency.

Specifically, we define unit error, which is the truth inference error
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caused by not changing source weights at certain timestamps. We

analyze the relationship between unit error and source weight evo-

lution. We prove that the unit error is limited if the source weight

evolution satisfies a certain condition. If the unit error is under a

threshold, we skip the expensive iterative process and compute

object truths directly. As the source weight evolution is unknown

before the source weights are computed, we develop a model to

predict source weight evolution over time. Finally, we integrate

the error analysis and the prediction model to present the DSWC

algorithm. In summary, we make the following contributions:

• We theoretically analyze the relationship between unit error

and source weight evolution when each object is only ob-

served or reported by a subset of sources/agents. We prove

that the unit error can be limited within a threshold if the

source weight evolution satisfies a certain condition.

• We propose a model which accurately predicts source weight

evolution and reports the posterior distribution of source

weight and source weight evolution.

• By integrating the error analysis and the prediction model,

we develop DSWC algorithm that can work with a wide

range of iterative-based methods for truth inference over

data streams to achieve better accuracy as well as efficiency

for streaming data.

• The experiments on four datasets demonstrate high perfor-

mance of the proposed method.

2 TRUTH INFERENCE & RELATEDWORK
In this section, we define the truth inference problem and review

existing truth inference methods. The problem definition of truth

inference on data streams is given below.

Problem Definition. Suppose there are a set of objects O and

a set of agents/sources S . Each object o at a timestamp i can be

observed by a set of sources So,i where So,i ⊆ S . The observation
of an object o by a source s at timestamp i is denoted as vso,i . The

goal of truth inference is to infer the truth for each object at each

timestamp, i.e. {v∗o,i } where v
∗
o,i is defined as the truth of object o

at timestamp i .
Early studies of truth inference mostly focus on static scenarios

where no temporal dimension is involved, i.e., all the observations

are reported at the same timestamp. In order to infer object truths

in a static dataset, Demartini et al. proposed ZenCrowd [3] which

uses a probabilistic graphical model to jointly estimate categorical

object truths and source weights. DS [2] uses a confusion matrix to

model the source weights, in which the confusion matrix represents

the probability distribution of the source’s possible categorical ob-

servation for an object given the truth of the object. Based on DS,

LFC [20] was developed to infer both categorical and numerical

object truths from crowdsourced observations. In [26], the authors

proposed TruthFinder which adopts Bayesian analysis to compute

source weights and object truths. In [8], 3-estimates algorithm was

proposed to estimate object truths and source weights along with

object difficulties. Li et al. [10] proposed a confidence aware truth

inference algorithm to deal with datasets with long-tail distribution.

[28] developed a probabilistic graphical model (PGM) based method

(GTM) for inferring numerical object truths. In [29], the authors

studied the truth inference problem with multi-valued truths and

used false positive and false negative rates to model the reliability

degrees of sources. In [11], an optimization based method (CRH)

was developed for inferring heterogeneous object truths. By analyz-

ing streaming data, OTD [25] was developed to regularize inferred

truths by ARIMA-mined patterns.

As both source weights and object truths are unknown, the meth-

ods discussed above adopt an iterative approach to compute object

truths and source weights until convergence. A well-known truth

inference strategy isweighted aggregation [10, 11, 15, 16, 25, 28].

The weighted aggregation can be derived by using coordinate de-

scent if the truth inference problem is modeled as an optimiza-

tion task [11], or expectation maximization if the truth inference

problem is modeled by a probabilistic graphical model [28]. The

high-level view of weighted aggregation is given below.

v∗o,i =

∑
s∈So,i w

s
i × v

s
o,i + a∑

s∈So,i w
s
i + b

(1)

In Equation (1), ws
i is the weight of source s at timestamp i . It

is modeled as a positive number which reflects the reliability of

source s . A source’s weight is higher if its observations are closer

to the truths. a and b can be set differently to capture different

characteristics when inferring object truths. For example, a and

b are set to 0 for basic weighted aggregation [11]. If PGM is used

to infer object truths where the object truths are generated from

Gaussian distributions [28], then a =
µo,i
σ 2

o,i
and b = 1

σ 2

o,i
, where µo,i

and σ 2

o,i are the mean and variance parameters of the Gaussian

distribution that generates the truth of object o at timestamp i . In a

data stream, the object truths usually evolve smoothly over time,

i.e., the truths of an object in adjacent timestamps are very close. To

capture this temporal smoothness [15], a and b can be set to λv∗o,i−1
and λ, respectively, where λ is a smooth factor (hyperparameter),

andv∗o,i−1 is the inferred truth of object o at the previous timestamp

i − 1. A larger λ enforces the truth at current timestamp to be

very close to the inferred truth at the previous timestamp. If an

observation at timestamp i is significantly different from v∗o,i−1,

this observation can be treated as an outlier and discarded. Other

more advanced outlier detection techniques can also be applied

here, but the focus of this paper is not a novel outlier detection

method, we will not discuss outlier detection further.

