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ABSTRACT
We study the winner determination problem for three prevalent

committee election rules: Chamberlin-Courant Approval Voting

(CCA), Proportional Approval Voting (PAV), and Satisfaction Ap-

proval Voting (SAV). Axiomatic and algorithmic studies of elections

under these rules have been conducted recently. It is known that the

winner determination problem is NP-hard for CCA and PAV and

polynomial-time solvable for SAV, if the input votes are dichoto-

mous. Moreover, parameterized complexity of the two NP-hard

cases has been examined with respect to some natural parameters

such as the number of candidates or the number of votes. In this

paper, we extend the above studies to committee elections with tri-

chotomous votes and identify cases, where trichotomous votes lead

to an increase of parameterized complexity. We also consider the

maximin (or egalitarian) variations of the rules, where theminimum

satisfaction of the voters is maximized.
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1 INTRODUCTION
The problem of aggregating the preferences of different agents

(voters) occurs in diverse situations and plays a fundamental role

in artificial intelligence and social choice [10, 17]. While the most

studied setting is the single-winner case, voting can also be used to

elect a fixed-size set of winners (multi-winner), called committee.

Recently, we witness an increasing interest in the study of the

axiomatic and algorithmic aspects of committee elections [2, 3, 5].

Multi-winner voting rules have received a considerable amount of

attention, due to their significant applications in social choice [22,

29, 30, 33]. One of the most prominent voting rules for committee

elections is the so-called Approving Voting (AV) rule, which is

originally defined for dichotomous votes. In a dichotomous vote,

the voter assigns an approval to each of her favorite candidates

and all other candidates receive disapproval. Then, AV picks the

top k candidates, who receive the most approvals, to form the

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
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committee. The parameter k denotes the size of the committee and

these k candidates are the winners of the election. Thus, AV can be

considered as one of the maxisum (or utilitarian) approaches.

Although AV demonstrates many desirable properties in the

single-winner case, it becomes less favorite in the committee elec-

tions, due to the lack of egalitarianism [9]. Therefore, various varia-

tions of AV have been introduced in the literature [25], for example,

the Minisum and Minimax Approval Voting introduced by Brams et

al. [12–14]. Here, the dichotomous votes are represented as {0, 1}-

vectors, where 0 stands for disapproval and 1 for approval, while

a {0, 1}-vector with exactly k 1-entries can be used to represent

a committee of size k . Minisum AV seeks for a size-k committee

minimizing the total dissatisfaction of the votes. The dissatisfac-

tion between a vote and a committee is measured as the Hamming

distance between the corresponding vectors. In contrast, Minimax

AV seeks for a committee minimizing the maximum Hamming

distance between the committee and the votes. It is known that

Minisum AV can be solved in polynomial time, while Minimax AV

is NP-hard [26].

We consider here three AV variations following the maxisum

approach, that is, the variations pick size-k committees maximizing

the total “satisfaction score" over all voters. Under the Chamberlin-

Courant Approval Voting (CCA) rule [15], the satisfaction score

of a committeeW with respect to a voter is set to 1, ifW contains

at least t favorite candidates of this voter for a given bound t > 0;

otherwise, it is set to 0.
1
The Proportional Approval Voting (PAV)

rule [5] defines the satisfaction score of a committeeW with respect

to a voter as an increasing function depending on the number of

candidates inW , who are approved by this voter. However, the

increasing rate of the satisfaction score decreases as the number

of such candidates increases. The Satisfaction Approval Voting

(SAV) [11] rule defines the satisfaction score of a committeeW with

respect to a voter based on the ratio of the candidates, who are

approved by this voter and appear inW , to the total number of can-

didates approved by this voter. For formal definitions of these rules

we refer to Section 2. It is known that the winner determination

problem, which asks for a size-k committee with a total satisfaction

score over a given bound, is polynomial-time solvable for SAV [32],

but becomes NP-hard for CCA [23] and PAV [32].

