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ABSTRACT

In a crowd market such as Amazon Mechanical Turk, the remuner-

ation of Human Intelligence Tasks is determined by the requester,

for which they are not given many cues to ascertain how to “fairly”

pay their workers. Furthermore, the current methods for setting a

price are mostly binary – in that, the worker either gets paid or not

– as opposed to paying workers a “fair” wage based on the quality

and utility of work completed. Instead, the price should better re-

flect the historical performance of the market and the requirements

of the task. In this paper, we introduce a game theoretical model

that takes into account a more balanced set of market parameters,

and propose a pricing policy and a rating policy to incentivize re-

questers to offer “fair” compensation for crowdsourcing workers.

We present our findings from applying and developing this model

on real data gathered from workers on Amazon Mechanical Turk

and simulations that we ran to validate our assumptions. Our simu-

lation results also demonstrate that our policies motivate requesters

to pay their workers more “fairly” compared with the payment set

by the current market.
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1 INTRODUCTION
In a crowd market such as Amazon Mechanical Turk (AMT), re-

questers are solely responsible for setting the compensation for

their workers. However, there are virtually no cues provided to

requesters for how to determine the price for their tasks, which

can be difficult [5]. It is even more difficult, perhaps impossible, for

requesters to set a “fair” compensation for their workers that takes

into consideration market trends, available workers, and the mar-

ket’s historical performance on tasks with similar characteristics.

In this work we define fairness in the distributive sense [10], where

our goal is to motivate requesters to minimize the disparity among
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workers and not to favor one worker over the other. Distributive

fairness [10] focuses on the equity principle, and can be defined as

consistency of all workers’ input/output ratios, where in this case

input is labor and output is compensation.

However, this is made somewhat difficult as the quality and ef-

fort of individual workers (or contributors) may vary considerably

in a truly collective task, as contributors have various degrees of

experience, expertise, and interest in completing tasks. The current

approach of many platforms (e.g. AMT) to combat this variance

in performance is either to ignore it (using a first-come-first-serve

model) or to penalize poor performers by blocking future access to

the labor market or create higher paying bands of tasks, the combi-

nation of which creates difficult onboarding paths and an increased

sense of inequity and unfairness among the workers [28, 30].

This idea of creating a more “fair” environment is important, as

researchers have found that workers are more likely to engage with

crowdsourcing tasks if they feel that they are being treated fairly,

and their remuneration (e.g. payment) is commensurate with their

contributions [9–11]. Given that the success of an online crowd-

sourced market is, in large part, the byproduct of the individual

workers’ efforts and the environment within which they exert these

efforts, it follows that promoting fair payment and treatment of

workers is of the utmost importantace for more effective, capable

crowdsouring system. That is, if workers believe that the environ-

ment that they are working within is fair, we can expect not only an

improvement in the quality of contributors’ work [6, 7, 23], but also

an increase in retaining and recruiting additional workers [10, 11].

In this paper, we address this problem by introducing a game

theoretical model that takes into account a more balanced set of

market parameters. Particularly, to achieve high distributive fair-

ness, we suggest a pricing policy for requesters that takes into

account workers’ quality, including their historical performance,

interests, session details, etc. On the other hand, considering that

some requesters may purposely decrease workers’ compensation,

e.g., by rejecting workers’ submitted tasks, we allow platforms to

rate each requester based on the percentage of tasks the requester

approve from workers, where the rating is visible to workers. Then,

we consider two types of interactions, both of which can be mod-

eled as a Stackelberg game, a strategic game where a leader makes

decision first and followers move sequentially:

1) Requesters vs. workers. Requesters (as leaders) first determine

their pricing policy and the average approval ratio to workers, and

then workers (as followers) decide the effort level to take to com-

plete tasks.

2) Crowdsourcing platform vs. requesters. The platform (as the leader)

publishes their rating policy to requesters, and then requesters (as

followers) specify their pricing policy as well as the approval ratio.
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Our framework enables not only determining conditions for

distributive fairness to hold, but also helps define how requester

should determine the compensation paid for their tasks according

to worker performance. According to distributive fairness [10],

payment accounts for individual performance, but maintains low

disparity among individuals’ pays. Here, the intuition is that higher

variance means higher disparity, and hence decreased fairness. Note

that in extreme cases, being treated equally (i.e. lower variance

among workers) may denote group unfairness, i.e. every worker is

treated poorly. Our rating policy can help avoid this since requesters

with low payment on average will have low rating and hence are

less competitive in the market.

According to both workers’ and requesters’ performance, our

objective is to find 1) a pricing policy such that workers’ qualities are

accounted for in the payment scheme and 2) an optimal rating policy

to motivate requesters to compensate workers so that maximum

distributive fairness among workers is enabled.

According to the two types of interactions in the game theoretical

framework, the problem of finding the optimal rating policy can

be also formulated as a three level optimization problem, which

generally is NP hard. Hence, we propose a time efficient solution

by resorting to primal decomposition [34] and approximation. For

theoretical interests, we also derive a theoretical bound of workers’

payment variance to check how close our solution is to the optimal.

We note that our approach is novel in many respects. Previous

work into fairness for workers in the digital workplace has been

focused on the impact of working conditions on individual workers,

and has not yet been adopted en masse by platform maintainers

[21, 24, 28], whereas our approach is proposing a pricing policy

and a rating policy where fairness is both defined and enforced (in

a manner of speaking) by the market and its participants.