The source weights computation strategy can be derived dif-

ferently by different methods. For example, CRH [11] and DyOP

[15] use the following equations to compute source weights.

CRH:ws
i = − log

∑
o∈Os

i
(vso,i −v

∗
o,i )

2∑
s ∈S

∑
o∈Os

i
(vso,i −v

∗
o,i )

2
(2)

DyOP:ws
i =

|Os
i |∑

o∈Os
i
(vso,i −v

∗
o,i )

2
(3)

In the above two equations,Os
i denotes the objects that are observed

by source s at timestamp i .
∑
o∈Os

i
(vso,i − v∗o,i )

2
represents the

error that s makes on observing the objects at timestamp i . By
incorporating prior beliefs, we can assume the source weight is

generated from an Inverse-Gamm distribution, and GTM can be
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applied to compute source weights [28]:

GTM:ws
i =

2(β1 + 1) + |O
s
i |

2β2 +
∑
o∈Os

i
(vso,i −v

∗
o,i )

2
(4)

In Equation (4), β1 and β2 are the hyperparameters of an Inverse-

Gamma distribution which encode the prior beliefs ofws
i . Although

the source weights are computed differently by different methods,

we can observe that all the methods assign high weights to the

reliable sources whose observations are closer to the object truths.

Normally, iterative-based methods can achieve high accuracy.

However, the iterative process is computationally expensive. For

data arriving from streams, it is inefficient if an iterative process

needs to be conducted at each timestamp. To improve the efficiency

of truth inference over data streams, [15] proposed an incremental

truth inference method which transforms their optimization-based

framework (DyOP) to a probabilistic model DynaTD. Thus, data

needs to be scanned only once without conducting iterative pro-

cesses. As information usually evolves smoothly over time, based

on DynaTD, DynaTD+s was proposed by adding a smoothness

constraint to infer object truths. iCRH [16] was developed to in-

fer truths of heterogeneous data incrementally over data streams.

These methods are efficient because they give up using the iterative

processes to compute source weights at each timestamp. Instead,

they compute each source weight and object truth exactly once at

each timestamp without reaching convergence. The consequence

of adopting this approach is that the incremental methods cannot

compute accurate source weights at each timestamp, which results

in large errors when inferring object truths.

In order to leverage accuracy and efficiency of streaming data

truth inference, ASRA [12] was developed recently. ASRA uses

iterative-based methods to compute source weights only at certain

timestamps to reduce the frequency of iterative processes. It ana-

lyzes the error of inferred object truths by using source weights

computed at a previous timestamp. If the error is predicted to be

small, it uses the previously computed source weights to infer ob-

ject truths at the current timestamp. However, ASRA is limited in

the following ways.

• ASRA assumes that every object must be observed by all the

agents at every timestamp, i.e., ∀t ∈ [1,T ], |So,t | = |S |. If
this condition is not satisfied, its theoretical analysis does

not hold. This condition is not realistic for many real-world

applications, such as crowdsourcing and social sensing, in

which each agent reports only a small set of objects.

• The source weight evolution estimation model of ASRA does

not consider the covariance of source weights at each times-

tamp, which may produce inaccurate estimates.

• ASRA cannot incorporate priors if prior knowledge about

the object truths and source weights are available.

The proposed method, DSWC, aims at balancing the accuracy

and efficiency and addressing the limitations of ASRA for truth

inference over data streams. Specifically, DSWC can work with

a wide range of iterative-based methods, including methods that

incorporate prior beliefs. Moreover, the error analysis described

in Section 4 is based on Taylor expansion, it only requires each

source observes a subset of objects, which is more practical for real-

world applications. The source weight prediction model developed

in Section 5 is able to capture the covariance of source weights over

time, which ensures the accuracy and efficiency of DSWC. In the

next section, we present the preliminaries of this paper.

3 PRELIMINARY
In this paper, we study numerical truth inference problem over data

streams. We adopt weighted aggregation in Equation (1) to infer

object truths. From Equation (1) we can see that the truth of an

object at timestamp i is determined by the the weights of sources

who observe it at timestamp i . We can also write the weighted

aggregation as a function of source weights given below

fo,i ({w
s
i }) = v

∗
o,i =

∑
s ∈So,i w

s
i ×v

s
o,i + a∑

s ∈So,i w
s
i + b

(5)

where {ws
i } is the weights of sources that observe object o at times-

tamp i , and {vso,i }, a and b are all constants. By Equation (5), we can

observe that the inferred object truth is sensitive to the change of

the source weights. If we vary the values of source weights, then the

inferred object truth is changed. In real-world applications, source

weights usually change smoothly over time [15]. At timestamp j,
if we use the source weights computed at a previous timestamp i ,
where i < j , to infer the truth directly without computing the source

weights iteratively, it will produce a small error on the inferred

truth. Whereas, the efficiency can be improved by skipping the

iterative process. Inspired by this idea, we develop a novel method,

Dynamic Source Weight Computation truth inference (DSWC).