In 2015, Baumeister and Dennisen [6] extended the study of AV

and its variations to other forms of votes such as trichotomous votes,

linear orders, and partial orders. A voting with trichotomous votes

allows the voters in addition to approval and disapproval to abstain

1
Note that in the literature, CCA is usually defined with t = 1. We consider the general

case with t > 0 to investigate the influence of t on the complexity of committee

elections under CCA. t -CCA is a special case of the threshold rule proposed by Fishburn

et al. [24].
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for a candidate, which could be of particular interest in many real-

world applications such as multiple referenda elections. If we use

a {1, 0}-vector over the candidates to denote a dichotomous vote,

where 1’s stand for approved candidates and 0’s stand for disap-

proved candidates, then a trichotomous vote can be represented as

a {1,−1, 0}-vector over the candidates, where 1’s and −1’s stand for

approved and disapproved candidates, and 0’s stand for abstentions.

Clearly, dichotomous votes represent a special case of trichotomous

votes. Baumeister et al. [7] investigated the classical complexity of

Minisum AV and Minimax AV with trichotomous votes, and proved

polynomial-time solvability of Minisum AV and NP-hardness of

Minimax AV. Alcantud and Laruelle [1] investigated a variant of

AV with trichotomous votes, which shares some common features

with CCA, PAV, and SAV and selects the candidates, who obtain

the largest difference between the number of “positive” votes and

the number of “negative” votes.

Recently, parameterized complexity of committee elections has

been extensively studied with the number of votes, the number of

candidates, or the committee size as parameter. Betzler et al. [8]

introduced the minimax version of a CCA-related rule and provided

both fixed-parameter tractability (FPT) and W[2]-hardness results

for the above three parameterizations. As for the Minimax AV with

dichotomous votes, Misra et al. [31] presented parameterized and

kernelization algorithms. Assuming the Exponential Time Hypoth-

esis (ETH), Cygan et al. [19] showed that the FPT-algorithm by

Misra et al. [31] is essentially tight. In addition, they also developed

parameterized approximation scheme for minimax AV [19]. Aziz et

al. [4] considered a Borda-based egalitarian committee election and

achieved both FPT and W[1]-hardness results. Liu and Guo [28]

studied the parameterized complexity of the winner determination

problem for AV with trichotomous votes with respect to param-

eters such as the size of committee, the number of votes, or the

number of candidates. Yang and Wang [34] showed that the winner

determination problems for CCA and PAV are FPT with respect

to the number of candidates or the number of votes, but become

W[2]-hard and W[1]-hard with respect to the committee size.

In this paper, we continue this line of research and study the

parameterized complexity of the winner determination problem

for CCA and PAV with trichotomous votes. In addition, we define

the “maximin” versions of CCA, PAV, and SAV on dichotomous and

trichotomous votes, which pick committees maximizing, instead of

the total satisfaction score over all votes, the minimum satisfaction

score of the votes.
2
We derive parameterized complexity results of

the winner determination problem under these maximin rules. The

formal definitions of the maximin rules can be found in Section 2

and Tables 1 and 2 give an overview of the results achieved for

these rules.

2 PRELIMINARIES
An election is denoted as a pair E = (C,V ), where C is the set

of candidates C = {c1, c2, . . . , cm } and V is the multiset of votes

V = {v1,v2, . . . ,vn }. Each vote vi is defined as a length-|C | vector,
whose j-th position is denoted as vi j . Let k be a positive integer

with k ≤ |C |. A k-committee election rule maps an election to a

2
Aziz et al. [4] use the term “utilitarian rules” to denote the maxisum versions we

considered here, while the maximin versions are called “egalitarian rules”.

subset of candidatesW ⊆ C such that |W | = k . The subsetW is

called a k-committee.

2.1 Dichotomous votes
Given a dichotomous vote vi , its j-th position vi j satisfies vi j ∈

{1, 0}, where vi j = 1 (or 0) means that the candidate c j is approved

(or disapproved) by vi . For a vote vi ∈ V , let v
[1]

i be the set of can-

didates approved by vi , and v
[0]

i the set of candidates disapproved

by vi . In the following, let t be a positive rational number.

The Chamberlin-Courant Approval Voting (CCA) rule aims at

finding a k-committee that satisfies as many votes as possible. Con-

cretely, a vote vi is satisfied by a committeeW , if and only if at

least t approval candidates of vi are contained inW . Here, t is a
given bound. We define the CCA-score ofW with respect to vi as

CCA(vi ,W ) =

{
1, |v

[1]

i ∩W | ≥ t ,

0, otherwise.