We present our findings from applying and developing thismodel

on real data gathered from workers on AMT and simulations that

we ran to validate our assumptions. As the prices driven by our

rating policy reflects the prices set by the market (which have been

found to be problematic [17, 29]), we discuss specific findings about

fairness as it exists in the current market and how our systemmight

affect fairness overtime.

2 RELATEDWORK
Fairness in Crowdwork. Promoting fair treatment is of the ut-

most importance for more effective, capable crowdsourcing systems.

If contributors believe that the environment that they are work-

ing within is fair, we can expect not only an improvement in the

quality of contributors’ work [6, 7, 23] (which is beneficial for the re-

quester), but also an increase in retaining and recruiting additional

contributors [10, 11] (which is beneficial for the platform owner).

The notion of fairness has been applied widely, notably in social

choice theory, game theory, economics, and law [6–12, 20, 26, 39].

For example, Xu et al. [42] focused on an application of “online de-

liberation” and they proposed to crowd-source moderation work to

contributors themselves to increase perceived procedural fairness.

However, as Sauermann and Cohen [37] suggested, although the

intensity of effort has a strong effect on contributors’ ideas, the

character of effort seems to be more important in generating ideas.

In context of crowdsourcing, prior studies focus mainly on the

quantity of effort in online communities [42] and largely ignore the

multiple types of effort, e.g. time consumption, creativity, expertise

in multiple areas. On the other hand, contributors’ productivity is

likely to depend upon the nature of the task, for instance, whether

it requires expertise or time, or even demands greater creativity

[15, 37]. Therefore, rather than motivating contributors to simply

devote more time, a better strategy is to motivate contributors to

bring more of themselves and their expertise to the work.

Fairness has been an oft discussed topic in the field of crowd-

sourcing, and each field brings with it its own perspective in defin-

ing what fairness means. Franke et al. [11] first highlighted the

importance of fairness in the context of crowdsourcing where they

demonstrate that users’ expectations on fairness have a strong im-

pact on their decision to participate in task solving. Faullant et al.

[10] followed up by further exploring how different types of fair-

ness, i.e. distributive fairness (a fair amount and distribution of the

offered reward) and procedural fairness (fair procedures/process to

determine the winners), affect contributors’ intentions to partici-

pate in future crowdsourcing tasks as well as their loyalty towards

the platform. Recently, numerous works have also started to focus

on designing strategies to improve contributors’ perceived fair-

ness [13, 42]. Complementing this perspective, when fairness is

discussed in CSCW literature, they focus primarily on the working

conditions for the workers of crowdsourcing [22, 24, 28]. However,

there has been a few efforts to help requesters estimate the time

required for their task [5] – which of course impacts price.

Task Matching or Pricing for Fairness. In the recent years, sev-

eral studies related to matching and pricing in Crowdsourcing have

been proposed. These studies aim to address workers’ (or contrib-

utors’) quality issues [1, 4, 14, 19, 25, 27, 33, 38, 40, 41, 43–47]. For

example, in [44], Yin et al. proposed an approach to dynamically

control whether and when to place a bonus in a crowdsourcing

working session to improve requesters’ utility, where their policy

provides more bonus opportunities for workers with lower accu-

racy. In [19], Hu et al. proposed an optimal posted-price mechanism

for microtask crowdsourcing that requires fewer inputs compared

with many existing approaches. Considering that requesters always

want all their tasks to be completed even though some of their tasks

are less interesting to contributors, Kobren et al. [25] presented

a task allocation approach by balancing the task value with the

likelihood of a contributor dropping out after being assigned with

the task.

Notably, most studies to date consider the task matching or pric-

ing problem from the perspective of requester, i.e., aim to improve

of contributors’ quality of answers, but neglect the benefits of con-

tributors. Some recent work has looked into solving problems from

the perspective of contributors [1, 14, 25, 38, 45, 46]. These works

either focus on improving contributors’ benefits (including utilities

[1, 14, 38], efficiency [14, 45, 46], and privacy [14]), or target on bal-

ancing the benefits between requesters and contributors [25]. For

example, Schnitzer et al. [38] suggested to develop a new task rec-

ommendation system based on contributors’ own preferred types of

benefits. Gong et al. [14] targeted a single contributor and pointed

out fundamental trade-offs among utility, privacy, and efficiency of

the contributor. Authors also proposed a flexible optimization frame-

work that can be adjusted to any desired trade-off point. Despite

some similarities, none of these works aim to improve contributors’
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perceived group fairness. As a result, the actual algorithms and

methods are fundamentally different than the ones proposed in

this paper: fairness trascends individual gains and utilities and we

maximize it as a collective metric. Yet, it plays an important role in

encouraging contributors’ long-term engagement and improving

contributors’ performance.

To our knowledge, one of the few efforts looking into encour-

aging group fairness is from Mengash and Brodsky [31], [32], and

[27]. In all these approaches, the proposed approach aims at de-

veloping recommendation algorithms- outside the specifics of the

crowdsourcing domain. Albeit similar in looking at group criteria,

these works tackle a problem that is fundamentally different from

ours as they aim to recommend a service to a group of users, while

our problem needs to address fairness by matching multi-tasks to

multi-contributors.

