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ABSTRACT
In the past few years, several new matching models have been

proposed and studied that take into account complex distributional

constraints. Relevant lines of work include (1) school choice with

diversity constraints where students have (possibly overlapping)

types and (2) hospital-doctor matching where various regional

quotas are imposed. In this paper, we present a polynomial-time

reduction to transform an instance of (1) to an instance of (2) and we

show how the feasibility and stability of corresponding matchings

are preserved under the reduction. Our reduction provides a formal

connection between two important strands of work on matching

with distributional constraints. We then apply the reduction in two

ways. Firstly, we show that it is NP-complete to check whether

a feasible and stable outcome for (1) exists. Due to our reduction,

these NP-completeness results carry over to setting (2). In view of

this, we help unify some of the results that have been presented in

the literature. Secondly, if we have positive results for (2), then we

have corresponding results for (1). One key conclusion of our results

is that further developments on axiomatic and algorithmic aspects

of hospital-doctor matching with regional quotas will result in

corresponding results for school choice with diversity constraints.
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1 INTRODUCTION
Real-life matching markets are often associated with various distri-

butional constraints. In view of these constraints, there is a growing

literature on matching markets that models and deals with such
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(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
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constraints. There are at least two distinct research directions in

this growing literature.

The first one is school choice with diversity constraints, studied
intensely in the controlled school choice problem, in which stu-

dents have types such as race, gender, or socio-economic status.

Each school is endowed with a lower and an upper quota for each

distinct type. Such type-specific quotas are taken into account while

determining the outcome. For example, a school may impose a tar-

get lower quota for accepting students from some disadvantaged

group. The seeds for considering models where students may be of

different types were already sown in the seminal paper on school

choice [2]. Since the publication of the paper, there have been sig-

nificant developments on work concerning fairness requirement

and algorithm design [1, 7, 13, 23]. The most general model in the

line of work is school choice with overlapping types where students
can belong to multiple types [25]. To overcome the non-existence

of feasible and stable outcomes, type-specific quotas of schools may

be viewed as soft requirements [7, 25].

Another research direction arises in the context of hospitals

and doctors matching with a restriction on the number of doctors

that are allowed to be matched to certain subsets of hospitals. This

form of distributional constraints can be modeled as hospital-doctor
matching with regional quotas, in which doctors are matched to

hospitals, hospitals are associated with regions, and both hospitals

and regions are subject to quotas. For example, an upper quota

may be imposed on urban regions with several hospitals to ensure

that enough doctors are hired in rural regions [19, 20]. Individ-

ual minimum quotas are studied in school admissions, motivated

by the fact that each school may require a minimum number of

students to operate [6, 8]. Under general regional quotas, the set

of stable outcomes may be empty [20, 21] and it is NP-complete

to check whether there exists a feasible outcome [10, 11]. Due to

these negative results, most work concentrate on special cases with

restrictions on the structure of regions for which they proposed

algorithms [10–12, 18, 19].

Although both lines of work have progressed in the past few

years, their development has been generally distinct from each

other. Since each of the lines of work stems from different real-life

requirements, there has not been much work on identifying formal

connections between different new models. In particular, several

influential papers mention that one setting is different from the
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other. For example, Hafalir et al. [13] note in their seminal paper

on school choice with diversity constraints that

“Kamada and Kojima (2011) study the Japanese Resi-
dency Matching Program, where there are quotas (re-
gional caps) on the number of residents that each re-
gion can admit. [...] Although the idea of their paper is
similar to ours, the setups are completely different (for
instance, there are no doctor types in their model) as
are the suggested solutions.”

AndGoto et al. [11] remark in their paper onmatchingwith regional

minimum and maximum quotas that

“However, models and theoretical properties in a con-
trolled school choice program setting are quite different
from the setting used in our paper."

The remarksweremade because the twomodels address different

concerns and intuitively appear different as well. In this paper,

however, we demonstrate that although the two setups discussed

above seem different, there are strong mathematical connections
between them. Identifying formal connections between matching

models have several advantages (1) they help unify the literature,

and (2) they provide an efficient route to translate results from

one model to another. In fact, one of the major success stories of

matching markets has been the identification of general structure

over the preferences of hospitals that guarantees the existence of

stable matchings [14, 15].

Diversity Constraints

School Choice with

with Regional Quotas

Hospital-doctor Matching

6

?

-Reduction

NP-completeness

Algorithm

Figure 1: Implications of the Reduction

Contributions. In this paper, we present a polynomial-time reduc-

tion to transform an instance of (1) school choice with diversity con-
straints into an instance of (2) hospital-doctor matching with regional
quotas. We show how the feasibility and stability of corresponding

matchings are preserved under the reduction. Then we apply the

reduction in two ways as described in Figure 1. First, we study the

complexity issues on computing a feasible and stable outcome. We

prove that it is NP-complete to check the existence of feasible and

stable outcomes for (1). Our reduction implies that these complexity

results hold for (2) as well. In view of this, we help unify some of

the results that have been presented in the literature. Second, if

we have positive results, such as polynomial-time algorithms that

guarantee the existence of some weakly stable outcomes for the

model with regional quotas, then we have corresponding results for

school choice with diversity constraints. One key conclusion of our

results is that further developments on axiomatic and algorithmic

aspects of hospital-doctor matching with regional quotas will result

in corresponding results in school choice with diversity constraints.

In addition, we consider how to convert regional minimum quotas

into regional maximum quotas and we show the difference between

regional minimum quotas and regional maximum quotas.

2 MODEL
School choice
An instance IS of the basic school choice problem consists of a

tuple (S,C,qC ,X,≻S ,≻C ).
There is a set of students S = {s1, s2, ..., sn } and a set of schools

C = {c1, c2, ..., cm }. Each school c ∈ C has a capacityqc and letqC =
(qc )c ∈C be a capacity vector consisting of all schools’ capacities.