The total CCA-score ofW is then defined as

CCA(V ,W ) =
∑
vi ∈V

CCA(vi ,W ).

Given an election, the CCA rule picks a committeeW maximiz-

ing CCA(V ,W ). The maximin version of the CCA rule is called

the Maximin Chamberlin-Courant Approval Voting (MCCA) rule,

which maps an election to a k-committeeW , which satisfies every

vote. We set the MCCA-score of a committeeW with respect to vi

to MCCA(vi ,W ) = |v
[1]

i ∩W |.

The Proportional Approval Voting (PAV) rule aims at finding

a k-committeeW maximizing the total PAV-score. The PAV-score

ofW with respect to a vote vi is set to

PAV(vi ,W ) = 1 +
1

2

+ ... +
1

|v
[1]

i ∩W |
.

The total PAV-score ofW is then

PAV(V ,W ) =
∑
vi ∈V

PAV(vi ,W ).

Similarly, we can define themaximin version of PAV, calledMaximin

Proportional Approval Voting (MPAV). MPAV maps an election to a

k-committeeW , such that for each votevi , we have PAV(vi ,W ) ≥ t .
We define the MPAV-score ofW with respect tovi as MPAV(vi ,W ) =

PAV(vi ,W ).

The SatisfactionApproval Voting (SAV) rule selects ak-committee

W maximizing the total SAV-score. The SAV-score of a committeeW
with respect to a vote vi is set to

SAV(vi ,W ) =
|v
[1]

i ∩W |

|v
[1]

i |
,

while the total SAV-score ofW is then

SAV(V ,W ) =
∑
vi ∈V

SAV(vi ,W ).

Similarly, we can define the maximin version of SAV, Maximin

Satisfaction Approval Voting (MSAV). The MSAV-score of a com-

mitteeW with respect to a vote vi is defined as MSAV(vi ,W ) =

SAV(vi ,W ).
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Table 1: Parameterized complexity results for τ -WD. The FPT results with respect tom are trivial. TSAV-WD can be solved in
a similar way as SAV-WD. Our results are in bold.

τ CCA PAV SAV TCCA TPAV TSAV

n FPT[34] FPT[34] P[11] FPT[Prop. 3.3] OPEN P

m FPT [34] FPT [34] P [11] FPT FPT P

k W[2]-h[34] W[1]-h[34] P[11] W[2]-h[34] W[1]-h[34] P

d FPT[34] OPEN P[11] W[2]-h[Thm. 3.10] Para-NP-h[Thm. 3.11] P

Table 2: Parameterized complexity results for the maximin versions of τ -WD. The FPT results with respect to m are trivial.
“Para-NP-h” means that the problem is NP-hard, even if the corresponding parameter is a constant. Our results in bold.

τ MCCA MPAV MSAV MTCCA MTPAV MTSAV

n
FPT FPT FPT FPT FPT FPT

[Prop. 3.2] [Thm. 3.4] [Prop. 3.2] [Thm. 3.1] [Thm. 3.4] [Thm. 3.1]

m FPT FPT FPT FPT FPT FPT

k
W[2]-h W[2]-h W[2]-h W[2]-h W[2]-h W[2]-h
[Thm. 3.5] [Thm. 3.5] [Thm. 3.9] [Prop. 3.6] [Prop. 3.6] [Thm. 3.9]

t
Para-NP-h Para-NP-h Para-NP-h Para-NP-h Para-NP-h Para-NP-h
[Thm.3.5] [Thm.3.5] [Thm.3.7] [Prop. 3.6] [Prop. 3.6] [Prop. 3.8]

2.2 Trichotomous votes
Given a trichotomous vote vi , its j-th position vi j satisfies vi j ∈
{1, 0,−1}, wherevi j = 1 (orvi j = −1) means that the candidate c j is
approved (or disapproved) by vi and vi j = 0 means that vi abstains

with respect to c j . For a vote vi ∈ V , let v
[1]

i be the set of candi-

dates approved by vi , v
[−1]

i the set of candidates disapproved by vi ,

and v
[0]

i the set of candidates to whom vi abstains. Dichotomous

votes are clearly special trichotomous votes with no abstention.