3 PROBLEM FORMULATION
In this section, we first introduce the model, including notations

and assumptions that will be used throughout the paper (Section 3.1

and Section 3.2). Based on the model, we then formally formulate

the problem (Section 3.3).

3.1 System Model

Requesters vs. workers. We consider a scenario composed ofM
requesters {1, 2, ...,M} and N workers {1, 2, ...,N }. Each individual

worker in the system is defined by several dimensions, including

their historical performance and skills/qualification.

In order to estimate a pricing policy for a given task, the first

dimension that we evaluate is worker performance. Specifically, we

use worker’s approval ratio as a proxy of the worker’s performance,

which is the number of acceptable tasks submitted by the worker

that the requester deems worthy of payment. This is denoted as

pi, j (for a worker i and requester j) and is defined as

pi, j =

number of tasks completed by worker i and
approved by the requester j

number of tasks assigned by the requester j
. (1)

Then, we describe the pricing policy from each requester j by a

function fj
(
pi, j

)
, which is a map from workers’ approval ratio to

their compensation.

Here, fj is assumed as a concave function, upper bounded by

the full payment z, which is the maximum amount a user can earn

for the tasks from requester j. In addition, fj defines:

1) The lowest acceptable approval ratiow . The worker earns no

payment if his approval ratio is lower thanw , i.e., f (pi, j ) = 0

when pi, j ∈ [0,w);

2) A required approval ratio u and the worker can earn the

full payment 1 if the worker approval ratio achieves u, i.e.,
pi, j ∈ [u, 1].

Also, we assume fj is a quadratic function in interval [w,u) and
is continuous in the whole region [0, 1]. According to the above

assumptions, we derive the pricing function fj as:

fj
(
pi, j

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 pi, j ∈ [0,w)

u2

u2−w2 −
(pi, j−u−w)

2

u2−w2 pi, j ∈ [w,u)

1 pi, j ∈ [u, 1]

(2)

completion
ratio

payment

O w/y u/y

1

pricing
function

C-I C-II C-III

Figure 1: Pricing function.

completion
ratio

worker utility

O
w/y

utility
function

u/y

C-I C-II C-III

Figure 2: Utility function.

We assume that each worker i’s approval ratio is affected by their
effort level, i.e. not all submitted tasks may be approved, based on

their quality. For each requester j , we use the term completion ratio

xi, j as the ratio of the number of tasks completed by worker i over
the number of tasks originally started or entered by worker i (e.g.
worker starts 10 hits but only completes 8, completion ratio would

be 80.0%, and if 5 gets approved, 62.5% approval rate). We assume

that the approval ratio pi, j increases linearly with the completion

ratio xi, j , which can be described mathematically by:

pi, j = yjxi, j (yj ≥ 0). (3)

Here, we call yj the approval coefficient, a decision variable made by

requester j. yj indicates the requester’s willingness to give higher

approval ratio to workers. For example, some requesters may be

strict, and grant low approval ratio to minimize costs. Consequently,

we rewrite the pricing function defined by Equation (2), where the

curve of the function is depicted in Figure 1:

fj
(
xi, j ;yj

)
=

⎧⎪⎪⎨⎪⎪⎩
0 yjxi, j ∈ [0, w )

u2

u2−w2 −
(yj xi, j−u−w)

2

u2−w2 yjxi, j ∈ [w, u)

1 yjxi, j ∈ [u, 1]

(4)

Platformvs. requester. Each requester j can determine tasks’ pay-

ment by choosing his approval coefficient yj . However, requesters
may purposely decrease the approval ratio for workers to reduce

their cost. For example, some requesters take advantage of asym-

metrical information access in crowdsourcing platforms [22, 28]

by rejecting work and keeping the results. Workers are concerned

about this and spend a lot of time finding ‘fair’ requesters [16].

Accordingly, to ensure the fairness between workers and re-

questers, the platform is allowed to rate each requester “reputation”

according to their approval coefficient and display each requester’s

reputation to workers. Then, the workers are able to select re-

questers that are willing to provide higher approval ratio and hence

higher compensation for their work. We describe the platform

rating policy by a concave function h
(
yj
)
, which is a map from

approval coefficient to reputation rating. Based on the definition

of approval coefficient (Equation (3)), the platform can obtain the

approval coefficient of each requester j by resorting to linear re-

gression [36], where the training data includes 1) the requester’s

historical approval ratio yj and 2) workers’ historical completion

ratio for this requester, x1, j , ...,xN , j .

We assume that h is a quadratic function. We normalize the

rating of all requesters to the interval [0, 1], and let h(0) = 0 and

h(1) = 1. According to the above assumptions, we can derive that

h(yj ) = zy2j + (1 − z)yj , where z, called the rating policy parameter,

is a decision variable that can be adjusted by the platform. Note

that higher z decreases the parabola’s turning point (and hence y),
leading to higher disparity among workers’ payment.
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second
layer

...

...compete

first layer

requester requester

worker worker worker

platform

third
layer

Figure 3: Three layers of the system.

In addition, we let h (y, z) represent the average rating of all

requesters:
h (y, z) =

∑M
j=1 h

(
yj , z

)
M

, (5)

where y = [y1, ...,yM ], and we let Δhj (y, z) = h
(
yj , z

)
/h (y, z) to

reflect how much higher j’s rating is with respect to the average. As

the requester with higher rating is more likely to attract workers

with qualified skills, each requester j tends to improve their rating

by maintaining their approval coefficient in a reasonably high level.