Each contract x = (s, c ) is a student-school pair indicating that
student s is matched with school c . Let X ⊆ S ×C denote the set of

available contracts. For any X ⊆ X, denote Xs = {(s, c ) ∈ X |c ∈ C}
as the set of contracts involving student s and Xc = {(s, c ) ∈ X |s ∈
S } as the set of contracts involving school c in X .

Each student s has a strict preference ordering ≻s over Xs ∪

{(s, ∅)} where (s, ∅) denotes the option of being unmatched for

student s . A contract (s, c ) is acceptable to student s if (s, c ) ≻s (s, ∅)
holds. The preference profile of all students is denoted by ≻S= {≻s1

, ...,≻sn }. Each school c has a strict priority ordering ≻c over Xc ∪

{(∅, c )}, where (∅, c ) represents the option of leaving a seat vacant

for school c . A contract (s, c ) is acceptable to school c if (s, c ) ≻c
(∅, c ) holds. Let ≻C= {≻c1

, ...,≻cm } denote the priority profile of

all schools. Given any two preference (or priority) orderings ≻p
and ≻q , we say preference (or priority) ordering ≻p is consistent

with preference (or priority) ordering ≻q if for any two contracts

x ,y, when x ≻p y holds, it implies x ≻q y.
An outcome (or a matching) X is a subset of X. Denote Sc (X ) =

{s ∈ S |(s, c ) ∈ X } as the set of students matched to school c and
Cs (X ) = {c ∈ C |(s, c ) ∈ X } as the set of schools matched to student

s in the outcome X . An outcome X is feasible for IS if i) for each

student s, |Xs | ≤ 1, ii) for each school c, |Xc | ≤ qc . A feasible

outcome X is individually rational if each contract (s, c ) ∈ X is

acceptable to both student s and school c .
A mechanism ϕ is a function that takes an instance as input and

returns a matching as an outcome. A mechanism ϕ is strategy-proof
for students if any student s ∈ S cannot be admitted to a better

school by misreporting his preference.

School choice with diversity constraints
An instance ID of school choice with diversity constraints is an ex-

tension of school choice problem, denoted by a tuple (S ,C ,qC ,T ,τ ,η,η,

X,≻S ,≻C ).
Let T = {t1, t2, ..., tk } be the type space with |T | ≤ |S |. A type

vector τs = (τ ts )t ∈T of student s consists of 1’s and 0’s such that

τ ts = 1 if student s belongs to type t and τ ts = 0 otherwise. Let τ
be the type matrix of all students’ type vectors. Let ηc = (ηtc )t ∈T
be a vector of school c’s type-specific maximum quotas where ηtc
is school c’s maximum quota for type t . Similarly, η

c
= (ηt

c
)t ∈T is

a vector of school c’s type-specific minimum quotas. Let η and η

be two matrices consisting of all schools’ type-specific maximum

vectors and minimum vectors respectively.

For any two vectors consisting of non-negative integers ω =
(ω1, ...,ωk ) and ω

′ = (ω ′
1
, ...,ω ′k ), we compare them in the follow-

ing way: i) ω ≤ ω ′ if for each i ∈ [1,k],ωi ≤ ω ′i and ii) ω < ω ′

if for each i ∈ [1,k],ωi < ω ′i . An outcome X ⊆ X is feasible

for ID with diversity constraints if it is feasible for IS and it re-
spects diversity constraints, i.e., for each school c ∈ C , we have

ηc ≤
∑
s ∈Sc (X ) τs ≤ ηc .
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The following definition is a natural extension of classical stabil-

ity concept by Roth [28] to the setting of diversity constraints.

Definition 2.1 (Stability). Given a feasible outcomeX for instance

ID with diversity constraints, a student s ∈ S and a school c ∈
C with (s, c ) < X will form a blocking pair if (s, c ) ≻s Xs and

there exists a set of students S ′ ⊆ Sc (X ) such that i) for each

student s ′ ∈ S ′, we have (s, c ) ≻c (s ′, c ) and ii) the new outcome

X ∪ {(s, c )} \ (
⋃
s ′∈S ′ (s

′, c ) ∪ {Xs }) is feasible for instance I
D
. A

feasible outcomeX is stable if it is individually rational and it admits

no blocking pair.

Definition 2.1 states that given a feasible outcome X , student s
and school c will form a blocking pair if student s prefers school
c to his current assignment Xs (which could be empty if Xs = ∅),
and there exists a set of students S ′ (which could be empty) that

are matched to school c in the outcome X such that i) each student

s ′ ∈ S ′ has lower priority than student s and ii) school c could admit

student s by (possibly) removing the set of students S ′.
We can decompose the blocking pair in Definition 2.1 into two

cases: when the set of students S ′ is non-empty, we say student s has
justified envy towards students S ′ and a feasible outcome X is fair

if X admits no justified envy. If the set of students S ′ is empty, then

we say the outcome X is wasteful. Alternatively, a feasible outcome

X is stable if it is individually rational, fair and non-wasteful.

Hospital-doctor matching
An instance IH of hospital-doctor matching is isomorphic to an

instance IS of basic school choice problem, denoted by a tuple

(D,H ,qH ,Y,≻D ,≻H ).
Let D = {d1, ...,dn } denote a set of doctors and H = {h1, ...,hm }

denote a set of hospitals. Let qH = (qh )h∈H be the vector consisting

of each hospital’s capacity where qh is the capacity of hospital h.
A contract y = (d,h) is a doctor-hospital pair such that d is

matched with h. Let Y ⊆ D × H denote a finite set of available

contracts. For any Y ⊆ Y, let Yd = {(d,h) ∈ Y |h ∈ H } be the set of
contracts involving doctor d and Yh = {(d,h) ∈ Y |d ∈ D} be the set
of contracts involving hospital h.

Each doctor d has a strict preference ordering ≻d over Yd ∪

{(d, ∅)} and a contract (d,h) is acceptable to doctor d if (d,h) ≻d
(d, ∅). Each hospitalh has a strict priority ordering overYh∪{(∅,h)}
and a contract (d,h) is acceptable to hospital h if (d,h) ≻h (∅,h).
Let ≻D and ≻H denote the preference and priority profiles of D
and H respectively.