We define the variation of CCA for trichotomous votes, called Tri-

chotomous Chamberlin-Courant Approval Voting (TCCA), which

aims at finding a k-committeeW that satisfies as many votes as

possible. We define TCCA-score ofW with respect to a vote vi as

TCCA(vi ,W ) =

{
1, |v

[1]

i ∩W | − |v
[−1]

i ∩W | ≥ t ,

0, otherwise.

The total TCCA-score ofW is set to

TCCA(V ,W ) =
∑
vi ∈V

TCCA(vi ,W ).

The maximin version of TCCA is called Maximin Trichotomous

Chamberlin-Courant Approval Voting (MTCCA). MTCCA finds a

k-committeeW such that for each vote vi , we have |v
[1]

i ∩W | −

|v
[−1]

i ∩W | ≥ t . Thus, the MTCCA-score ofW with respect to a

vote vi is set to

MTCCA(vi ,W ) = |v
[1]

i ∩W | − |v
[−1]

i ∩W |.

For the definition of the version of PAV for trichotomous votes,

called Trichotomous Proportional Approval Voting (TPAV), we set

the TPAV-score of a committeeW with respect to a vote vi as

TPAV(vi ,W ) = PAV(v
[1]

i ,W ) − PAV(v
[−1]

i ,W ).

The total TPAV-score ofW is

TPAV(V ,W ) =
∑
vi ∈V

TPAV(vi ,W ).

Thus, TPAV returns a k-committeeW maximizing TPAV(V ,W ). Sim-

ilarly, we call the maximin version of TPAV with trichotomous

votes as Maximin Trichotomous Proportional Approval Voting (MT-

PAV). MTPAV finds a k-committeeW such that for each vote vi we
have TPAV(vi ,W ) ≥ t . The MTPAV-score ofW with respect to vi is
set to MTPAV(vi ,W ) = TPAV(vi ,W ).

Finally, we define the version of SAV with trichotomous votes,

called Trichotomous Satisfaction Approval Voting (TSAV), which

aims at selecting a k-committee maximizing the total TSAV-score.

The TSAV-score of a committeeW with respect to a vote vi is set
to

TSAV(vi ,W ) =
|v
[1]

i ∩W |

|v
[1]

i |
−

|v
[−1]

i ∩W |

|v
[−1]

i |
.

The total TSAV-score ofW is then

TSAV(V ,W ) =
∑
vi ∈V

TSAV(vi ,W ).

Similarly, we define the maximin version of TSAV, Maximin Tri-

chotomous Satisfaction Approval Voting (MTSAV). MTSAV finds a

k-committeeW such that for each votevi , we have TSAV(vi ,W ) ≥ t .
TheMTSAV-score ofW with respect to a votevi is set to MTSAV(vi ,W )

= TSAV(vi ,W ).

2.3 Winner determination
We have now all tools to define the central problem of this paper,

called Winner Determination for τ (τ -WD), where τ denotes the

rules. Here, we distinguish between themaxisum andmaximin rules.
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We first define τ -WD for the maxisum rules, namely, τ ∈{CCA, PAV,

SAV, TCCA, TPAV, TSAV}.

Winner Determination for τ (τ -WD)
Input: An election E = (C,V ), one positive integers

k ≤ |C |, and two positive rational numbers t and d .
Question: Is there a committeeW ⊆ C with |W | = k
satisfying τ (V ,W ) ≥ d?

Next, we define τ ′-WD for τ ′ ∈{MCCA, MPAV, MSAV, MTCCA,

MTPAV, MTSAV}.

Winner Determination for τ ′ (τ ′-WD)
Input: An election E = (C,V ), a positive integer k ≤

|C |, and one positive rational number t .
Question: Is there a committeeW ⊆ C with |W | = k
satisfying τ ′(vi ,W ) ≥ t for each vi ∈ V ?

In this paper, we consider the following parameters:m = |C |,
n = |V |, k , d (called the total satisfaction bound), t (called the indi-

vidual satisfaction bound). Note that the parameterization with d is

invalid for the maximin rules. Accordingly, we do not consider the

parameterization with t for the maxisum rules.