3.2 The Objectives of Different Roles

As Figure 3 shows, we can decompose different roles in the system

into three layers:

Workers (layer 3). Each worker i puts a certain effort level xi, j
(measured by the completion ratio as discussed in the prior section).

The worker’s objective is to maximize his/her possible payment

f
(
xi, j ;yj

)
and to minimize the effort level:

max fj
(
xi, j ;yj

)
− βixi, j (6)

s.t. 0 ≤ xi, j ≤ 1,∀i, j (7)

where βi , called laziness coefficient, is the weight assigned to user

i’s effort level. βi indicates worker i’s willingness to put effort in

submitting correct tasks, i.e., higher βi implies less effort to be taken

by the worker.

Requester (layer 2). First, each requester j aims to maximize the

overall performance from workers, which can be represented by

the sum of completion ratios of all workers:
∑N
i=1 xi, j .

On the other hand, as workers tend to choose completing tasks

from requesters with higher rating, each requester j also aims to

improve his/her rating to compete with other requesters. Here,

we assume each requester tries to exceed the average rating of all

requesters h (y, z) as much as possible. Then, the objective function

of requester can be written as

max

N∑
i=1

xi, j + λjΔhj (y, z) (8)

where λj is a weight assigned to Δhj (y, z), indicating the willing-
ness of requester j to improve his/her rating on the platform.

In addition, we assume each requester j has a budget limit Γj such
that the total payment to all the workers from requester cannot

exceed Γj : ∑
i

fj
(
xi, j ;yj

)
≤ Γj (9)

and we let Ωj represent the feasible region of
[
yj , xj

]
:

Ωj =

{[
yj , xj

]
∈ RN+1

 ∑
i fj

(
xi, j ;yj

)
≤ Γj

0 ≤ xi, j ≤ 1, 0 ≤ yj ≤ 1,∀i, j
}
. (10)

Platform (layer 1). As demonstrated in [6, 7, 10, 11, 23], if workers

believe that the environment that they are working within is fair,

it is expected that not only an improvement in the quality of their

work, but also an increase in retaining and recruiting additional

workers. As the success of a crowdsourcing platform is highly due

to a high number of available workers and the quality of their work,

it is of great importance to promote fair payment and treatment

of workers on the platform. Accordingly, we set the objective of

the crowdsourcing platform as to maximize fairness among the

workers, which is specifically defined as minimizing the variance

of workers’ payments:

min

M∑
j=1

N∑
i=1

[
f
(
xi, j ;yj

)
− f j

]2
(11)

where f j =

∑N
j=1 fj (xi, j ;yj )

N is the average compensation paid to all

the workers from the requester j.

3.3 Problem formulation

According to the above assumptions, we have two types of interac-

tions across the three layers: the interaction between workers and

requesters, and the interaction between the platform and requesters.

We can model both types of interactions as a Stackelberg game [35],

a strategic game where the leader makes the decision first, and the

followers observe the leader’s action and moves in a way that is

personally optimal.

More precisely, for the interaction between each requester j
and their workers, we model the requester as a leader, who first

determines the pricing policy and the approval coefficient yj for
his/her workers. Then, the worker determines how much effort xi, j
needs to take to reach or approximate the full payment.

For the interaction between the platform and requesters, we

model the platform as a leader to determine the rating policy h
for all requesters, and then each requester determines the pricing

policy as well as the approval coefficient.

Finally, our payment fairness maximization (PFM) problem, can

be written as a 3-level programming problem:

min
∑M
j=1

∑N
i=1

[
f
(
xi, j ;yj

)
− f j

]2
(Layer 1)

s.t. z ∈ [0, 1]

max
∑N
i=1 xi, j + λjΔhj (y, z) (Layer 2)

s.t. [yj , xj ] ∈ Ωj

max fj
(
xi, j ;yj

)
− βixi, j (Layer 3)

s.t. xi, j ∈ [0, 1]

i = 1, ...,N ,

j = 1, ...,M

The decision variables of the optimization problem in layer 1, 2, and

3 are z, yj , and xi, j (i = 1, ...,N and j = 1, ...,M), respectively. The

above hierarchical relationship results from the fact that the opti-

mization related to the workers’ behavior is taken as a constraint

when the requester makes the decision, and similarly, the optimiza-

tion related to the requesters’ behavior is taken as a constraint for

the platform’s decision. The objective of PFM is to find out the

optimal rating policy parameter z for the platform to minimize the

distributive fairness among workers.

4 ALGORITHM DESIGN

To find the optimal rating policy parameter z (in layer 1), we need to
analyze how requesters determine their approval coefficient given

Session 2B: Practical Applications of Game Theory AAMAS 2019, May 13-17, 2019, Montréal, Canada

407



each possible z (layer 2), which in turn requires us to derive workers’
response given requesters’ approval coefficient (layer 3). Hence, in

this section, we start solving PFM by analyzing the best response of

each worker given the requester’s approval coefficient (in Section

4.1), where the main result is given in Theorem 4.1. We take the

result of Theorem 4.1 as a constraint of workers’ and requesters’

behavior, which can replace the 3rd layer optimization in PFM and

hence reduce PFM to a Bi-Level Programming (BiP) problem.

BiP in general is NP-hard [2]. As a solution, we propose a time-

efficient and scalable approach by resorting to primal decomposi-

tion and approximation in Section 4.2. For theoretical interests, we

also derive a lower bound of workers’ payment variance to check

how close our solution can achieve the optimal.