An outcome (or a matching) Y is a subset ofY . Denote Dh (Y ) =
{d ∈ D |(d,h) ∈ Y } as the set of doctors matched to hospital h and

Hd (Y ) = {h ∈ H |(d,h) ∈ Y } as the set of hospitals matched to

doctor d in the outcome Y . An outcome Y ⊆ Y is feasible for IH

if i) for each doctor d , we have |Yd | ≤ 1, ii) for each hospital h,
|Yh | ≤ qh , and iii) for any doctor d and any hospital h, we have
d ∈ Dh (Y ) if and only if Hd (Y ) = {h}.

Hospital-doctor matching with regional quotas
An instance IR of hospital-doctor matching with regional quotas

is a tuple (D,H ,R,qH ,δ ,δ ,Y,≻D ,≻H ,≻R ) with additional entries

R,δ , δ and ≻R .

Let R = {r1, ..., r j } denote a set of regions where each region

ri ∈ R is a subset of H , i.e., ri ⊆ H . A collection of regions P ⊆ R

forms a partition of a subset of hospitals H ′ ⊆ H , if

⋃
r ∈P r = H ′

and for any two different regions r , r ′ ∈ P , we have r ∩ r ′ = ∅. A
collection of regions F ⊆ R forms a hierarchy of hospitals H ′ ⊆ H ,

if

⋃
r ∈F r = H ′ and for any two regions r , r ′(, r ) ∈ F , one of the

three conditions holds: i) r ∩ r ′ = ∅, ii) r ⊆ r ′, or iii) r ′ ⊆ r .

Let δ = (δ r )r ∈R denote a vector consisting of each region’s

maximum quota where δ r is region r ’s maximum quota. Similarly

δ = (δ r )r ∈R is a vector of each region’s minimum quota.

For any Y ⊆ Y, let Yr =
⋃
h∈r Yh be the set of contracts involv-

ing region r and let Dr (Y ) = {d ∈ D |(d,h) ∈ Yr } denote the set of
doctors matched to region r in the outcome Y .

The introduction of regional priorities was intended to resolve

the conflicts when a region confronts more applicants of doctors

than it could accommodate [20, 22]
1
. We followed this idea and

assume that each region r has a strict priority ordering overYr and
a contract (d,h) ∈ Yr is acceptable to region r if (d,h) ≻h (∅,h)
holds

2
. Let ≻R denote the priority profile of all regions.

An outcome Y ⊆ Y is feasible for IR with regional quotas if Y is

feasible for IH and it respects regional quotas, i.e., for any region r

we have δ r ≤ |Dr (Y ) | ≤ δ r .
The following stability concept captures the idea that a blocking

pair is not considered as legitimate if it does not take regional

priorities into account.

Definition 2.2 (Stability with regional priorities). Given a feasible

outcome Y ⊆ Y for instance IR with regional quotas, a doctor

d ∈ D and a hospital h ∈ H with (d,h) < Y form a blocking pair

with regional priorities if (d,h) ≻d (d,Yd ) and there exists a set

of doctors D ′ ⊆ Dh (Y ) such that i) for each doctor d ′ ∈ D ′, we
have (d,h) ≻h (d ′,h), ii) for each doctor d ′ ∈ D ′ and for each

region r with h ∈ r , we have (d,h) ≻r (d ′,h), and iii) the new

outcomeY ∪{(d,h)}\ (
⋃
d ′∈D′ {(d

′,h)}∪Yd }) is feasible for instance
IR . A feasible outcome Y is stable with regional priorities if it is

individually rational and it admits no blocking pair with regional

priorities.

Definition 2.2 states that given a feasible outcome Y , doctor d
and hospital h will form a blocking pair if doctor d prefers hospital

h to his assigned hospital Hd (Y ) (which could be empty), and there

exists a set of doctors D ′ (which could be empty) that are matched

to hospital h in the outcome X such that i) each doctor d ′ ∈ D ′ has
lower priority than doctor d , ii) for each region r that is associated
with hospital h, each doctor d ′ ∈ D ′ has lower regional priority
than doctor d and iii) hospital h could admit doctor d by (possibly)

removing the set of doctors D ′.
The difference between Definition 2.1 and Definition 2.2 is that

a blocking pair for an instance of matching with regional quotas

should respect the priorities of both hospitals and regions. When

distribution constraints do not exist, both definitions collapse to

the original stability concept [28].

We can decompose the blocking pair in the Definition 2.2 into

two cases: when the set of doctors D ′ is non-empty, we say doctor

d has justified envy towards D ′ with regional priorities and an

1
In [20, 22], regional preferences are defined in a weaker way that regions only concern

about how many doctors are matched rather than which doctors are matched.

2
Similar ideas to regional preferences have already been considered. Kamada and

Kojima [19] studied the model where all regions form a partition of hospitals H and

they assume that each region specifies a precedence ordering over hospitals.
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outcome is fair with regional priorities if it admits no justified envy.

When the set of doctorsD ′ is empty, we say the outcome is wasteful.

3 TRANSFORMATION FROM DIVERSITY
CONSTRAINTS TO REGIONAL QUOTAS

In this section, we explore the relation between (1) school choice with
diversity constraints and (2) hospital-doctor matching with regional
quotas in terms of feasibility and stability. We show how to convert

an instance of (1) into an instance of (2) in polynomial time and

how the feasibility and stability of corresponding matchings are

preserved under the reduction.

In a recent work, Kamada and Kojima [21] illustrate how to

associate one instance of (1) with another of (2) when each stu-

dent belongs to exactly one type. The idea is straightforward: Each
student corresponds to a doctor and each school corresponds to a

region. For each region, create multiple hospitals such that each

hospital is associated with one type and each doctor only considers

the hospital of the same type acceptable. However, we cannot di-

rectly extend this idea to the general case allowing for overlapping

types. The main issue is that a doctor should not be assigned to

several hospitals corresponding to the types to which he belongs.