2.4 Parameterized Complexity
Parameterized complexity allows to give a more refined analysis

of computational problems and in particular, can provide a deep

exploration of the connection between the problem complexity

and various problem specific parameters. Misra et al. [31] initial-

ized the study of parameterized complexity of approval voting.

Yang and Wang [34] showed that CCA-WD and PAV-WD are fixed-

parameter tractable (FPT) with respect to the number of candi-

datesm or the number of votes n, but become W[2]-hard and W[1]-

hard with respect to the committee size k . An FPT problem admits

anO(f (k)· |I |O (1))-time algorithm, where I denotes the whole input
instance, k is the parameter, and f can be any computable function.

Fixed-parameter intractability problems can be classified into many

complexity classes, where the most popular ones are W[1]-hard

and W[2]-hard. For more details on parameterized complexity, we

refer to [18, 21].

3 OUR RESULTS
3.1 Parameter: n
We first consider the parameterization with respect to the number

of votes n. Note that CCA-WD and PAV-WD are FPT with this

parameterization [34].

Theorem 3.1. MTCCA-WD and MTSAV-WD are FPT with respect
to n.

Proof. Recall that MTCCA-WD seeks for a size-k subsetW ⊆ C
such that for each vote it holds |v

[1]

i ∩W | − |v
[−1]

i ∩W | ≥ t .
We use an n ×m-matrix M to represent all votes, where each

of them columns can be considered as an element in {1, 0,−1}n .

Thus, there are at most 3
n
different column types. Let H denote

the set of all column types, and for each type h ∈ H , let nh be the

number of columns in M of type h. Further, let χh,i ∈ {1, 0,−1}

denote the value at position i of a given column type h.
We transform the given MTCCA-WD instance into an integer

linear program (ILP). The instance of ILP is defined over a set

of |H | ≤ 3
n
variables, one variable xh for each column type h ∈ H .

Hereby, xh = c for an integer c ≥ 0 means that the k-committeeW
sought for contains c candidates, whose corresponding columns

inM are of type h. The ILP instance then consists of the following

constraints: ∑
h∈H

χh,i · xh ≥ t , ∀1 ≤ i ≤ n,

xh ≤ nh , ∀h ∈ H ,∑
h∈H

xh = k,

xh ∈ {0, 1, 2, ...,k}, ∀h ∈ H .

The equivalence between the above ILP instance and the original

MTCCA-WD instance can be proven by the following argumenta-

tion. Given a solution of ILP, for each variable xh , we add xh many

candidates to the committee W , whose corresponding columns

in M are of type h. The first inequality guarantees that for each

vote vi , the committeeW contains at least t more v
[1]

i -candidates

than v
[−1]

i -candidates. The second inequality means that the num-

ber of candidates inW , whose corresponding columns in M are of

type h, is upper-bounded by the number of type-h columns inM .

And, the third equality makes sure thatW contains exactly k candi-

dates. The direction of constructing a solution for the ILP instance

from a solution of the MTCCA-WD instance can be shown in a

similar manner.

Similarly, we can construct an ILP instance with |H | ≤ 3
n
vari-

ables for each MTSAV-WD instance. Note that MTSAV-WD seeks a

size-k subsetW ⊆ C such that for each votevi , it holds TSAV(vi ,W ) ≥

t . For each h ∈ H and 1 ≤ i ≤ n, set

S(h, i) =


1

|v [1]

i |
, if χh,i = 1,

− 1

|v [−1]

i |
, if χh,i = −1,

0, if χh,i = 0.

The value of S(h, i)means that if the committeeW contains a candi-

date with the corresponding column inM being of type h, then this

candidate contributes S(h, i) to the TSAV-score ofW with respect

to vote vi . We construct the following ILP instance.∑
h∈H

S(h, i) · xh ≥ t , ∀1 ≤ i ≤ n,

xh ≤ nh , ∀h ∈ H ,∑
h∈H

xh = k,

xh ∈ {0, 1, 2, ...,n}, ∀h ∈ H ,

Given the meaning of S(h, i), it is easy to observe that the first

inequality guarantees TSAV(vi ,W ) ≥ t for each vote vi . Therefore,
in a similar way, we can show that the ILP instance has a feasible

solution, if and only if the original MTSAV-WD instance has a

solution. Then, by the result of Lenstra [27], MTCCA-WD and

MTSAV-WD are FPT with respect to n. □

Since dichotomous votes represent a special case of trichotomous

votes, the above theorem directly implies the following proposition.

