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ABSTRACT

Weighted Constraint Satisfaction Problems (WCSPs) are an elegant

paradigm for modeling combinatorial optimization problems. A

key assumption in this model is that all constraints are specified or

known a priori, which does not hold in some applications where

constraints may encode preferences of human users. Incomplete

WCSPs (IWCSPs) extend WCSPs by allowing some constraints to

be partially specified, and they can be elicited from human users

during the execution of IWCSP algorithms. Unfortunately, existing

approaches assume that the elicitation of preferences does not in-

cur any additional cost. This assumption is unrealistic as human

users are likely bothered by repeated elicitations and will refuse

to provide an unbounded number of preferences. Therefore, we

propose the IWCSP with Elicitation Cost (IWCSP+EC) model, which

extends IWCSPs to include elicitation costs, as well as three param-

eterized heuristics that allow users to trade off solution quality

for fewer elicited preferences and faster computation times. They

provide theoretical quality guarantees for problems where elicita-

tions are free. Our model and heuristics thus extend the state of the

art in constraint reasoning to better model and solve agent-based

applications with user preferences.
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1 INTRODUCTION

The importance of constraint reasoning in agent-based systems is

outlined by the impact of its application in a wide range of agent-

based applications, such as supply-chain management [19, 41], ros-

ter scheduling [1, 8], meeting scheduling [31], combinatorial auc-

tions [45], bioinformatics [2, 9, 15], and smart home automation

[17, 44]. In Constraint Satisfaction Problems (CSPs), the goal is to find

a value assignment for a set of variables that satisfies a set of con-

straints [3, 42]. The assignments satisfying the problem constraints

are called solutions. In Weighted Constraint Satisfaction Problems

(WCSPs), the goal is that of finding an optimal solution, given a set

of preferences expressed by means of cost functions [5, 46, 47].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
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A key assumption in all these constraint-based models is that

all the constraints are specified or known a priori. In some appli-

cations, such as roster and meeting scheduling problems, some

constraints encode the preferences of human users. As such, they

may not be fully specified simply because it is unrealistic to accu-

rately know the preferences of users for all possible scenarios in an

application. Motivated by such applications, researchers proposed

the Incomplete WCSP (IWCSP) problem formulation [20], which ex-

tends WCSPs by allowing some constraints to be partially specified

(i.e., the costs for some constraints are unknown). To solve IWCSPs,

they introduced a series of algorithms that interleave the search

process, which seeks to find a good solution, and the preference

elicitation process, which seeks to obtain some subset of cost func-

tions from the user. Unfortunately, existing approaches suffer from

a key limitation – they assume that the elicitation of preferences

does not incur any additional cost. This assumption is not realistic

as human users are likely bothered by repeated elicitations and will

refuse to provide an unbounded number of preferences.

To address this limitation, we make the following contributions:

• We first propose the IWCSP with Elicitation Costs (IWCSP+EC)

model, which extends the IWCSP model to include the notion

of elicitation costs. The objective in this problem is to find a

solution that minimizes the sum of both the constraint costs and

elicitation costs.

• We then introduce three parameterized heuristics – Least Un-

known Cost (LUC), Least Known Cost (LKC) and their combi-

nation heuristic (COM) – that allow users to trade off solution

quality for fewer elicited preferences and faster computation

times. Further, in settings where elicitations are free (i.e., the

elicitation costs are zero), these heuristics also provide theoretical

quality guarantees on the solutions found.

Our experimental results show that COMfinds solutions with larger

constraint costs than LKC and LUC, but finds them faster and with

fewer elicitations than LKC and LUC. Therefore, COM is the pre-

ferred heuristic in critical time-sensitive domains. COM also does

a better job at trading off solution quality for smaller runtimes,

especially when runtimes are large, through the use of user-defined

weights. Our model and heuristics thus improve the practical appli-

cability of IWCSPs as they nownot only take into account elicitation

costs but also provide control knobs, in the form of user-defined

weights, to perform tradeoffs along three key dimensions – solution

quality, runtime, and number of elicited preferences.