4.1 Best Response Analysis of Workers

According to the pricing function described by Equation (2), there

are different formulas when yjxi, j ∈ [0,w], yjxi, j ∈ [w,u], and
yjxi, j ∈ [u, 1]. Hence, we discuss the best response of each worker

i in the following three cases (as shown in Figure 2):

C-I. When xi, j ∈
[
0, wyj

)
, f

(
xi, j ;yj

)
− βixi, j = −βixi, j , and

hence the worker’s utility is maximized when x∗i, j (I ) = 0;

C-II. When xi, j ∈
[
w
yj
, uyj

)
, as Figure 4 shows, the best response

of worker i depends on whether the turning point x ′i, j of

the parabola f
(
xi, j ;yj

)
− βixi, j is in

(
−∞, wu

)
,
[
w
u ,

u
yj

)
, or[

u
yj
,∞

)
. Specifically,

x∗i, j (I I ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
yj

x ′i ∈
(
−∞, wu

)
or yj ∈

[
0,

βi (u2−w2)
2u

)
u+w
yj

−
βi (u2−w2)

2y2
j z

x ′i ∈
[
w
u ,

u
yj

)
or yj ∈

[
βi (u2−w2)

2u ,
βi (u2−w2)

2w

)
u
yj

x ′i ∈
[
u
yj
,∞

)
or yj ∈

[
βi (u2−w2)

2w ,∞
)

(12)

Note that when yj ∈
[
0,

βi (u2−w2)
2u

)
, f

(
xi, j ;yj

)
− βixi, j =

−βixi, j < 0, which is dominated by the best response in C-I.

C-III. When xi, j ∈
[
u
yj
, 1yj

]
, f

(
xi, j ;yj

)
−βixi, j = z−βixi, j , which

monotonically decreases with the increase of xi, j . Therefore,
the best response of worker i should be when xi, j is min-

imized, i.e., x∗i (I I I ) =
u
yj
, and the corresponding utility of

worker i is f
(
xi, j ;yj

)
− βixi, j = 1 −

βiu
yj

.

After analyzing worker i’s best response in the above cases, we

can eventually derive that

x∗i, j = arg max
l=I, I I, I I I

{
f
(
x∗i, j (l);yj

)
− βix

∗
i, j (l)

}
(13)

Here, we note that if part of workers have their best response

equal to 0, other workers have to take more effort to satisfy the

overall approval ratio constraint, leading to a higher disparity among

workers’ payment. Hence, we try to avoid x∗i, j = 0 for each worker

i in our pricing policy.

Particularly, we set constraints such that the best response in C-I

x∗i, j (I ) are dominated by the best responses in the other two cases,

x∗i, j (I I ) and x
∗
i, j (I I I ). To ensure that C-II dominates C-I, A1-A3 have

to be satisfied:

completion
ratio xi,j

worker utility

O w/yj

u/yj

O /

Best response

(a) x ′
i ∈

(
−∞, wu

)
completion

ratio xi,j

worker utility

O w/yjw/w y//

Best response

u/yj

(b) x ′
i ∈

[
w
u , u

yj

) completion
ratio xi,j

worker utility

O w/yj

Best response

u/yj

(c) x ′
i ∈

[
u
yj

, ∞
)

Figure 4: The three subcases of the best response in Case II.

A1: yj �
[
0,

βi (u2−w2)
2u

)
, otherwise C-II has worse best response

than that of C-I. To satisfy A1, we have

yj > max
i, j

{
βi

(
u2 −w2

)
2u

}
. (14)

A2. When yj ∈
[
βi (u2−w2)

2u ,
βi (u2−w2)

2w

)
, worker i’s utility

f
(
x∗i, j (I I );yj , z

)
− βix

∗
i, j (I I ) should be higher than 0, from which

we can derive that

yj <
βi (u +w)

(
u2 −w2

)
u2

. (15)

A3. When yj ∈
[
βi (u2−w2)

2w ,∞
)
, the worker’s best response is

x∗i, j (I I ) = u/yj . To ensure the utility of worker i to be higher than

0, we have

f
(
x∗i, j (I I );yj , z

)
− βix

∗
i, j (I I ) = 1 −

βiu

yj
> 0 ⇒ yj > βiu . (16)

To ensure that C-III dominates C-I, Equation (16) still needs

to be satisfied, as in this case the worker’s best response is still

x∗i, j (I I I ) = u/yj .

Eventually, we can summarize that to exclude C-I for worker i:
1) A1 has to be satisfied,

2) Either A2 (when worker i gets partial payment) or A3 (when

worker i gets full payment) should be satisfied. By combining C-II

and C-III, we eventually obtain Theorem 4.1.

Theorem 4.1. Given the approval coefficient yj provided by re-

quester j, the best response a worker i can be represented by

x∗i, j = д
(
yj ; βi

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u+w
yj

−
βi (u2−w2)

2y2
j

yj ∈
[
0,

βi (u2−w2)
2w

)
u
yj

(full payment) yj ∈
[
βi (u2−w2)

2w , 1
]
(17)

In what follows, we let Ωj (yj ) be a projection of Ωj onto re-

quester j’s response region:Ωj (y) =
{
y |[y,д(y; β1), ...,д(y; βN )] ∈ Ωj

}
.