Proposition 3.2. MCCA-WD and MSAV-WD are FPT with respect
to n.
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By slightly modifying the above ILP instance for MTCCA-WD,

we can show the following proposition.

Proposition 3.3. TCCA-WD is FPT with respect to n.

By similar approaches, we can show FPT results for MPAV-WD

and MTPAV-WD with parameter n as well.

Theorem 3.4. MPAV-WD and MTPAV-WD are FPT with respect
to n.

3.2 Parameter: t
In the following, we consider the case with t as parameter. Here we

can show NP-hardness with t being a constant.

Theorem 3.5. For every positive constant t , MCCA-WD andMPAV-
WD are NP-hard and W[2]-hard with k as parameter.

Proof. We prove the claim only for 0 < t ≤ 1. For the case with

greater values of t , we can show the NP-hardness by a reduction

from the case with 0 < t ≤ 1 with some additional candidates.

With 0 < t ≤ 1, a committeeW satisfies a vote vi with |v
[1]

i ∩

W | ≥ t if and only if the inequality PAV(v
[1]

i ,W ) ≥ t holds. Thus,
if 0 < t ≤ 1, then MCCA-WD is equivalent to MPAV-WD. In the

following, we show the claim only for MCCA-WD. We prove the

theorem by reducingDominating Set toMCCA-WD.A dominating

set of an undirected graph G = (V, E) is a set D ⊆ V such that

every vertexv ′
i ∈ V is adjacent to a vertex ofD orv ′

i ∈ D. Given an
instance (G = (V = {v ′

1
,v ′

2
, ...,v ′

n }, E),k
′), Dominating Set asks

for a dominating set D with |D | ≤ k ′. Dominating Set is a well-

known NP-hard problem and W[2]-hard with k ′ as parameter [20].

We construct an MCCA-WD instance E = (C,V ,k, t) as follows.
For each v ′

i ∈ V , we add one candidate ci to C and one vote vi
to V . If there is an edge between v ′

i and v
′
j , then the corresponding

votesvi andvj satisfyvi j = vji = 1. In addition, we setvii = vj j =
1. All other positions of the votes are set to 0. In G, let N (v ′

i ) denote

the set of vertices that are adjacent to v ′
i . We call the vertices in

N (v ′
i ) the neighbors of the v

′
i . Finally, set k := k ′. In the following,

we show that the Dominating Set instance has a size-k ′ dominat-

ing set, if and only if there is a size-k subsetW ⊆ C such that all

votes vi satisfy |v
[1]

i ∩W | ≥ t .
“=⇒”: Suppose that there exists a size-k ′ dominating set D in G.

Each vertex v ′
i ∈ V is dominated by a vertex v ′

j ∈ D, that is,

v ′
i = v

′
j or v

′
i ∈ N (v ′

j ). We setW to be the set of candidates, who

correspond to the vertices inD. It means that for each vertexv ′
i ∈ V ,

its corresponding candidate ci or the candidate c j corresponding

to v ′
j is inW . Since for each vote vi , the set v

[1]

i contains only the

candidates corresponding to the vertices in N (vi ) ∪ {vi }, we can

conclude that each vote vi satisfies |v
[1]

i ∩W | ≥ 1 ≥ t , andW is a

solution of MCCA-WD.

“⇐=”: Suppose that there exists a k-committee W such that all

votesvi satisfy |v
[1]

i ∩W | ≥ t . We set D to be the set of the vertices,

which correspond to the candidates inW . Since the set v
[1]

i of a

vote vi contains only the candidates corresponding to the vertices

in N (vi ) ∪ {vi }, it holds for each vertex v ′
i ∈ V that v ′

i ∈ D or one

neighbor of v ′
i is in D. Thus, D is a size-k ′ dominating set of G. □

The hardness for the case of trichotomous votes follows directly.

Proposition 3.6. For every positive constant t , MTCCA-WD and
MTPAV-WD are NP-hard and W[2]-hard with k as parameter.

Note that MSAV-WD is polynomial-time solvable for t ≥ 1.

However, it becomes NP-hard for every rational number 0 < t < 1.