2 BACKGROUND

AWeighted Constraint Satisfaction Problem (WCSP) [27, 47] is de-

fined as a tuple P = 〈X,D,F 〉:

• X = {x1, . . . ,xn } is a finite set of variables;
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Definition 5.5 (д-Value). The д-value of a node n is FP (xn ).

Definition 5.6 (h-Value). The h-value of a node n is a lower bound

estimate of the minimal sum of constraint and elicitation costs to

complete the partial solution xn .

Definition 5.7 (f -Value). The f -value of a node n and the set of

nodes x̃ expanded thus far is the sum of its д-value, h-value, and

cumulative elicitation costs.

For example, for node i in Fig. 2(a), its unknown constraint cost is

f̃2(〈x1=0,x3=1〉) = ?; its elicited constraint cost is f2(〈x1=0,x3=

1〉) = 45; its known constraint costs are f̃1(〈x1 = 0,x2 = 0〉) = 15

and f̃3(〈x2=0,x3=1〉) = 5; and its д-value is д(i) = 45+15+5 = 65.

If nodes are explored in depth-first order from left to right, then

the explored solution space when node i is expanded is x̃ = {〈x1=

0,x2 = 0,x3 = 0〉, 〈x1 = 0,x2 = 0,x3 = 1〉}, which includes two

unknown constraint costs that were elicited – f3(〈x2 = 0,x3 =

0〉) and f2(〈x1 = 0,x3 = 1〉). The costs of these elicitations are

e3(〈x2 = 0,x3 = 0〉) = 9 and e2(〈x1 = 0,x3 = 1〉) = 3, summing

up to a cumulative elicitation cost of 12. Consequently, if we use

a zero heuristics (i.e., the h-value for all nodes is 0), then the f -

value of node i and the corresponding explored solution space is

f (i, x̃) = 65 + 12 = 77.

6 PARAMETERIZED HEURISTICS

We now describe our three heuristic functions that can be used in

conjunction with DFBnB to solve our IWCSP-EC problem. These

heuristics make use of an estimated lower bound L on the cost of

all constraints f ∈ F . Such a lower bound can usually be estimated

through domain expertise or can be set to 0 in the worst case since

all costs are non-negative. The more informed the lower bound, the

more effective the heuristics will be in pruning the search space.

Additionally, these heuristics are parameterized by two parame-

ters – a relative weightw ≥ 1 and an additive weight ϵ ≥ 0. Users

can define these parameters a priori allowing them to trade off so-

lution quality for fewer elicited preferences and faster computation

times. Further, in settings where elicitations are free (i.e., the elici-

tation costs are zero), the costs of solutions found are guaranteed

to be at mostw ·OPT + ϵ , where OPT is the optimal solution cost

(Theorems 7.1, 7.2, and 7.3).

6.1 Least Unknown Cost (LUC) Heuristic

Our first heuristic function is called the Least Unknown Cost (LUC)

heuristic. Let Sn be the set of all possible variable-value assignments

needed to complete the partial solution corresponding to noden. For

each variable-value assignment ς ∈ Sn , let φς denote the number of

yet-to-be-elicited unknown constraint costs that must be elicited to

complete the partial solution, and Eς denote the sum of elicitation

costs of those constraint costs.

LUC computes the h-value for each node n as follows:

h(n) = min
ς ∈Sn

(φς · L + Eς ) (1)

Therefore, the f -value for node n, under the assumption that x̃ is

the set of nodes expanded thus far, is as follows:

f (n, x̃) = д(n) + EP (x̃) + min
ς ∈Sn

(φς · L + Eς ) (2)

Thus, when using this heuristic, DFBnB prunes a node n if

w · f (n, x̃) + ϵ ≥ FP (x, x̃) (3)

where x is the best complete solution found so far. Note that users

can increase the weightsw and ϵ , which will prune a larger portion

of the search space. Consequently, it will reduce the computation

time as well as the number of preferences elicited. However, the

downside is that it will also degrade the quality of solutions found.