The crux of the transformation is how to eliminate overlapping

types among students. We can just create a new type space T =

{t ′
1
, ..., t ′

2
|T | } such that each unique type vector τs corresponds to a

new type t ′τs . It is not necessary to consider the whole type space T

when 2
|T |

is larger than |S |, because only the distinct type vectors

that appear in type matrix τ matter, of which the maximum number

is no more than min( |S |, 2 |T | ), bounded by |S |. Let T ∗ be such a

new type space induced from τ with |T ∗ | ≤ min( |S |, 2 |T | ). Then
we can assign a student s with type vector τs one new type t ′τs ∈ T

∗

and no two students have overlapping types.

Now we proceed to the polynomial-time reduction from an in-

stance of diversity constraints ID = (S,C,qC ,T ,τ ,η,η,X,≻S ,≻C )

to a corresponding instance of regional quotas IR = (D,H ,R,qH ,δ ,δ ,
Y,≻D ,≻H ,≻R ).

For each student sj ∈ S , create a corresponding doctor dj . Let
D =
⋃
sj ∈S dj denote the set of doctors. For each school ci ∈ C and

each unique type vector τs from type matrix τ , create a hospital

hτsci with capacity qci . Let H
T ∗

ci be the set of hospitals induced from

school ci . Denote the set of hospitals as H =
⋃
ci ∈C H T

∗

ci with

capacity vector qH = (qh )h∈H .

For each school ci ∈ C , create a set of regions of size (|T | +

1) denoted by Rci = {ri , r
1

i , ..., r
|T |
i } where region ri corresponds

to school ci and region r
j
i corresponds to type tj at school ci . Re-

gion ri contains all hospitals induced from ci , i.e., Hri = H T
∗

ci and

each region r
j
i contains the hospitals induced from school ci that

are associated with type tj , i.e., Hr ji
= {hτsi ∈ H T

∗

i |τ
tj
s = 1}. The

maximum and minimum regional quotas for each region are de-

scribed in Table 1. Let R =
⋃
ci ∈C Rci denote the set of regions with

δ = (δ r )r ∈R and δ = (δ r )r ∈R .
For each contract x = (s, ci ) ∈ X, create a new contract y =

(d,hτsci ) with doctor d corresponding to student s and hospital hτsci
corresponding to type vector τs of student s . Let Y =

⋃
x ∈X {y} be

the set of available contracts. Each doctor d’s preference ordering

Table 1: Regions Rci induced from school ci

ri r
j
i

maximum quota δ ri = qci δ r ji
= η

tj
ci

minimum quota δ ri = 0 δ r ji
= ηtj

ci
related hospitals ri = H T

∗

ci r
j
i = {h

τs
ci ∈ H

T ∗

ci |τ
tj
s = 1}

≻d corresponds to ≻s . For each hospital h ∈ H T
∗

ci and each region

r ∈ Rci , the preference orderings of ≻h and ≻r are consistent with

≻ci over corresponding contracts involving hospital h and region r .
The preference profiles of doctors, hospitals and regions are denoted

by ≻D ,≻H ,≻R respectively.

Proposition 3.1. The reduction takes time O ( |C | · |S |2).

Proof. The running time of the construction depends on the

number of all induced elements. The number of doctors, hospitals

and regions is O ( |S | + |C | · |T ∗ | + |C | · ( |T | + 1)). The number of

capacities and type-specific quotas is bounded byO ( |H | + |R |). The
number of contracts is at most |C | · |S |. The number of preference

orderings of doctors, hospitals and regions isO ( |C | · |S |+ |C | · |T ∗ | ·
|S |+ |C | · |S | · |T |) where |T ∗ | ≤ |S | and |T | ≤ |S |. Thus the running
time of the reduction is O ( |C | · |S |2). □

Example 3.2. We illustrate the reduction with the following ex-

ample. Consider an instance ID with diversity constraints:

S = {s1, s2, s3, s4},C = {c},qc = 2,T = {t1, t2},τs1
= (0, 0),

τs2
= (0, 1),τs3

= (1, 0),τs4
= (1, 1),ηc = (1, 1),η

c
= (1, 0),

X = {(s1, c ), (s2, c ), (s3, c ), (s4, c )},∀s ∈ S (s, c ) ≻s (s, ∅),
(s1, c ) ≻c (s2, c ) ≻c (s3, c ) ≻c (s4, c ) ≻c (∅, c ).

Create a corresponding instance IR with regional quotas as follows,

where region r corresponds to school c , region r1 corresponds to

type t1 and region r2 corresponds to type t2 at school c .

D = {d1,d2,d3,d4},H = {h00,h01,h10,h11},∀h ∈ H qh = 2,

R = {r , r1, r2}, r = H , r1 = {h10,h11}, r2 = {h01,h11},

δr = 2,δr1
= δr2

= 1,δr = δr2
= 0,δr1

= 1,

Y = {(d1,h00), (d2,h01), (d3,h10), (d4,h11)},
∀d ∈ D Yd ≻d (d, ∅),∀h ∈ H Yh ≻h (∅,h),
(d1,h00) ≻r (d2,h01) ≻r (d3,h11) ≻r (d4,h11),
(d3,h10) ≻r1

(d4,h11), (d2,h01) ≻r2
(d4,h11).

The relationship between two instances is shown in Figure 2. The

index of each hospital is in binary corresponding to each distinct

type vector. Note that four copy schools {c00, c01, c10, c11} are used

for interpretation only which are not actually involved in the re-

duction.

c

c00 c10 c11 c01

t1 t2

r

h00 h10 h11 h01

r1 r2

Figure 2: An example of reduction.
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Next we show how the feasibility and stability of corresponding

outcomes are preserved under the reduction. Given an outcome X
of instance ID with diversity constraints, create an outcome Y of

induced instance IR with regional quotas by adding a corresponding

contract y to Y for each contract x ∈ X .