It can work with a range of iterative-based methods which use

weighted aggregation to dynamically compute source weights only

at certain timestamps to achieve both high accuracy and efficiency.

Specifically, we define unit error ϕoi/j in Equation (6) to measure the

deviation of inferred object truth at timestamp j by using source

weights computed at timestamp i .

ϕoi/j =
(v∗o, j −v∗o,i/j

vmo, j

)
2

=
( fo, j ({ws

j }) − fo, j ({w
s
i })

vmo, j

)
2

(6)

In Equation (6), v∗o, j is the truth inferred by the source weights

{ws
j } computed at timestamp j, i.e., fo, j ({w

s
j }), and v∗o,i/j is the

approximate truth of object o at timestamp j inferred by the source

weights {ws
i } computed at timestamp i , i.e., fo, j ({w

s
i }). v

m
o, j is a

scaling factor and defined as the absolute maximum value of ob-

servations for o at timestamp j, i.e. vmo, j = max{vso, j }s ∈So, j . If the

unit error is under a user-defined tolerable threshold ϵ , then we

choose to use {ws
i } to approximate the object truths at timestamp

j without conducting an expensive iterative process.

At timestamp j, the unit error is determined by the change of

source weights from timestamp i to j. We use source weight evolu-

tion δsi/j , given in Equation (7), to capture the absolute difference

of source weights from timestamp i to j . Without loss of generality,

we assume the source weights at each timestamp are scaled and

summed up to 1, i.e., ∀t ∈ {1, . . . ,T },∑s ∈S w
s
t = 1.

δsi/j = |w
s
j −w

s
i | (7)

Next, wewill analyze the relationship between unit error and source

weight evolution, and present the source weight evolution upper

bound for limiting unit error.
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4 ERROR ANALYSIS
In this section, we theoretically analyze the upper bound of source

weight evolution that limits the unit error for each object.

The approximate truth v∗o,i/j , or fo, j ({w
s
i }), is sensitive to the

the source weights {ws
i }. The change rate of fo, j ({w

s
i }) can be

captured by its derivative:

∂f ({ws
i })

∂ws
i

=

vso, j×(
∑
s′∈So, j

ws′
i +b)−(

∑
s∈So, j w

s′
i ×v

s′
o, j+a)∑

s′∈So, j
ws′
i +b

(
∑
s′∈So, j

ws′
i +b)

2∑
s′∈So, j

ws′
i +b

=
vso,i − f ({w

s
i })∑

s′∈So, j w
s′
i + b

(8)

where, to keep the notation uncluttered, we use f to denote fo, j .
Next, we propose a theorem to show the high order derivative of

weight aggregation in Equation (5).

Theorem 4.1. The nth order partial derivative of f ({ws
i }) w.r.t. n

source weights (i.e.ws1
i , . . . ,w

sn
i ) is:

∂n f ({ws
i })

∂ws1
i . . . ∂wsn

i
= (−1)n−1(n − 1)!

∑n
k=1 v

sk
o, j − f ({w

s
j })

(
∑
s′∈So, j w

s′
i + b)

n
(9)

Proof. For any integers n ≥ 1, let P(n) denotes the statement

∂n f ({ws
i })

∂ws1
i ...∂wsn

i
= (−1)n−1(n − 1)! es1+es2+· · ·+esn

(
∑
s′∈So, j w

s′
i +b)

n where es = vso, j −

f ({ws
i }) . We will prove Theorem 4.1 by induction.

Base step (n = 1): P(1) is true as shown by Equation(8).