4.2 Approximation Algorithm for BiP

We approximate the BiP problem by only considering a set of dis-

crete points in z’s feasible region, z0, z1, ..., zL , where each zl = l
L

(l = 0, 1, ...,L). Then, in the first step, given z = zl , we derive the

corresponding optimal approval coefficients for all requesters yl1,

yl2, ..., y
l
M

by solving the 2nd layer optimization in PFM, and then

obtain the corresponding payment variance ulvar from workers (by

Equation (11)).

In Step 2, after collecting all u1var, ..., u
L
var, we find the index lmin

that has the minimum utility variance:

lmin = argmin
l

ulvar, (18)
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Figure 5: Primal Decomposition.

where the corresponding zlmin is the final result. In what follows,

we introduce the details how we derive each ylj .

ProblemDecomposition. We note that, in the objective functions

of the 2nd layer optimization in PFM (or PFM-2 for short), the deci-

sion variablesyl1, ...,y
l
M

are coupled, i.e., requesters need to compete

with each other. However, if we calculate the optimal values of yl1,

..., yl
M

together, it will generates an extremely high computation

cost, especially for large scale platforms with millions of users.

To improve the scalability of our solution, we apply primal de-

composition (PD) to decompose PFM, where PD is a classical method

in combinatorial optimization and has been widely applied to dis-

tributed and parallel computation [34]. The basic idea of PD is to

decompose the original large problem into distributively solvable

subproblems which are then coordinated by a high-level master

problem [34]. A PD is appropriate when the problem has coupling

variables such that, when fixed to some value, the rest of the opti-

mization problem decouples into a set of independent subproblems.

Particularly, in PFM-2, we find that if h (y, z) is fixed, the problem
will be decomposed to a set of subproblems: sub1, ..., subM , where

subj (j = 1, 2, ...,M) is for each requester j and is defined as:

max

N∑
i=1

xi, j + hj
(
ylj , z

l
)
/h (y, z) (19)

s.t. [ylj , xj ] ∈ Ωj and Equation (17) is satisfied. (20)

Therefore, we can separate PFM-2 into two levels, as Figure 5

shows. In the lower level, we have all the subproblems subj (j =
1, 2, ...,M). In the higher level, we let the master problem iteratively

update the coupling variables h (y, z) by collecting yj from each

subj . More precisely, we initialize h
(0)

(y) by a constant h0. In each

iteration k , each subj first calculates y
l,(k )
j based on h

(k−1)
(y) in

iteration k − 1, and send y
l,(k )
j back to the master problem. The

master problem then derives h
(k )

(y) giveny
l,(k )
j (j = 1, ...,M). This

process is repeated until
h(k ) (y) − h

(k−1)
(y)

 < ϵ , where ϵ > 0 is

a threshold to check whether h
(k )

(y) has converged.

Algorithm for subj . According to Theorem 4.1, ylj will fall in

different intervals
[
0,

βi (u2−w2)
2w

)
and

[
βi (u2−w2)

2w , 1
]
when worker

i gets partial payment and full payment, respectively. Hence, the

constraints for each ylj will be different when different workers get

full payment. Therefore, we discuss the solution of each subj by

considering the cases when different workers get full payment.

According to Equation (17), for any pair of workers i and k

with βi < βk , if worker l gets full payment (implying that ylj ≥

βk (u2−w2)
2w ), then worker i also gets the full payment, since

ylj ≥
βk

(
u2 −w2

)
2w

≥
βi

(
u2 −w2

)
2w

. (21)

This observation motivates us to first rank workers by increasing

β values, and then discuss the solution by considering when the

first m workers get full payment respectively. Let yl∗j (m) be the

optimal solution when exactly m workers get the full payment.

Then, after deriving each yl∗j (m) (m = 0, 1, ...,N ), we select yl∗j (m)

that minimizes the variance of all workers’ payment as the output

of the algorithm.

Without loss of generality, we assume that β1 < β2 < ... <
βN . We divide the region of y into the following N + 1 intervals:[
0,

β1(u2−w2)
2w

]
,
(
β1(u2−w2)

2w ,
β2(u2−w2)

2w

]
, ...,

(
βN−1(u2−w2)

2w ,
βN (u2−w2)

2w

]
,(

βN (u2−w2)
2w ,∞

)
. According to Equation (17), if ylj is in them + 1th

interval, i.e.,

ylj ∈

(
βm

(
u2 −w2

)
2w

,
βm+1

(
u2 −w2

)
2w

]
(22)

then the firstm workers get the full payment and the last N −m
workers get partial payment. Also, for the firstm workers, Equation

(16) has to be satisfied

zlylj > max
i=1, . . .,m

βiu . (23)

For the last N −m workers, Equation (15) has to be satisfied

ylj < min
i=m+1, . . .,N

{
βi (u +w )

(
u2 −w2

)
u2

}
(24)

We then reformulate each subj by adding the constraints of

Equation (14) (to avoid 0 payment) and Equation (22)-(24) (to ensure

m workers get full payment):

max

N∑
i=1

д
(
yj ; βi

)
+ Δh

(
y; z(l )

)
s.t. Constraints in Equation (14)-(16), (22)-(24)

which can be solved using subgradient [18].