Proposition 3.3. The outcome X is feasible for ID with diversity
constraints if and only if the induced outcome Y under the reduction
is feasible for IR with regional quotas.

Proof. If outcomeX is feasible for ID with diversity constraints,

then for each school c ∈ C , we have |Sc (X ) | ≤ qc and η
c
≤∑

s ∈Sc (X ) τs ≤ ηc . Since each school ci corresponds to a region

ri , then no more than qci doctors are matched to region ri in out-

come Y , which implies that each hospital hτsci ∈ ri admits no more

than qci doctors. Since each type j at school ci corresponds to a

region r
j
i , then we have δ r ji

≤ |Dr ji
(Y ) | ≤ δ r ji

, i.e., the outcome Y

respects the regional quotas of each region r
j
i .

If outcome Y is feasible for IR with regional quotas, then for

each region r we have δ r ≤ |Dr (Y ) | ≤ δ r . Since each region ri
corresponds to a school ci , then no more qci students are matched

to ci in outcome X . Since each region r
j
i corresponds to one type j

at school ci , then all type-specific quotas of school ci are satisfied
in outcome X . □

Proposition 3.4. The outcome X is stable for instance ID with
diversity constraints if and only if the induced outcome Y under the
reduction is stable with regional priorities for instance IR with regional
quotas.

Proof. If outcome X is stable, for the sake of contradiction,

suppose outcome Y admits a blocking pair (d,h) with regional

priorities induced from student s and school c respectively. Let

D ′ ⊆ Dh (Y ) be the set of doctors such that each d ′ ∈ D ′ has lower
priority than d at hospital h as well as at each region r with h ∈ r ,
and hospital h can admit doctor d by removing doctors D ′. Let the
set of students S ′ correspond to doctors D ′. Then student s and
school c could form a blocking pair, since school c could admit

student s by removing S ′, a contradiction.
If outcome Y is stable with regional priorities, suppose outcome

X admits a blocking pair (s, c ) and let S ′ be the set of students such
that each s ′ ∈ S ′ has lower priority than s at school c and school c
could admit student s by removing S ′. Let doctor d , region r and
a set of doctors D ′ correspond to student s , school c and set S ′ of
students respectively. Then doctor d and hospital h could form a

blocking pair with regional priorities through a set of doctors D ′,
since all induced hospitals Hc and regions Rc from school c have
the consistent priority orderings as school c , a contradiction. □

4 TRANSFORMATION FROM REGIONAL
MINIMUM QUOTAS TO REGIONAL
MAXIMUM QUOTAS

In this section, we further show how to transform an instance

of regional maximum and minimum quotas into a corresponding

instance of regional maximum quotas only. This reduction is also

useful when we compare our complexity results on computing a

feasible outcome with previous work in the next section.

Goto et al. [10, 11] considered how to represent regional mini-

mum quotas with regional maximum quotas in a restrictive setting

where any doctor is acceptable to any hospital and vice versa. In

addition, the total capacity of all hospitals is at least the number

of doctors and no doctors are unmatched in any feasible outcome.

Their idea works as follows: If region r requires at least δ r doctors,

then the number of doctors that can be assigned to other hospitals

which do not belong to region r cannot exceed |D | − δ r . However,
this does not hold in general if we relax these requirements.

Example 4.1. There are two doctors d1,d2, two hospitals h1,h2

and two regions r1 = {h1}, r2 = {h2} with δ r1

= δ r2

= δ r1
=

δ r2
= 1. Following the reduction of [10, 11], after removing regional

minimum quotas, the regional quotas for the induced instance

become δ r1
= δ r2

= 1. Then an empty outcome is feasible for the

induced instance but not for the original one.

Next we generalize their idea to general setting without any

assumption by adding an additional null hospital. Since we con-

sider feasibility only, the preference and priority orderings of doc-

tors, hospitals and regions are not necessary. Given a simplified

instance of hospital-doctor matching with regional quotas IR =

(D,H ,R,qH ,δ ,δ ,Y ), construct an instance with regional maxi-

mum quotas only IR+ = (D ′,H ′,R′,qH ′ ,δ ′,Y
′) as follows:

The set of doctors remains the same and a null hospital h0 is

added to H , i.e., D ′ = D and H ′ = H ∪ {h0}. Let qH ′ = (qh )h∈H ′
with qh0

= |D ′ |. For each region r ∈ R, create a new region r̂ =

H ′ \ {r } with δ r̂ = |D
′ | − δ r . The set of all regions is denoted as

R′ =
⋃
r ∈R {r , r̂ }. For each doctor d ∈ D ′, add a new contract (d,h0)

to Y , i.e., Y ′ =
⋃
d ∈D′ {(d,h0)} ∪ Y .

Proposition 4.2. The reduction takes time O ( |R | + |D | · |H |).

Proof. The time of copying instance IR is bounded by O ( |D | +
|H | + |R | + |D | · |H |). In addition, we create one new hospital h0 and

a set of new regions and contracts, whose total number is bounded

by O ( |R | + |D | · |H ′ |) where |H ′ | = |H | + 1. Thus the construction

of instance IR+ takes time O ( |R | + |D | · |H |). □

Proposition 4.3. An outcome Y is feasible for instance IR with
both regional minimum and maximum quotas if and only if the
outcome Y is feasible for the induced instance IR

+
with regional

maximum quotas only.

Proof. If outcome Y respects regional quotas for IR , then for

each r ∈ R, the number of doctors matched to H \ {r } does not
exceed δ r̂ = |D

′ | − δ r , which implies the region r̂ respects regional

quotas. If Y respects regional quotas for IR
+
, then for each r̂ ∈ R′,

the number of doctors matched to r̂ does not exceed δ r̂ = |D
′ | −δ r ,

which implies at least δ r doctors are matched with region r . □

Our reduction reveals an important distinction between regional

minimum quotas and regional maximum quotas: In an instance

with regional maximum quotas only, any number of doctors can be

placed at the null hospital without violating feasibility. But whenwe

translate regional minimum quotas into regional maximum quotas,

we limit the maximum number of doctors that can be matched to

the null hospital by imposing regional caps to some regions that

contain the null hospital.
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5 COMPLEXITY RESULTS
This section is devoted to the complexity results on checking the

existence of a feasible and stable outcome for both settings. We

first prove NP-completeness for setting (1), then by reduction from

setting (1) to setting (2), it implies that these NP-completeness

results also hold for setting (2). In view of this, we help unify some

complexity results that were already proved in previous literature,

and we further show these NP-completeness results still hold under

more restrictive settings.