Inductive step P(k) → P(k + 1): Fix some integer k ≥ 2. Assume

that P(k) holds. We need to show that P(k + 1):

∂k+1 f ({ws
i })

∂ws1
i . . . ∂w

sk
i ∂w

sk+1
i

= (−1)k (k)!
es1 + · · · + esk + esk+1

(
∑
s ′∈So, j w

s ′
i + b)

k+1

Let Ωo
i/j =

∑
s ∈So, j w

s
i + b, by the assumption we have

∂k f ({ws
i })

∂ws
1

i . . . ∂w
sk
i

= (−1)k−1(k − 1)!
(
∑k
z=1 v

sz
o, j ) − k × f ({w

s
i })

(Ωo
i/j )

k

because we defined esz = vszo, j − f ({ws
i }). Rearrange the above

equation, we can get:

kf ({ws
i }) =

k∑
z=1

vszo, j −
1

(−1)k−1(k − 1)!
×

∂k f ({ws
i })

∂ws
1

i . . . ∂w
sk
i

(Ωo
i/j )

k

Taking the derivative w.r.t.w
sk+1
i on both sides, we have:

k
∂f ({ws

i })

∂w
sk+1
i

=
∂

∂w
sk+1
i

( k∑
z=1

vszo, j −
1

(−1)k−1(k − 1)!
×

∂k f ({ws
i })

∂ws
1

i . . . ∂w
sk
i

× (Ωo
i/j )

k
)

= −
1

(−1)k−1(k − 1)!

( ∂k+1f ({ws
i })

∂ws
1

i . . . ∂w
sk+1
i

× (Ωo
i/j )

k + k (Ωo
i/j )

k−1 ×
∂k f ({ws

i })

∂ws
1

i . . . ∂w
sk
i

)
Rearrange the above equation, we can show that:

∂k+1f ({ws
i })

∂w
s
1

i . . . ∂w
sk+1
i

=
−1

(Ωoi/j )
k

(
(−1)k−1(k − 1)!k

∂f ({ws
i })

∂w
sk+1
i

+ k (Ωoi/j )
k−1 ∂k f ({ws

i })

∂w
s
1

i . . . ∂w
sk
i

)

= (−1)k k !
(v
s
1

o, j − f ({w
s
i })) + · · · + (v

sk
o, j − f ({w

s
i })) + (v

sk+1
o, j − f ({ws

i }))

(Ωoi/j )
k+1

= (−1)k (k )!
es1 + · · · + esk+1

(
∑
s′∈So, j

ws′
i + b)

k+1

Conclusion: By induction, it is proved that for all integers n ≥ 1,

P(n) is true. Therefore, Equation (9) holds. �

Next, we analyze the unit error by using Taylor Expansion:√
ϕoi/j =

|f ({w j
s }) − f ({w i

s }) |

vmo, j
=

1

vmo, j

���� ∑
x∈So, j

∂f
∂wx

i
∆wx

i/j

+
1

2!

∑
x∈So, j

∑
y∈So, j

∂2f
∂wx

i ∂w
y
i
∆wx

i/j∆w
y
i/j + . . .

���� (10)

where ∆wx
i/j = w

x
j −w

x
i . Based on the Equations (8 - 10), we present

the following proposition to show the upper bound of source weight

evolution to ensure ϕoi/j ≤ ϵ .

Proposition 4.2. Given a unit error threshold ϵ and an object o,
ϕoi/j ≤ ϵ if the source weight evolution δsi/j for each source s ∈ So, j
satisfies the following condition:

δsi/j ≤

√
ϵ × Ωo

i/j

|So, j | × (ξo,i/j +
√
ϵ)

(11)

whereΩo
i/j =

∑
s ∈So, j w

s
i +b, and ξo,i/j = max

{ |vso, j−f ({ws
i }) |

vmo, j

}
s ∈So, j

.

Proof. By definition, δsi/j = |∆w
s
i/j |. Substituting the deriva-

tives (Equations (8) and (9)) into Equation (10), we can infer:

√
ϕoi/j ≤

∑
x∈So, j

ξo,i/j
Ωoi/j

δxi/j +
1

2

∑
x∈So, j

∑
y∈So, j

2ξo,i/j
(Ωoi/j )

2
δxi/j δ

y
i/j + . . .

Substituting Formula (11) in the above inequation, by the sum of

geometric series we can show that:√
ϕoi/j ≤ ξo,i/j ×

( √
ϵ

ξo,i/j +
√
ϵ
+ (

√
ϵ

ξo,i/j +
√
ϵ
)2 + . . .

)
= ξo,i/j ×

√
ϵ

ξo,i/j +
√
ϵ −
√
ϵ
=
√
ϵ

Hence, ϕoi/j ≤ ϵ . �

Proposition 4.2 states that for an object o, if every source s ∈ So, j
satisfies the condition given in Formula (11), then we can use {ws

i }

to approximatevso, j and ensure ϕ
o
i/j ≤ ϵ at the same time. Based on

Proposition 4.2, we propose Proposition 4.3 that defines the upper

bound of source weight evolution which guarantees that all the

objects’ unit errors are under ϵ .

Proposition 4.3. For each source s , if δsi/j ≤ r si/j where r
s
i/j =

min({

√
ϵ×Ωo

i/j

|So, j |×(ξo,i/j+
√
ϵ )
}o∈Os

j
), then for each object o ∈ O , ϕoi/j ≤ ϵ .