Lower bound analysis. For theoretical interests, we also derive a

lower bound f lowervar of the workers’ payment variance (defined in

Equation (11)) to check how close our approximation solution can

achieve the optimal. In what follows, we let z∗ denote the optimal

z provided by the platform and let y∗j denote the corresponding

optimal approval coefficient from requester j (i = 1, ...,N ).

The basic idea to derive the lower bound is to partition z’s feasible
region [0, 1] into L intervals [0, z1), [z1, z2), ..., [zL−1, zL], and then
check the lower bound of the payment variance given each z ∈

[zl−1, zl ) (l = 1, ...,L), denoted by f lower
var,l

. After that, f lowervar can be

obtained by picking up the minimum value from f lowervar,1 , ..., f
lower
var,L

:

f lowervar = min
{
f lowervar,1 , ..., f

lower
var,L

}
.

To derive each f lower
var,l

, given z ∈ [zl−1, zl ), we calculate the max-

imum and the minimum value of each yj such that the constraint

in Theorem 4.1 is satisfied, denoted by yl,max
j and yl,min

j , which can
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be obtained by solving the following two optimization problems:

max arg max
y∈Ωj (y)

{
N∑
i=1

д (y; βi ) + h (y; z)

}
(to derive yl,max

j ) (25)

min arg max
y∈Ωj (y)

{
N∑
i=1

д (y; βi ) + h (y; z)

}
(to derive yl,min

j ) (26)

both of which have the constraint z ∈ [zl−1, zl ).

When z ∈
[
zl−1, zl

)
, given the maximum and the minimum

values of yj , we can then derive the lower bound f lower
var,l

by relaxing

PFM to the following quadratic programming problem:

min

M∑
j=1

N∑
i=1

[
f
(
xi, j ;yj

)
− f j

]2
s.t. yj ∈

[
yl,max
j ,yl,min

j

)
∀j .

Finally, suppose that z∗ is located in the interval
[
zl

∗−1, zl
∗
)
, and

hencey∗j ∈ [yl
∗,min
j ,yl

∗,max
j ). We can demonstrate that f lowervar offers

a lower bound of workers’ payment variance since

1) the payment variance offered by y∗i is lower bounded by f lower
var,l ∗

2) f lower
var,l ∗

is lower bounded by f lowervar .

Figure 6 compares the payment fairness achieved by our solution
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Figure 6: Comparison with the

lower bound.

and the theoretical lower

bound, where we change

the number of intervals par-

titioned in z’s region from

30 to 42. Here we set both

β and λ by 1. From the fig-

ure, we find that the pay-

ment variance got from our

method get closer to the

lower bound as the number

of intervals in z’s region increases. Note that the optimal utility

must be within the gap between our calculated utility and its upper

bound. Hence, we can conclude the payment variance converges to

the optimal as the partition in z’s region goes denser.

5 PERFORMANCE EVALUATION
We carry out an extensive evaluation of the key parameters of

our proposed model using a large dataset (over 3 million records

of tasks and over 2,500 workers) extracted from Mechanical Turk

collected from September 2014 to January 2017 [17], using the

Crowd Workers Chrome plugin [3]. This data includes HIT and

HIT group identifiers, unique worker identifiers, and partial records

(29.6% of HITs) of when a worker progresses through the various

stages of completing a HIT (e.g. Accept, Submit, Abandon), and a

partial record of subsequent requester actions (e.g. Accept, Reject).

In our experiments, we remove any workers that did not complete

any tasks as well as any requesters that did not approve any tasks,

as we consider that these data points represent people that did not

actually participate to the crowdsourcing tasks.

We mainly test the following two metrics: (a) Cost, defined as

the total compensation a requester pay to all his/her workers, i.e.,∑
i f

(
xi, j ;y, z

)
; (b) Fairness, defined as the payment variance of

workers, i.e.,
∑
i

(
f
(
xi, j ;y

)
− f

)2
.
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Figure 9: Comparison ofworkers’ payment fairness between

the real trace and our method.

In addition, we set λ = 1 (weight of rating in requesters’ utility),

ϵ = 0.02 (convergence threshold), and Γ = $8 (budget limit) by

default.

For our first experiments, we select a representative sample

of 19 workers (each worker has at least 10 submitted HITs, with

12,188 submitted HITs from 19 workers in total) and calculate each

worker’s completion ratio (i.e., the total number of tasks submitted

over the total number of tasks accepted by this worker) and average

approval ratio (i.e., the total number of tasks approved by all the

requesters over the total number of tasks submitted by the worker).

Figure 7 shows the correlation between the two values of the 19

workers, which validates our hypothesis that the approval ratio

from requesters increases with the increase of workers’ completion

ratio. As we assume a linear relationship between workers’ com-

pletion ratio and requesters’ approval ratio (Equation (3)), by linear

regression, we obtain the estimated approval coefficient λ̂ = 0.6141.

Accordingly, we take λ̂ = 0.6141 as the approximated average

approval coefficient in the market.

Estimation of βi . We estimate the laziness coefficient βi (defined
in Equation (6)) of each worker i , which reflects the willingness

of worker i to put effort in submitting correct tasks, i.e., higher

βi indicates less effort to be taken by the worker. Because of the

heterogeneous nature of the data - and in particular of the tasks in

the dataset, we identify 100 different groups of tasks according to the

qualifications required by the tasks (e.g., “{Categorization Masters}”,

“{Experiences with testing}”). For each task group k (k = 1, ..., 100),

we assume the full payment u(k ) as the maximum pay to single

HIT in the group and calculate the completion of each worker i ,

x̂
(k )
i . Then, by embedding each û(k ), x̂

(k )
i , ŷ = λ̂ (k = 1, ..., 100) into

Equation (17), we can obtain the estimated β̂i by linear regression.