Complexity of computing a feasible outcome
Next we provide a polynomial-time reduction from (3,3)-Set cover

problem to school choice problem with diversity constraints. Gon-

zalez [9] has proved that (3,3)-Set cover is NP-complete.

(3,3)-Set cover

Input: A collection F of subsets of a finite set U and a

positive integer k where each u ∈ U occurs in at

most three subsets of F and each f ∈ F contains

at most three elements of U .

Question: Is there a subset F ′ ⊆ F of size at most k such

that

⋃
f ∈F ′ f = U ?

Proposition 5.1. It is NP-complete to check the existence of a
feasible outcome for school choice problem with diversity constraints,
even if there is only one school, each student belongs to at most three
types, each type contains at most three students and there is no upper
bound for any type.

Proof. Given an instance ID with diversity constraints, to de-

cide whether ID admits a feasible outcome or not is in NP, since we

can guess an outcome X and check whether X satisfies feasibility

in polynomial-time.

Given an instance (F ,U ) of (3,3)-Set Cover, create a correspond-
ing instance ID with diversity constraints as follows: For each

element ui ∈ U , create a type ti . For each subset fj ∈ F , create a
student sj . A student sj belongs to type ti if ui ∈ fj . Create one
school c with capacity qc = k and minimum quota ηt = 1 for each

type t ∈ T . For each student s ∈ S , create a contract (s, c ) which is

acceptable to both s and c . Create an arbitrary priority ordering ≻c .

If (F ,U ) admits a Yes-instance F ′ of size at most k , then let S ′ =⋃
fj ∈F ′ sj denote the corresponding set of students. The outcome

X =
⋃
sj ∈S ′ (sj , c ) is feasible for I

D
with diversity constraints, since

school c admits at most k students and each minimum type-specific

quota is satisfied.

If ID with diversity constraints admits a feasible outcome X , let

F ′ =
⋃
sj ∈Sc (X ) fj denote the corresponding subsets of F . Then we

have a Yes-instance of (3,3)-Set Cover, since we have |F ′ | ≤ k and⋃
f ∈F ′ f = U . □

Although Goto et al. [10] proved it is NP-complete to check

the existence of feasible outcomes for setting (2), their original

reduction requires both regional minimum quotas and regional

maximum quotas (which needs to be equal for each region). Under

the assumption that no doctor is unmatched in any feasible outcome

(as discussed in last section), they infer that "checking whether a

feasible matching exists or not is NP-complete where there are

only regional minimum quotas or only regional maximum quotas".

However, if we relax the assumption, it can be done in polynomial-

time to check whether a feasible matching exists when there are

only regional maximum quotas, since an empty matching satisfies

feasibility. With the help of our reduction, we further show this

NP-completeness result even holds for a more restrictive setting

when there are only minimum quotas in the following corollary:

Corollary 5.2. It is NP-complete to check the existence of a feasi-
ble outcome for hospital-doctor matching with regional quotas, even
if each doctor is matched to at most three regions, each region admits
at most three doctors and contains at most three hospitals, except for
one region that contains all hospitals and is matched with all doctors.

In another recent work on public housing allocation with diver-

sity constraints, Benabbou et al. [4] showed that it is NP-complete

to check whether there exists a feasible assignment with maximum
social welfare, which is different from ours.

Complexity of computing a stable outcome
Now we move on to the complexity question of deciding the exis-

tence of a stable outcome. Although Huang [16] showed that it is

NP-complete to compute a stable matching for school choice with

diversity constraints when both minimum and maximum quotas

exist, we can draw the same conclusion by inferring from the fact

that computing a feasible outcome is NP-complete when minimum

quotas exist. Next we present a stronger result for school choice

with diversity constraints: even if there are no minimum quotas

and feasible outcomes always exist, it is still NP-complete to check

whether a stable outcome exists under strict preferences.

The following reduction is inspired by the work on hospital-

doctor matching with couples by Ronn [27] and McDermid and

Manlove [26].

Proposition 5.3. Given an instance of school choice with diversity
constraints, it is NP-complete to decide whether there exists a stable
outcome under strict preferences, even if there are only two types, the
capacity and type-specific maximum quotas for each school are at
most 2 and the length of any preference / priority ordering is at most
4.

Proof. Deciding whether a stable outcome exists is in NP, since

we can guess an outcome X and check whether X admits blocking

pair in polynomial time. Next we show it is NP-hard by reduction

from a restricted version of 3-SAT where each literal appears exactly

twice, which is NP-complete [5]. Given an instance (U ,W ) of 3-SAT
in which each literal appears exactly twice, let U = {u1, . . . ,uk }
denote a set of variables andW = {w1, . . . ,wl } be a set of clauses.

Create an instance ID with diversity constraints as follows.

For each variableui ∈ U , create a gadget consisting of 10 students

and 6 schools as shown in Table 2 and 3. For each clausew j ∈W ,

create exactly one school oj with capacity 2 and maximum quota

2 for two types. Let s (l1) ≻o j s (l2) ≻o j s (l3) denote the priority
ordering of schooloj where s (lk ) denotes the corresponding student
of literal lk that appears in clausew j .