Proposition 4.3 states that for a source s ∈ S , the upper bound of

its source weight evolution should be no more than r si/j to ensure

the unit errors of its observed objects under ϵ . Hence, for each
object o, ensuring p(ϕoi/j ≤ ϵ) ≥ α is equivalent to ensure p(δsi/j ≤

r si/j ) ≥ α for all the sources.
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5 PREDICTION MODEL
In the last section, we present the source weight evolution upper

bound that limits the unit error. However, the source weight evolu-

tion is unknown unless computing the source weights at the current

timestamp j. In order to avoid the iterative process at each times-

tamp, we propose a source weight prediction model to predict the

source weights {ws
j } instead of computing them iteratively. Specif-

ically, we predict the probability of ϕoi/j ≤ ϵ . Given a user-defined

confidence threshold α , if p(ϕoi/j ≤ ϵ) ≥ α , then we choose to infer

object truths at timestamp j by source weight computed at times-

tamp i . Otherwise, it conducts the iterative process at timestamp j
to obtain accurate object truths and source weights. Next, we will

describe the prediction model in details.

The source weightws
j is computed differently by different meth-

ods. Thus, we treatws
j as a random function дs (j). Similarly, given

a vector of timestamps t = [1, . . . , i]T , we use дs (t) to denote the
vector of weights of s over t , i.e., дs (t) = [ws

1
, . . . ,ws

i ]
T
. Then, we

modelдs (t) as a Gaussian Process (GP)дs (t) ∼ N(m(t),K(i))where
m(t) is a prior mean function for дs (t), K(i)

is a i × i covariance

matrix at timestamp i . The (x ,y) entry inK(i)
stores the covariance

between дs (x) and дs (y), which is measured by a kernel function

k(x ,y). Thenws
j can be predicted by p(дs (j)|j, t ,дs (t)) = N(µ j ,σ 2

j )

with mean µ j and variance σ 2

j given below [19].

µ j =m(j) + kj(K
(i))−1(дs (t) −m(t))

σ 2

j = k(j, j) − j(K(i))−1(kj)
T

kj = [k(j, 1), . . . ,k(j, i)]

By definition, δsi/j = |w
s
j −w

s
i |. Therefore, we can evaluate the

probabilityp(δsi/j ≤ r si/j ) by evaluatingp(−r
s
i/j ≤ дs (j)−ws

i ≤ r si/j ),

which can be calculated by using the cumulative probability of

Normal distribution N(µ j −w
s
i ,σ

2

j ).

The proposed GP-based prediction model has the following ben-

efits to predict source weights and source weight evolution over

data streams. (1) It reports the probability distribution ofws
j , which

is suitable for evaluating p(δsi/j ≤ r si/j ). (2) It is nonparametric. The

prediction model treats the source weight as a random function,

which can be used to predict source weights computed by different

methods. (3) It uses kernels to measure the covariance and the sim-

ilarity of source weights at different timestamps. Different kernel

functions can be applied for different applications. (4) It considers

the covariance of source weights over data streams, which makes

the prediction more robust.

Update PredictionModel. At each timestamp,K(i)
needs to be

updated for future prediction. We categorize the update procedure

into the following two cases:

Case 1: p(δsi/j ≤ r si/j ) ≥ α : In this case, we use {ws
i } to approxi-

mate vso, j , and we do not update K(i)
.

Case 2: p(δsi/j ≤ r si/j ) < α : In this case, we need to compute

{ws
j }. The procedure of updating K

(i)
for this case is summarized

in Algorithm 1. In Algorithm 1, it will augment K(i) (j − i) times.

In each augment, it first computes the covariance between the

source weights at timestamp t and the previous ones (Line 2). If the

Algorithm 1: Update Covariance Matrix K

Input :K (i)
at timestamp i

Output :K (j)
at timestamp j

1 for t = i + 1 . . . j do
2 Kt = [k (t, 1), . . . , k (t, t − 1)]
3 if t = j then ρ = 0

4 else ρ = σ 2

t

5 K (t ) =

[
K (t−1) (Kt )

T

Kt k (t, t ) + ρ

]
6 end
7 return K (j )

source weightws
t is predicted, there will be an error ρ involved in

the predicted source weight, and this error can be captured by the

variance σ 2

t of this distribution (Lines 3-7). Then,K(i)
is augmented

by adding new covariances and error ofws
t in it.