6.2 Least Known Cost (LKC) Heuristic

Our second heuristic function is called the Least Known Cost (LKC)

heuristic. Instead of returning h-values like LUC, LKC directly re-

turns the f -values, but taking into account only known and elicited

constraint costs. To compute the f -value for each node n, LKC

computes the estimated д-values of the leafs in the subtree rooted

at n (i.e., all the leaf variables in Sn ) – it is an estimate because it

does not take into account unknown constraint costs that are yet

to be elicited:

f (n, x̃) = min
ς ∈Sn

д̃(lς ) + EP (x̃) (4)

where д̃(lς ) is the estimatedд-value of node lς and lς is the leaf node

along the branch ς ∈ Sn that completes the partial solution at node

n. Thus, when using this heuristic, DFBnB uses the same pruning

condition as Equation 3, except that the f -values are computed

using Equation 4.

6.3 Combination (COM) Heuristic

When estimating the minimal cost to complete the partial solution

at a node n, the LUC heuristic takes into account yet-to-be-elicited

unknown constraint costs and their corresponding elicitation costs.

However, it ignores the known and elicited constraint costs needed

to complete the partial solution. In contrast, the LKC heuristic

does take into account such known and elicited constraint costs.

However, it ignores the yet-to-be elicited unknown constraint costs

and their corresponding elicitation costs.

Therefore, the LUC and LKC heuristics complement each other

as they are estimating non-intersecting components of the minimal

cost to complete partial solutions. To take advantage of both heuris-

tics, we combined them into a new Combination (COM) heuristic.

The new f -values are thus a combination of both the f -values of

the LUC and LKC heuristics:

f (n, x̃) = min
ς ∈Sn

(д̃(lς ) + φς · L + Eς ) + EP (x̃) (5)

Thus, when using this heuristic, DFBnB uses the same pruning

condition as Equation 3, except that the f -values are computed

using Equation 5.

6.4 Value-Ordering Heuristic

Finally, instead of choosing a random order to explore the children

of a node, for each heuristic, we order the nodes according to their

f -values. DFBnB will then expand the child with the smallest f -

value first as that is the most promising child.

7 THEORETICAL RESULTS

We now discuss some theoretical results that are applicable only in

the original IWCSP setting, i.e., in problems with zero elicitation
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costs. Therefore, in this setting, FP (x) = FP (x, x̃) for all solutions

x and explored search spaces x̃.

Theorem 7.1. DFBnB with the LUC heuristic parameterized by a

user-defined relative weightw ≥ 1 and a user-defined additive weight

ϵ ≥ 0 will return an IWCSP solution whose cost is bounded from

above by w · FP (x
∗) + ϵ , where x∗ is an optimal complete IWCSP

solution.

Proof. Assume that DFBnB returns a complete solution x̂ with

cost FP (x̂). There are the following two cases:

• Case 1: FP (x̂) = FP (x
∗). It is trivial to see that

FP (x̂) = FP (x
∗) ≤ w · FP (x

∗) + ϵ (6)

sincew ≥ 1 and ϵ ≥ 0.

• Case 2: FP (x̂) > FP (x
∗). It must be the case that the subtree

rooted at some noden along the branch to the optimal solution x∗

was pruned at some point during the search. Otherwise, the algo-

rithm would have returned x
∗ since FP (x

∗) < FP (x̂). Therefore,

when the subtree was pruned, the following pruning condition

from Equation 3 must have held:

w · f (n, x̃) + ϵ ≥ FP (x, x̃) (7)

where x is the best solution found so far and x̃ is the search space

explored so far. Further, since the RHS of the pruning condition

above is non-increasing, it must be the case that:

FP (x, x̃) ≥ FP (x̂) (8)

Next, expanding on the LHS of Equation 7:

w · f (n, x̃) + ϵ = w · (д(n) + EP (x̃) + min
ς ∈Sn

(φς · L + Eς )) + ϵ (9)

= w · (д(n) + min
ς ∈Sn

φς · L) + ϵ (10)

= w · (д(n) + h(n)) + ϵ (11)

≤ w · FP (x
∗) + ϵ (12)

Finally, combining Equations 7 to 12, we get:

FP (x̂) ≤ w · FP (x
∗) + ϵ (13)

which concludes the proof. �

Theorem 7.2. DFBnB with the LKC heuristic parameterized by a

user-defined relative weightw ≥ 1 and a user-defined additive weight

ϵ ≥ 0 will return an IWCSP solution whose cost is bounded from

above by w · FP (x
∗) + ϵ , where x∗ is an optimal complete IWCSP

solution.