Figure 8 shows the histogram of workers’ β values, which shows

that around 55.2% workers have their β values lower than 1. In

addition, we use an exponential function f (x) = μx−μ to fit the

histogram and μ = 2.54, andwewill use this distribution to generate

data for synthetic simulation later.
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Figure 11: Algorithm convergence and computation time.

Our approach vs. trace. Figure 9 compares the fairness and the

total cost of our rating policy (per our operational notion of items

(a) and (b) at the beginning of this Section 5) with the workers’

payment using data from our AMT dataset from 30 different task

groups. We first calculate requesters’ approval ratio of each group k

(k = 1, ..., 30) according to their workers’ estimated β̂ ’s distribution

and overall cost constraint C(k ). To ensure that the fairness among

workers’ payment can be improvedwithout increasing the total cost,

we letC(k ) be equal to the total payment for all the workers in group

k . Hence, under our strategy, the overall cost will not be higher
than the original cost extracted from the real trace for the same

group of tasks. After deriving requesters’ approval ratio in each

group, we use the pricing policy defined in Equation (4) to derive

each worker’s payment based on their completion ratio. From the

figure, we observe that our pricing policy achieves higher fairness

even with slightly lower total cost compared with the real trace.

We next evaluate the performance of our rating policy with dif-

ferent weight λ and different budget limit Γ in Figure 10(a)(b). In

Figure 10(a), we increase the budget limit from $1 to $11 and test

the change of the variance of workers’ payment in 30 task groups.

The experimental result demonstrates that the higher Γ leads to a

lower payment variance (or higher distributive fairness). When Γ
is higher, the requester can improve the payment fairness among

workers by decreasing the workers’ overall approval ratio, by which

workers with lower performance will have closer payment to those

who are awarded with higher payment. Of course however, higher

approval ratio generates higher total payment. In Figure 10(b), we

depict how the payment variance evolves with the increase of λ
(from 1 to 10), which is defined as the weight assigned to rating in

requester’s utility. Not surprisingly, the payment variance increases

with the increase of λ, as higher λ indicates more willingness from

requester to balance workers’ payment.

Finally, we test the convergence of our decomposition algo-

rithm as well as its computational time in the 30 task groups.

More precisely, we depict the difference between h(y)(k−1) and

h(y)(k ) derived by the master problem in each iteration k , and
check how such difference evolves from iteration 1 to iteration 9

in Figure 11(a). As we mentioned in Section 4.2, we consider the

decomposition algorithm has converged to a certain value when

|h(y)(k−1) − h(y)(k ) | < ϵ (ϵ = 0.02). From the figure, we find that

|h(y)(k−1) −h(y)(k ) | is smaller than ϵ after the 5th iteration, demon-

strating a fast convergence of the algorithm. Figure 11(b) compares

the computation time of our solution with a centralized algorithm

(subgradient) when the number of requesters varies from 30 to

150. As shown in the figure, we find that our algorithm has much

lower computation time compared with the centralized method.

Furthermore, with the increased of the number of requesters, the

computation time of our solution is maintained within a certain

level, i.e., less than 15 seconds, while the computation time of the

centralized increases significantly, i.e., from 27 to 121 seconds.

6 CONCLUSION AND FUTUREWORK
In this work we have presented our fair pricing model, which takes

into account the performance and behaviors of both requesters

and workers. The model is based on the concept of distributive

fairness, where we try to reduce the variance between the outcomes

for workers completing the same set of tasks. We consider perfor-

mance of workers, acceptance rate of requester and overall current

trend of the crowdsourcing platform where the compensation is

calculated and applied. We apply a game theoretical model to de-

scribe the interactions between the platform, requesters, and work-

ers and formulate the problem of maximizing distributive fairness

among workers as a 3-level programming problem. Considering

the hardness of the problem, we propose a time-efficient approach

by resorting to problem approximation and primal decomposition.

Our model shows promise in several regards. First, the results of

applying it to our data sample make intuitive sense. That is, if the

budget for a set of tasks increases, while the amount and quality of

work that a requester needs stays the same, then the compensation

policy creates a more fair distribution of pay. If the budget for a set

of tasks stays the same, while the quality of work that a requester

needs increases, then our model highlights that this creates a less

fair distribution of pay. While this is intuitively true, our model can

recommend to requesters how much to increase the overall budget

if the requester needs to increase the quality needed. Our rating

policy motivates requesters to compensate their workers in a way

such the disparity among workers’ payments is minimized and also

each worker’s compensation reasonably reflects his/her quality of

work. This effect can provide incentives to the requesters to main-

tain a fair environment in which crowd workers do their work,

while adjusting aspects of how their work needs to be completed

according to their needs.

We see a number of promising directions for this research work.

For example, currently all tasks are considered of the same impor-

tance for the requesters who asked for completion. This is often not

the case, as requesters may have urgent tasks where rate of comple-

tion is one of the variables affecting price. Accordingly, extensions

to the model could be applied to better reflect the urgency with

which a requester might need a task completed and the subsequent

demand (and price) that this puts on workers.
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