Gaussian Process needs to retain all the historical information

which measures the covariance between each source weight at dif-

ferent timestamps in K(i)
. From Algorithm 1, we can see that the

size ofK(i)
is increased by 2i+1 for each augment. AsK(i)

becomes

larger, the matrix inversion becomes computationally expensive,

which will make the prediction inefficient. In real-world applica-

tions, the present weight of a source may not be correlated with its

weights computed or predicted long time ago. Hence, we can use

a sliding window to maintain the covariances of L most recently

source weights in K(i)
. By using the sliding window technique to

update K(i)
, the size of K(i)

will be at most L2 and the inversing

K(i)
is not an issue.

6 DSWC ALGORITHM FLOW
By integrating the error analysis and prediction model, we present

DSWC algorithm in Algorithm 2.

In Algorithm 2, i is the last timestamp at which the source

weights are computed by an iterative process, j is the current times-

tamp, and L is the size of the sliding window. In the beginning of the
truth inference process, it computes source weights by an iterative

process (iterative_process()) in the first L timestamps to obtain accu-

rate source weights to initialize the prediction model (Lines 3-4). In

iterative_process(), it computes the source weights and truths (Lines

15 - 19). An existing iterative approach is adopted here, e.g. DyOP

or CRH. It ensures the source weights and truths are accurately

computed at this timestamp. Line 20 scales the source weights to

make them sum up to 1. Then it updates the covariance matrix of

the prediction model (Line 21), and marks the current timestamp

as the last timestamp to compute source weights (Line 22). After

the first L timestamps, the prediction model is initialized and ready

to use. At each timestamp, if p(δsi/j ≤ r si/j ) ≥ α is satisfied (Line

6), it uses {ws
i } to approximate object truths at timestamp j (Line

7). Otherwise, iterative_process() will be conducted at the current

timestamp to compute source weights and object truths.

7 EXPERIMENTS
In this section, we present the experimental results conducted by

using four real-world datasets to evaluate the performance of DSWC
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Algorithm 2: DSWC Truth Inference

Input :Observations {Vj }j=[1,T ], ϵ and α
Output :Truths at each timestamp {V ∗j }j=[1,T ]

1 i ← 1;

2 for j = 1→ T do
3 if j ≤ L then
4 iterative_process();

5 else
6 if all sources satisfy p(δ si/j ≤ r

s
i/j ) ≥ α then

7 V ∗j ← {v
∗
o,i/j }

8 else
9 iterative_process();

10 end
11 end
12 end
13 return {V ∗j }
14 Procedure iterative_process()
15 Initialize the truths V ∗j ;
16 repeat
17 Compute source weights;

18 Compute truths;

19 until Convergence condition satisfied
20 Scale source weights;

21 Update K for sources;

22 i = j ;

algorithm. We implement all the methods in Java. Experiments are

conducted on a Windows PC with Intel i7 CPU and 16 GBs RAM.

7.1 Experiment Setup
7.1.1 Datasets. the dataset descriptions are given below.

• Weather [5]: This dataset contains 18 sources that record
daily weather information for 30 cities over 6 months. 17

sources
2
are selected from the dataset. The daily temperature

property is used in the experiments.

• Stock [13]: This dataset records data for 1000 stocks col-

lected from 55 sources over 21 working days in 2011. The

open price property is used in the experiments.

• Forecast: We crawled hourly weather forecast data from five

sources (Aeris
3
, Apixu

4
, Darksky

5
, World Weather Online

6

and Wunderground
7
) for 42 different locations (objects) in

New York city over 180 hours. We also collected the ground

truths for evaluation.

• Rates: This dataset8 contains 756 pairs of exchange rates

over 439 days and use them as ground truths for the ob-

jects. 20 sources are generated with smoothly evolved source

weights over 439 days. Observations are generated by adding

different levels of Gaussian noises based on source weights

upon the ground truth for each day. Different from the other

2
The source we do not use does not contain temperature data.

3
www.aerisweather.com

4
www.apixu.com

5
darksky.net/about/

6
www.worldweatheronline.com

7
www.wunderground.com

8
Data collected from https://fixer.io/.

three datasets, the likelihood of conflicting observations is

high.

7.1.2 Performance Metrics. Efficiency is evaluated by runtime.

Accuracy is evaluated by Mean Absolute Error (MAE).

7.1.3 Methods. We apply the source weight computation strate-

gies of CRH, DyOP and GTM, as shown in Equations (2), (3) and

(4), in DSWC, and denote them as DSWC(CRH), DSWC(DyOP)

and DSWC(GTM). By applying the temporal smoothing constraint

when computing object truths on DSWC(CRH), DSWC(DyOP) and

DSWC(GTM), we denote them as DSWC(CRH+s), DSWC(DyOP+s)

and DSWC(GTM+s). For all the experiments,m(t) in the prediction

model returns the mean of the most recent source weights in slid-

ing window L. We use squared exponential kernel to measure the

covariance between source weights at different timestamps.