Theorem 7.3. DFBnB with the COM heuristic parameterized by a

user-defined relative weightw ≥ 1 and a user-defined additive weight

ϵ ≥ 0 will return an IWCSP solution whose cost is bounded from

above by w · FP (x
∗) + ϵ , where x∗ is an optimal complete IWCSP

solution.

The proofs for Theorems 7.2 and 7.3 are similar to the proof for

Theorem 7.1.

Note that these error bounds do not apply to the IWCSP+EC

setting with non-zero elicitation costs. The reason is because the

RHS of the pruning condition used by DFBnB is not guaranteed to

be non-increasing, thereby invalidating our proof.

8 RELATEDWORK

As our work lies in the intersection of constraint-based models,

preference elicitation, and heuristic search, we will first focus on

related work in this intersection before covering the three broader

areas. The body of work that is most related to ours is the work

by Gelain et al. [20], where they introduced IWCSPs as well as a

family of DFBnB-based algorithms to solve them. They parameter-

ized their algorithm based on what preferences must be elicited,

when the elicitation should take place, and who decides the value

ordering followed by the algorithm, resulting in 32 combinations

of parameter values. They found that the combination that works

best is LU.WW.BRANCH. In this combination, preferences with

the worst unknown costs are elicited first (what = WW), prefer-

ences are elicited once the search reaches a leaf of the search tree

(when = BRANCH), and the value ordering is based on a lazy user

who prefers values with smaller costs without considering the con-

straints involving the current variable (who = LU). We compare

against this algorithm in our empirical evaluations in the next

section. In addition to Incomplete WCSPs, Gelain et al. [20] also

introduced Incomplete Fuzzy CSPs and generalized both models

to Incomplete Soft CSPs. Their parameterized algorithms described

above are also generalized to solve the general problem.

Another body of work in this intersection is the use of weighted

heuristics in Distributed Constraint Optimization Problems (DCOPs),

which can be viewed as decentralized versions of WCSPs [16, 34, 36,

58]. For example, additive and relative weights were introduced for

some algorithms [34, 55, 56], which provide additive and relative

quality guarantees as those in Theorem 7.1.

Finally, Conditional-Preference Networks (CP-nets) [6, 43] also lie

in this intersection. CP-nets are a graphical representation model

for qualitative preferences and reflects conditional dependencies

between sets of preference statements. In contrast, IWCSPs focuses

more on the notion of conditional additive independence [4], which

requires that the cost of an outcome to be the sum of the “costs” of

the different variable values of the outcome.

In the context of the broader constraint-based models where

constraints may not be fully specified, there are a number of such

models, including Uncertain CSPs [59], where the outcomes of con-

straints are parameterized; Open CSPs [14], where the domains of

variables and constraints are incrementally discovered; Dynamic

CSPs [12, 54], where the CSP can change over time; as well as

distributed variants of these models [24, 25, 29, 35, 37, 38, 57].

In the context of the broader preference elicitation area, there is

a very large body of work [21], and we focus on those that are most

closely related to our work. They include techniques that ask users a

number of preset questions [49, 51] and send alerts and notification

messages to interact with users [11], techniques that ask users to

rank alternative options or user-provided option improvements to

learn a (possibly approximately) user preference function [7, 10, 50,

53], and techniques that associate costs to eliciting preferences and

takes these costs into account when identifying which preference

to elicit as well as when to stop eliciting preferences (e.g., when

the cost outweighs the expected gain in utility from eliciting any

preference) [28, 52]. The key difference between these approaches

and ours is that they identify preferences to elicit a priori before

the search while we interleave preference elicitation and search.
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Finally, in the context of the broader heuristic search area, start-

ing with Weighted A* [39], researchers have long used weighted

heuristics to speed up the search process in general search problems.