Students t i
1
and t i

2
stand for the first and second occurrence of lit-

eralui . Students f
i
1
and f i

2
stand for the first and second occurrence

of literal ūi . Note that o(t
i
1
) and o(t i

2
) in the preference of student
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Table 2: Students induced from variable ui

student type vector preference

si
1

(1, 1) ci
1
cit1

si
2

(1, 1) ci
2
cif1

si
3

(1, 0) ci
1
ci

2

si
4

(0, 1) ci
2
ci

1

si
5

(0, 0) ci
1
cit2

si
6

(0, 0) ci
2
cif2

t i
1

(1, 0) cit1

o(t i
1
)

t i
2

(0, 1) cit2

o(t i
2
)

f i
1

(1, 0) cif1
o( f i

1
)

f i
2

(0, 1) cif2
o( f i

2
)

Table 3: Schools induced from variable ui

school capacity maximum quotas priority ordering

ci
1

2 (1, 1) si
4
si
1
si
3
si
5

ci
2

2 (1, 1) si
3
si
2
si
4
si
6

cit1

1 (1, 1) si
1
t i
1

cit2

1 (1, 1) si
5
t i
2

cif1
1 (1, 1) si

2
f i
1

cif2
1 (1, 1) si

6
f i
2

t i
1
and t i

2
stand for two schools induced by the clauses in which ui

appears for the first and second time. Similarly, o( f i
1
),o( f i

2
) corre-

spond to two schools induced from the clauses in which ūi appears
for the first and second time.

Lemma 5.4. If there exists a satisfying assignment α : U →

{ f alse, true} of instance (U ,W ) of 3-SAT, then the induced instance
ID of school choice admits a stable outcome.

Proof. For each gadget induced from variable ui , if the value
of ui is true in the assignment α , then select the outcome X i

T ;

otherwise select outcome X i
F where

X i
T = {(s

i
1
, ci

1
), (si

2
, cif1

), (si
3
, ci

2
), (si

4
, ci

2
), (si

5
, ci

1
),

(si
6
, cif2

), (t i
1
, cit1

), (t i
2
, cit2

), ( f i
1
,o( f i

1
)), ( f i

2
,o( f i

2
)}

X i
F = {(s

i
1
, cit1

), (si
2
, ci

2
), (si

3
, ci

1
), (si

4
, ci

1
), (si

5
, cit2

),

(si
6
, ci

2
), (t i

1
,o(t i

1
)), (t i

2
,o(t i

2
)), ( f i

1
, cif1

), ( f i
2
, cif2

)}.

For the school oj induced from clausew j = (l1, l2, l3), if the value
of literal lk is false in the assignment α , then match the student

s (lk ) corresponding to literal lk to school oj .
Next we show that none of induced schools would be part of any

blocking pair. First consider any school oj induced from clausew j .

Since the assignment α is satisfying, no more than two students will

be matched to oj , otherwise corresponding clause is false. School oj

would not be part of any blocking pair, since it can admit any two

students without violating feasibility. Then consider the schools in

the gadget induced by variable ui . If we select outcome X i
T , then

si
1
, si

4
, si

5
, t i

1
, t i

2
, ci

2
, cif1
, cif2

are matched with their top choices, which

implies they cannot be part of any blocking pair. Then we can infer

ci
1
cannot form a blocking pair with si

4
, cit1

cannot form a blocking

pair with si
1
and cit2

cannot form a blocking pair with si
5
. If we select

outcomeX i
F , then s

i
2
, si

3
, si

6
, f i

1
, f i

2
, ci

1
, cit1

, cit2

are matched with their

top choices. Then we can infer ci
2
cannot form a blocking pair with

si
3
, cif1

cannot form a blocking pair with si
2
and cif2

cannot form a

blocking pair with si
6
. Thus any induced school would not be part

of any blocking pair. □

Lemma 5.5. In any stable outcome X for ID , if (t i
1
, cit1

) ∈ X , then
(t i

2
, cit2

) ∈ X ; if ( f i
1
, cif1

) ∈ X , then ( f i
2
, cif2

) ∈ X .

Proof. If (t i
1
, cit1

) ∈ X , then we have (si
1
, ci

1
) ∈ X , otherwise

student si
1
and school cit1

will form a blocking pair. Then we can

infer (si
5
, ci

1
) ∈ X , otherwise student si

5
and school cit1

will form a

blocking pair. Thus (t i
2
, cit2

) ∈ X holds, otherwise they will form a

blocking pair. Similarly, if ( f i
1
, cif1

) ∈ X , then we have (si
2
, ci

2
) ∈ X ,

otherwise student s2 and school cif1
will form a blocking pair. Then

we can infer (si
6
, ci

2
) ∈ X and ( f i

2
, cif2

) ∈ X holds, otherwise they

will form a blocking pair. □

Lemma 5.6. For any stable outcome X for induced instance ID ,
either (t i

1
, cit1

) ∈ X , ( f i
1
, cif1

) < X holds or (t i
1
, cit1

) < X , ( f i
1
, cif1

) ∈ X

holds.

Proof. For the sake of contradiction, suppose (t i
1
, cit1

) < X and

( f i
1
, cif1

) < X first. Then we have (si
1
, cit1

) ∈ X and (si
2
, cif1

) ∈ X ,

otherwise students t i
1
and f i

1
will form blocking pairs with schools

cit1

and cif1
respectively. Then we can infer that (si

3
, ci

2
) ∈ X , (si

4
, ci

1
)

∈ X , otherwise students si
1
and si

2
will form blocking pairs with ci

1

and cif1
respectively. However, X is not stable, since si

3
and si

4
can

form blocking pairs with ci
1
and ci

2
respectively.

Then suppose (t i
1
, cit1

) ∈ X and ( f i
1
, cif1

) ∈ X . Then we have

(si
1
, ci

1
) ∈ X and (si

2
, ci

2
) ∈ X , otherwise si

1
and si

2
will form blocking

pairs with cit1

and cif1
respectively. However, outcomeX is not stable,

since students si
4
and si

3
can form blocking pairs with schools ci

1

and ci
2
respectively. □

Lemma 5.7. If there is a stable outcome X for ID , then there is a
satisfying assignment α for the 3-SAT instance (U ,W ).