The baseline truth inference methods include the iterative-based

methods: DyOP, GTM, CRH, LFC and OTD. As GTM can incorpo-

rate prior beliefs, we incorporate the information of object truths

and source weights computed at the previous timestamp into the

Bayesian prior distributions at current timestamp for inferring ob-

ject truths and computing source weights. The incremental methods

include: DynaTD, DynaTD+s and iCRH. The ASRAmethods include

ASRA(DyOP), ASRA(CRH), ASRA(DyOP+s) and ASRA(CRH+s).

ASRA cannot work with GTM because ASRA cannot work with

weighted aggregation that encodes prior beliefs. The descriptions

of the baselines can be found in Section 2.

In the stock dataset, each source averagely observes 897 objects,

two sources observe less than 200 objects at each day, and no source

observe all the 1000 objects at any day. It does notmeet the condition

required by ASRA unless removing some objects from the dataset,

which is not practical. Therefore, ASRA cannot be performed on

this dataset.

7.2 Prediction Model Evaluation
In this section, we evaluate the effectiveness of the proposed predic-

tion model against the one proposed in ASRA. In order to approxi-

mate object truths over the data streams by using the previously

computed source weights, the source weight evolution must satisfy

the condition, δsi/j ≤ r si/j , to ensure ϕoi/j ≤ ϵ with probability at

least α . Therefore, the prediction results at any timestamp can be

categorized into the following cases.

• True Positive (TP): The actual source weight evolution con-

dition is satisfied, and the truth inference method does not

compute source weights.

• True Negative (TN): The actual source weight evolution

condition is not satisfied, and the truth inference method

computes source weights.

• False Positive (FP): The actual source weight evolution con-

dition is not satisfied, but the truth inference method does

not compute source weights.

• False Negative (FN): The actual source weight evolution con-

dition is satisfied, but the truth inference method computes

source weights.

Higher TP and TN indicate that the prediction model predicts

sourceweight evolution correctly. Thus, we use accuracy (accuracy =
TP + TN

TP + TN + FP + FN
) to measure the effectiveness of the prediction
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Table 1: Prediction Model Evaluation for Weather Dataset

Table 2: Prediction Model Evaluation for Rates Dataset
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Figure 1: Source Weight Evolution Condition Comparison

model. Two parameters, ϵ and α are varied to evaluate the perfor-

mance with different settings.

Due to space limitation, we only show the experimental results

conducted on weather and rates datasets in Tables 1 and 2. We can

observe that the prediction model in DSWC outperforms the prob-

abilistic model in ASRA under all parameter settings. The reason

is that the prediction model of DSWC evaluates the covariances

between the source weights over time. However, ASRA models

the satisfaction of source weight evolution as a Bernoulli random

variable. It overlooks the correlation of the source weights over the

data streams, which results in less accurate prediction results.

Furthermore, we can observe that TN of ASRA is usually smaller

than that in DSWC, this causes ASRA to compute source weights

more frequently, which makes the truth inference process ineffi-

cient. Note that the accuracy of the prediction model is not high

when α = 0.9. The reason is that the variance of the posterior

distribution is not small enough to assert p(δsi/j ≤ r si/j ) ≥ α , which

results in a higher FN. However, if α is set to a relatively smaller

number, the prediction model performs much better. In the exper-

iments, when α = 0.7, the accuracies of the prediction model in

DSWC for the weather dataset are all above 0.7, and the accuracies

are all above 0.85 in the rates dataset.

In summary, the prediction model in DSWC is effective. It pre-

dicts the source weight evolution correctly most of the times. This

guarantees DSWC algorithm is both accurate and efficient for com-

puting object truths over data streams.

7.3 Source Weight Evolution Condition
We use the weather and rates datasets to test the source weight

evolution condition that satisfies ϕoj−1/j ≤ ϵ between consecutive

timestamps for DSWC and ASRA. ϵ is set to 0.1, DyOP is run on the

datasets with ground truths to obtain real source weights at each

timestamp. As the source weight evolution condition is different

for each source computed by r si/j in Proposition 4.3 for DSWC, we

choose a random source from each dataset and compute the upper

bound by the real source weights. The source weight evolution

conditions for DSWC (red), ASRA (black) and real source weight

evolutions (RSWE, blue) over the first 90 timestamps are plotted

in Figure 1. We can observe that most of the blue dots are under

red ones. It means the source weight evolution condition computed

by DSWC can capture most of the real source weight evolution

that ensures ϕ j−1/j ≤ ϵ . There are many blue dots above the black

dots but under the red dots. This indicates that DSWC is capable of

capturing most of the true source weight evolution ensuring ϕoj−1/j
but ASRA cannot. For the moments when the blue dot is above

the red one, it means the source weight evolution δsj−1/j cannot

guarantee ϕoj−1/j ≤ ϵ . In summary, DSWC allows source weights

to change more between adjacent timestamps, but still guarantees

that the unit error is less than the user-defined threshold.