Often, solutions found by these weighted approaches also have sim-

ilar quality guarantees as those in Theorem 7.1. Researchers have

also investigated the use of dynamically-changing weights [40, 48];

using weighted heuristic with other heuristic search algorithms

like DFBnB [18], RBFS [26], and AND/OR search [32, 33]; as well

as extending them to provide anytime characteristics [22, 30].

9 EXPERIMENTAL RESULTS

We evaluate DFBnB using our three heuristics – LUC, LKC, and

COM – against a random (RND) heuristic on both IWCSP+ECs

and IWCSPs (without elicitation costs). For IWCSPs, we also com-

pare against the best algorithm proposed by Gelain et al. [20] –

the LU.WW.BRANCH algorithm (labeled LWB). We evaluate the

algorithms on random graphs, where we measure the various costs

of the solutions found – the cumulative constraint costs, cumulative

elicitation costs, and their aggregated total cost – the number of

unknown costs elicited to find those solutions, and the runtime of

the algorithms. All experiments were performed on an Intel Core

i7, 3.4GHz machine with 16GB of RAM. Each data point shown is

an average of over 100 instances.

We generate 100 random (binary) graphs [13], where we vary the

number of variables |X| from 5 to 12; the constraint density p1 from

0.2 to 0.8; the fraction of unknown costs i in each constraint from

0.2 to 1.0;3. the user-defined relative weightw from 1 to 10; and the

user-defined additive weight ϵ from 0 to 1000. The domain size |Di |

for all variables xi ∈ X is set to 3. In our experiments below, we

only vary one parameter at a time, setting the rest at their default

values: |X| = 10, p1 = 0.4, i = 0.6,w = 1, and ϵ = 0. All constraint

costs are randomly sampled from [2, 100] and all elicitation costs

are randomly sampled from [0, 20].

IWCSP+ECs: Table 1 tabulates the empirical results for our

IWCSP+EC experiments, where we vary number of variables |X|,

the densityp1, and the fraction of unknown costs i . We make the fol-

lowing observations with regards to the runtime of the algorithms

and the number of unknown costs that they elicit:

• As expected, the runtimes of all algorithms increase with increas-

ing number of variables |X| and constraint density p1. This trend

is also reflected in the number of unknown costs elicited. The

reason is that the size of the problem, in terms of the number

of constraints in the problem, increases with increasing |X| and

p1. And all algorithms need to elicit more unknown costs and

evaluate the costs of more constraints before terminating.

• Interestingly, while the number of unknown costs elicited also

increases for all algorithms with increasing fraction of unknown

costs i , the runtimes of LKC and LUC decrease instead. The rea-

son is that the ratio of unknown costs elicited compared to the

total number of unknown costs actually decreases with increas-

ing i . Since the size of the problem, in terms of the number of

constraints in the problem, is the same for all values of i (as they

are dependent only on |X| and p1, which remain unchanged),

3In other words, for each constraint f̃ ∈ F̃, i is the number of value assignments
with unspecified costs as a fraction of the total number of value assignments in that
constraint.

the ratio of unknown costs elicited roughly reflects the ratio of

search space explored. Therefore, as this ratio decreases with i ,

so does the runtime of LKC and LUC.

The exception to this observation is COM, whose runtimes

increase slightly from when i = 0.2 to i = 0.4, after which it

plateaus. However, the reason is similar to the one above – the

ratio of unknown costs elicited compared to the total number of

unknown costs increased slightly when i = 0.2 to i = 0.4 and

remained relatively unchanged for larger values of i .

• Finally, COM is generally faster than both LKC and LUC across

all parameters. The reason is because COM is able to prune a

larger portion of the search space compared to LKC and LUC, as

reflected by the observation that the number of unknown costs

elicited by COM is smaller than that of LKC and LUC.

We now discuss the costs of the solutions found in terms of their

cumulative constraint costs, cumulative elicitation costs, and their

aggregated total costs:

• As expected, the cumulative elicitation cost of the solutions found,

which is proportional to the number of unknown costs elicited,

by all algorithms increase with increasing number of variables

|X|, constraint density p1, and fraction of unknown costs i . The

reason is that the number of unknown costs in the problem

increases with increasing |X|, p1, and i .