Proof. For each variableui , if (t
i
1
, cit1

) ∈ X , then setui to be true;

if ( f i
1
, cif1

) ∈ X , then setui to be false. By Lemmas 5.5 and 5.6, this as-

signment is consistent. Suppose there is a clausew j
with all literals

set to false. Then the corresponding school oj must accommodate

three students, exceeding the capacity of oj , a contradiction. □

This concludes the proof of the Proposition 5.3. □

Corollary 5.8. It is NP-complete to check whether there exists a
stable outcome with regional priorities for hospital-doctor matching
without regional minimum quotas, even if each region contains at
most 4 hospitals, the capacity of each hospital and the maximum
quota of each region is at most 2, and the length of any preference /
priority ordering is at most 4.
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6 ALGORITHM DESIGN FORWEAKER
STABILITY

In this section we discuss the second implication of the reduction:

how positive results for setting (2) hospital-doctor matching with

regional quotas could lead to corresponding results for setting (1)

school choice with diversity constraints. In general, stability with

regional preferences is too strong to guarantee the existence of

stable outcomes and it is NP-complete to decide whether one exists

even if there are only regional maximum quotas.

Suppose there exists an algorithm ϕ that takes an instance IR

with regional quotas as input and returns a feasible and weaker

stable outcome with respect to priorities of hospitals and regions.

Given an instance ID with diversity constraints, we can first con-

vert ID into a corresponding instance IR with regional quotas in

polynomial time. Then apply the algorithm ϕ designed for match-

ing with regional quotas to instance IR to obtain some feasible and

weaker stable outcome XR
. By the corresponding relation, we can

restore the outcome XR
to an outcome XD

of instance ID that also

satisfies feasibility and some form of weaker stability.

Now the problem boils down to designing a weaker stable con-

cept for setting (2) which should be weak enough to guarantee the

existence of feasible and stable outcomes but still strong enough

to lead to reasonable outcomes. One possible way, which has been

considered in the mechanism design of matching markets [8, 11, 25],

is to decompose stability into fairness and non-wastefulness, and

then weaken one or both of them to obtain some weaker stable

concept.

However, as far as we know, there is no convincing stability so-

lution that works for a general instance of matching with regional

quotas. Previous work mainly concentrates on special cases where

regions form a partition or a hierarchy of hospitals, and they addi-

tionally assume there exists a strict master list over doctors that is

used to determine which doctor should be matched when conflicts

occur [10–12]. Note that a master list is equivalent to imposing uni-

fied regional priorities on all regions. Based on such a strict master

list over doctors, we can easily design a strategy-proof algorithm

that always returns a feasible and stable outcome with regional

priorities when there are only regional maximum quotas. For exam-

ple, we can just employ serial dictatorship, which lets each doctor

choose their favorite hospital without violating hospital capacity

and regional maximum quotas in the order of master list, to obtain

a stable outcome with regional priorities where regional priorities

are consistent with master list [8, 10].

The following fairness concept for school choice with diversity

constraints is a weaker version of fairness by considering master

list. Compared to original fairness definition, it additionally requires

that student s could have justified envy towards a non-empty set of

students S ′ by master list if each student s ′ ∈ S ′ has lower master

list priority than student s .

Definition 6.1 (Fairness by Master List). Given an instance ID

with diversity constraints, a feasible outcome X for ID and a strict

master list ≻ML , a student s has justified envy toward a non-empty

set of students S ′ ⊆ Sc (X ) by master list, if the following conditions

hold: i) (s, c ) ≻s (s,Xs ), ii) for each s
′ ∈ S ′, we have (s, c ) ≻c (s ′, c )

and (s, c ) ≻ML (s ′, c ) and iii) X ∪ {(s, c )} \ (
⋃
s ′∈S ′ {(s

′, c )} ∪ Xs })

is a feasible outcome for ID . A feasible outcome X is fair by master

list if X does not admit justified envy by master list.

Consider an instance ID of school choice without type-specific

minimum quotas and a strict master list. If we apply serial dictator-

ship to its induced instance IR with regional quotas, then we obtain

a feasible and stable outcome XR
with regional priorities where

each regional priority ordering is consistent with the master list.

When we restore the outcome XR
to outcome XD

of the original

instance ID , we have a feasible, non-wasteful and fairness outcome

by master list. This serves well for the illustration of how positive

results for setting (2) could lead to corresponding results for setting

(1). Designing an appropriate stability concept for matching with

regional quotas requires more exploration. One key conclusion of

our results is that further developments on axiomatic and algo-

rithmic aspects of hospital-doctor matching with regional quotas

will result in corresponding results in school choice with diversity

constraints.

7 SUMMARY AND DISCUSSION
In this paper we provide a formal connection between two im-

portant forms of distributional constraints via a polynomial-time

reduction. Our reduction has two implications: First, if we have

NP-completeness results in the model of school choice with diver-

sity constraints, then these complexity results also carry over to

the model with regional quotas. Second, positive results, such as

polynomial-time algorithms that guarantee the existence of some

weakly stable outcomes for the model with regional quotas, imply

corresponding results for school choice with diversity constraints.

Note that our reduction can be generalized to newmodels appear-

ing in recent literature on school choice with diversity constraints.

Matching with slot-specific priorities was proposed in [24] where

each slot (an extension of type) could have different priority order-

ings. This requires that the induced hospitals Hi and regions Ri
should have different priority orderings from school ci . To overcome

non-existence of feasible outcomes and improve efficiency, diver-

sity constraints may be regarded as soft bounds and schools could

admit more students than the type-specific quotas allows if some

seats are unoccupied [7, 13, 23, 25]. This implies that in the induced

instance, each doctor could have contracts with multiple hospitals

at the same region. We can still convert an instance with these

complicated diversity constraints into a corresponding instance

with regional quotas, since the mapping relationship between two

models does not change. Further development on matching with

regional quotas will shed light on the problem of school choice

with diversity constraints. Finally, it will be interesting to explore

similar connections with other matching models (see e.g., [3, 17]).
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