7.4 Parameters Analysis
We test the effect of parameters ϵ and α on the performance of

DSWC. We conduct experiments by fixing one parameter and vary-

ing the other. Due to space limitation, only the results of weather

and rates datasets run by DSWC(DyOP) are illustrated in Figure

2. In the figure, on one hand, we can see that as ϵ increases, MAE

increases but the runtime decreases for both datasets. The reason

is that larger ϵ increases the probability p(δsi/j ≤ r si/j ), which re-

sults in less iterative processes conducted over time. In this case,

the truth inference process is configured to tolerate a large error,

which runs more efficiently but less accurately. On the other hand,

as α increases, MAE decreases but the runtime increases. This is

because a larger α makes p(δsi/j ≤ r si/j ) ≥ α less likely to hold. In

this case, the truth inference is configured to tolerate a tiny error,

which requires more iterative processes conducted. The experimen-

tal results on the other two datasets present a similar pattern to

that of the weather and rates datasets shown in Figure 2.

7.5 Performance Comparison
We evaluate the performance of DSWC against the baselines with

the following parameter settings. Weather dataset: ϵ = 0.1, α = 0.7

and L = 5. Stock dataset: ϵ = 10
−3
, α = 0.7 and L = 5. Rates dataset:

ϵ = 0.1, α = 0.7 and L = 8.

Table 3 summarizes the experimental results for all the methods

conducted on the four datasets. For weather dataset, in terms of

accuracy, DSWC is more accurate than the incremental methods.

The reason is that the incremental methods cannot compute ac-

curate source weights at each timestamp, which results in large
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Figure 2: Parameters Analysis

Table 3: Accuracy and Efficiency Comparison

errors when inferring truths. Compared with iterative-based meth-

ods, DSWC(DyOP) and DSWC(CRH) are less accurate since they

approximate object truths at certain timestamps without updating

source weights. However, DSWC(DyOP+s) and DSWC(CRH+s) are

more accurate than the iterative-based methods because they infer

object truths with smoothness constraint, but the iterative-based

methods do not consider this when inferring truths. Note that al-

though OTD uses a point estimate produced by ARIMA to assist its

truth aggregation, it does not perform better than DSWC because

ARIMA may not predict the truths correctly if the time series does

not present a significant trend. DSWC methods are also more accu-

rate than ASRA. The reason is that the source weight prediction

model of DSWC is more accurate to predict source weight evolu-

tion, which results in less unsuccessful predictions that fail to assert

p(δsi/j ≤ r si/j ) ≥ α .

In terms of efficiency, the incremental methods have the best

performance because they scan data only once. DSWC and ASRA

only compute source weights at certain timestamps. Therefore, they

are more efficient than the iterative-based methods which compute

source weights at each timestamp. Compared with ASRA, DSWC

is more efficient. The reason is that DSWC’s prediction model can

predict source weight evolution more accurately and DSWC has a

more flexible source weight evolution condition to limit the unit

error, which results in less number of iterative processes conducted

to compute source weights over the data streams.

For the stock, forecast and rates datasets, the experimental results

present a similar pattern to that of the weather dataset, except

that ASRA cannot be performed on the stock dataset because its

condition is not satisfied. Furthermore, we can observe that the

accuracy of DSWC(GTM+s) performs significantly better than the

other methods in terms of accuracy on forecast dataset. For example,

MAE of DSWC(GTM+s) is 7.5% lower than DSWC(CRH+s), and 8.9%

lower than ASRA(CRH+s). The reason of this is that each object

is observed by few sources (only 5) in this dataset. Incorporating

priors can help to reduce the “overfit” phenomenon in this dataset

for better truth inference.

8 CONCLUSION
In this paper, we propose a novel method, DSWC, that can work

with a wide range of truth inference methods to improve accuracy

and efficiency for truth inference over data streams. DSWC dynam-

ically computes agent/source weights over data streams. The error

analysis and the source wight prediction model guarantee a high

accuracy even if the source weights are only computed at certain

timestamps. Compared with the existing work ASRA, DSWC can

incorporate prior beliefs for computing object truths and DSWC’s

prediction model is more robust to predict source weights and

source weight evolutions. Furthermore, DSWC does not need to

satisfy the condition that all sources must observe all objects at

each timestamp. Thus, it fits into more application scenarios. Ex-

periments on four datasets demonstrate that the proposed method

is both accurate and efficient for truth inference over data streams.
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