• The cumulative constraint cost of the solutions found by all

algorithms also increase with increasing |X|, p1, and i . However,

the reasons for why they increase is different: The constraint

costs increase for increasing |X| and p1 because the number

of constraints in the problem increases. As such, the average

constraint cost of solutions increases with increasing |X| and p1.

In contrast, the average constraint cost of solutions should

remain relatively unchanged with increasing i because the num-

ber of constraints remain unchanged. In this case, the constraint

costs of solutions found increase because the algorithms find

increasingly worse solutions with increasing i . As the algorithms

do not know the unknown constraint costs until they are elicited,

they will prefer to elicit unknown costs that have smaller elicita-

tion costs. And since the elicitation cost and unknown constraint

cost are not correlated, the behavior of the algorithms become

increasingly random with increasing i , thereby resulting in solu-

tions with larger constraint costs.

• Finally, since both the cumulative elicitation costs and cumula-

tive constraint costs increase with increasing |X|, p1, and i , the

aggregated total costs also increase similarly.

• In general, COM finds solutions with larger constraint costs than

LKC and LUC. However, its elicitation costs are smaller than

those of LKC and LUC. (Our results are statistically significant

with p < 0.05). This implies that COM is able to find relatively

good solutions quickly and uses that solution to prune a large

portion of the search space. In contrast, LKC and LUC explores

a larger portion of the search space to find better solutions, but

at the cost of increasing elicitation cost. This behavior is also

reflected in the runtimes of COM, which are smaller than the

runtimes of LKC and LUC. The total cost of solutions found by

all three algorithms are all approximately the same.

Fig. 3 plots the empirical results for our IWCSP+EC experiments,

where we vary the relative weight w from 1 to 10 in increments
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(a) Varying Number of Variables |X |, i = 0.6, p1 = 0.4

|X |
# unknown # of elicited costs runtime (sec) total cost cumulative constraint cost cumulative elicitation cost

costs LKC LUC COM LKC LUC COM LKC LUC COM LKC LUC COM LKC LUC COM

5 20.75 14.32 12.16 11.83 0.03 0.03 0.03 167.93 151.50 160.30 98.41 115.97 109.45 65.37 53.09 50.85

6 30.60 21.71 18.23 17.06 0.11 0.10 0.09 264.17 241.08 248.97 171.97 161.85 177.42 92.20 79.23 71.55

7 40.90 30.44 26.51 23.31 0.39 0.33 0.34 366.68 339.77 354.28 242.34 243.01 260.36 124.34 96.76 93.92

8 55.30 41.73 36.39 30.31 1.63 1.64 1.35 515.34 480.56 483.67 352.83 347.82 365.52 162.51 132.74 118.15

9 70.00 53.16 46.26 39.27 7.74 7.26 5.35 673.10 630.47 637.40 485.87 467.85 499.14 187.23 162.62 138.26

10 90.05 68.24 60.52 52.01 34.11 33.73 20.96 867.03 833.77 861.34 646.32 656.12 688.39 220.71 177.65 172.95

11 110.05 84.39 75.77 62.77 192.98 182.93 101.12 1086.84 1047.23 1058.42 845.08 831.48 872.95 241.76 215.75 185.47

12 130.00 100.41 89.31 73.95 1505.35 1301.48 552.12 1295.68 1248.14 1258.51 1003.53 1014.30 1047.98 292.15 233.84 210.53

(b) Varying Constraint Density p1, |X | = 10, i = 0.6

p1
# unknown # of elicited costs runtime (sec) total cost cumulative constraint cost cumulative elicitation cost

costs LKC LUC COM LKC LUC COM LKC LUC COM LKC LUC COM LKC LUC COM

0.2 56.70 44.67 38.92 33.15 34.08 26.56 23.15 546.26 501.72 505.75 365.32 359.93 374.56 180.94 141.79 131.19

0.4 90.05 68.24 60.52 52.01 34.11 33.73 20.96 867.03 833.77 861.34 646.32 656.12 688.39 220.71 177.65 172.95

0.6 135.00 97.74 89.41 74.15 34.36 40.78 27.35 1333.73 1331.18 1335.97 1053.82 1086.79 1116.19 279.91 244.39 219.78

0.8 180.00 124.55 117.58 92.29 37.59 49.13 33.57 1813.18 1806.55 1817.44 1493.86 1522.51 1534.46 319.32 284.04 282.98

(c) Varying Fraction of Unknown Costs i , |X | = 10, p1 = 0.4

i
# unknown # of elicited costs runtime (sec) total cost cumulative constraint cost cumulative elicitation cost

costs LKC LUC COM LKC LUC COM LKC LUC COM LKC LUC COM LKC LUC COM

0.2 36.02 30.15 25.40 13.71 48.58 41.77 16.97 666.87 662.86 718.70 544.06 563.76 645.59 122.81 99.10 73.11

0.4 72.04 57.75 49.63 37.14 43.22 36.15 19.40 809.65 790.16 802.20 615.10 637.36 665.96 194.55 152.80 136.24

0.6 90.05 68.24 60.52 52.01 34.11 33.73 20.96 867.03 833.77 861.34 646.32 656.12 688.39 220.71 177.65 172.95

0.8 126.07 85.40 80.64 73.95 25.09 28.14 22.66 964.39 941.53 928.84 712.97 712.14 707.86 251.42 229.39 220.98

1.0 162.09 90.34 91.56 82.16 20.51 23.70 21.79 1019.10 1019.87 1018.80 772.25 775.46 768.83 246.85 244.41 249.97

Table 1: IWCSP+EC Empirical Results for Random Graphs

of 1 and the additive weight ϵ from 0 to 1000 in increments of 100.

Each data point in the figures thus shows the result for one of the

heuristic with one of the values ofw or ϵ . Data points for smaller

values of w and ϵ are in the bottom right of the figures and data

points for larger values are in the top left of the figures.

We plot the tradeoffs between total costs (= cumulative constraint

and elicitation costs) and number of elicited costs as well as the

tradeoffs between total costs and runtimes. As expected, as the

relative and additive weights increase, the total costs increase, the

number of elicited costs decreases, and the runtimes decrease. The

key difference between both weights is that the tradeoffs are much

more uniform when using additive weights compared to relative

weights. Therefore, using additive weights may allow users to better

control the granularity of the tradeoffs. Compared to our three

heuristics, the random heuristic performs poorly and randomly.

When comparing the tradeoffs between total costs and number

of elicited costs, LUC is better than COM, which is better than LKC.

In other words, to find solutions of the same cost, LUC elicits fewer

costs than COM, which elicits fewer costs than LKC. However,

when comparing the tradeoffs between total costs and runtimes,

the same trend applies when the runtimes are small, but COM is

better than LUC when the runtimes are large (larger than 20s in our

experiments). Therefore, when the weights are sufficiently large,

COM provides the best tradeoff between total costs and runtimes.

IWCSPs: We now present our empirical results for our IWCSP

experiments. Note that these are problems without elicitation costs

and the weights define the theoretical error bounds on the quality

of solutions found in these problems (Theorems 7.1, 7.2, and 7.3).

While the original LWB algorithm does not allow users to define

error bounds, it could be extended to do so since it uses its own

specific heuristic function. We thus parameterize it the same way

using Equation 3 and compare against it in our experiments below.

Fig. 4 plots the empirical results, where we vary the relative

weightw and additive weight ϵ . The key difference for these plots

compared to the earlier ones is that the results for LWB is also

included. We make the following observations:

• Similar to the trends in IWCSP+EC problems, as the additive and

relative weights increase (from the bottom right of the figures to

the top left of the figures), the total costs of solutions increase,

the number of elicited costs decreases, and the runtimes decrease.

Additionally, the random heuristic also performs poorly in this

setting as expected.

• When comparing the tradeoffs between total costs and number

of elicited costs, COM and LKC behave similarly, and they are

both better than LUC. Interestingly, this trend is the opposite

of that in IWCSP+EC problems, where LUC was the best. The

reason is that the heuristic function used by LUC to estimate

the cost to complete the current partial solution is poor when

elicitation costs are not taken into account. In such a case, the

only contribution to the estimate is the number of yet-to-be

elicited unknown costs, which is then multiplied by a lower

boundL on the cost of all constraints. In our experiments,L = 2,

which is a poor estimate as the costs can be as large as 100.

• This trend is also repeatedwhen comparing the tradeoffs between

total costs and runtimes – to find solutions of the same cost, COM

and LKC requires a smaller runtime than LUC.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

482



10 20 30 40 50 60 70 80

8
0
0

8
5
0

9
0
0

9
5
0

# of Elicited Costs

T
o
ta

l 
C

o
s
ts

Relative Weights

RND
LKC
LUC
COM

10 15 20 25 30 35 40

8
0
0

8
5
0

9
0
0

9
5
0

Runtimes (sec)

T
o
ta

l 
C

o
s
ts

Relative Weights

RND
LKC
LUC
COM

(a) Varying Relative Weightw

10 20 30 40 50 60 70 80

8
0
0

8
5
0

9
0
0

9
5
0

# of Elicited Costs

T
o
ta

l 
C

o
s
ts

Additive Weights

RND
LKC
LUC
COM

10 15 20 25 30 35 40

8
0
0

8
5
0

9
0
0

9
5
0

Runtimes (sec)

T
o
ta

l 
C

o
s
ts

Additive Weights

RND
LKC
LUC
COM

(b) Varying Additive Weight ϵ

Figure 3: IWCSP+EC Empirical Results for Random Graphs with |X| = 10, p1 = 0.4, and i = 0.6
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Figure 4: IWCSP Empirical Results for Random Graphs with |X| = 10, p1 = 0.4, and i = 0.6

• When searching for optimal solutions (i.e.,w = 1 and ϵ = 0), all

three of our algorithms elicit similar number of costs compared to

LWB. LWB is also about one order of magnitude faster than our

three algorithms. The reason is because, unlike our algorithms,

LWB does not use any heuristics to estimate the cost to complete

the solution.

• When searching for suboptimal solutions (i.e.,w > 1 or ϵ > 0), all

three of our algorithms find solutions of similar costs compared

to LWB but with smaller number of elicited costs once w is

sufficiently large. They also find solutions with smaller costs but

with similar number of elicited costs once ϵ is sufficiently large.

10 CONCLUSIONS

Incomplete Weighted Constraint Satisfaction Problems (IWCSPs) are

an elegant paradigm for modeling combinatorial optimization prob-

lems with partially-specified constraints. To fully specify such con-

straints, one must elicit preferences of users. Unfortunately, existing

IWCSP approaches assume that the elicitation of preferences does

not incur any additional cost. This is unrealistic as human users are

likely bothered by repeated elicitations and will refuse to provide

an unbounded number of preferences.

To overcome this limitation, we proposed the IWCSP with Elicita-

tion Costs (IWCSP+EC) model, which extends the IWCSP model to

include the notion of elicitation costs. The objective in this problem

is to find a solution that minimizes the sum of both the constraint

costs and elicitation costs. We also introduced three parameter-

ized heuristics – Least Unknown Cost (LUC), Least Known Cost

(LKC) and their combination heuristic (COM) – that allow users to

trade off solution quality for fewer elicited preferences and faster

computation times. Further, in settings where elicitations are free,

these heuristics also provide theoretical quality guarantees on the

solutions found.

Our empirical results show that COM finds solutions with larger

constraint costs than LKC and LUC, but finds them faster and with

fewer elicitations than LKC and LUC. Therefore, COM is the pre-

ferred heuristic in critical time-sensitive domains. COM also does

a better job at trading off solution quality for smaller runtimes,

especially when runtimes are large, through the use of user-defined

weights. In conclusion, our heuristics improve the practical applica-

bility of IWCSPs as they now not only take into account elicitation

costs but also provide control knobs, in the form of user-defined

weights, to perform tradeoffs along three key dimensions – solution

quality, runtime, and number of elicited preferences.
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