Theorem 3.7. MSAV-WD is NP-hard for every constant rational
number 0 < t < 1.

Proof. The reduction is based on the same idea as the one in

the proof of Theorem 3.5, but requires much more effort to deal

with the constant t = α
β . Here, α and β are two given positive

integers with α < β . Given a Dominating Set instance (G =

(V = {v ′
1
,v ′

2
, ...,v ′

n }, E),k
′), we also create a candidate ci and

a vote vi for each vertex v ′
i ∈ V as in the proof of Theorem 3.5.

However, we need additional candidates and votes to guarantee that

for each votevi , the committeeW satisfies that

|W ∩v [1]

i |

|v [1]

i |
≥ t . To this

end, we add for each vertex v ′
i some new candidates. Let deg(v ′

i )

denote the degree of v ′
i in G, and γi be the minimum integer such

that (β −α)×γi ≥ deg(v ′
i )+ 1. Then, we add x

1

i , . . . ,x
δi
i many new

candidates to C with δi = β × γi − deg(v ′
i ) − 1. Note that we have

totally |V| +
∑
1≤i≤ |V | δi many candidates in C .

Then, the votevi is a vectorwith |C | positions, where the first |V|

positions represent the vertices in V and the remaining positions

correspond to the new candidates. In votevi , we setvi j := 1 for each

verticesv ′
j inN (v ′

i )∪{v
′
i } and in addition setvi j := 1, where the j-th

position corresponds to a new candidate xri created forv
′
i . The other

positions of vi are set to 0. Then, we create some new votes. More

specifically, we add, for each vertex v ′
i ∈ V , θi = γi × α − 1 many

new votes v1i , . . . ,v
θi
i . Note that θi < δi . Each of these votes v

j
i

with 1 ≤ j ≤ θi has only one position set to 1, namely, the position

corresponding to the candidate x
j
i . The construction of vi can be

formally described by the following function:

f (vi , ci′) =

{
1, v ′

i = v
′
i′ or v

′
i′ ∈ N (v ′

i ),

0, otherwise.

f (v
j
i , ci′) =

{
1, ci′ = x

j
i ,

0, otherwise.

Then, f (vi , ci′) = 1 means that the candidate ci′ is approved by the

vote vi , and f (vi , ci′) = 0 means that vi is disapproved by ci′ . Fi-
nally, we set k := k ′+

∑
1≤i≤ |V | θi . Next, we prove the equivalence

between the instances.

“=⇒”: Given a size-k ′ dominating set D of G, we setW := {ci |v
′
i ∈

D} ∪ {x
j
i |1 ≤ i ≤ |V|, 1 ≤ j ≤ θi }. Clearly, |W | = k +

∑
1≤i≤ |V | θi .

The votes v1i , . . . ,v
θi
i with 1 ≤ i ≤ |V| are clearly satisfied byW ,

since MSAV(v
j
i ,W ) = 1 > t for all 1 ≤ i ≤ |V| and 1 ≤ j ≤ θi . By

the construction of the votes vi , we know f (vi , ci′) = 1, if v ′
i = v

′
i′

or v ′
i′ ∈ N (v ′

i ). Thus, the following must hold:

(v
[1]

i \ {x1i , . . . ,x
θi
i }) ∩W , ∅,

MSAV(vi ,W ) ≥
|v
[1]

i ∩W |

|v
[1]

i |
≥

1 + θi
δi + deg(v ′

i ) + 1
=
γiα

γiβ
= t .

We can then conclude thatW is a k-committee.
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“⇐=”: Suppose that there is a k-committeeW . Observe that each

k-committee has to contain all candidates in {x
j
i |1 ≤ i ≤ |V|, 1 ≤

j ≤ θi }, because each of these candidates is the only approved

candidate of v
j
i with 1 ≤ j ≤ θi . Moreover, none of other new

candidates x
j
i with θi < j ≤ δi can be in W , because each of

them is approved in only one vote vi and vi approves at least one
candidate corresponding to a vertex inV . Therefore,W needs to

contain k ′ candidates corresponding to vertices inV . LetW ′
be the

set containing these k ′ candidates,W ′ ⊆W and |W ′ | = k ′. Since

for each votevi corresponding to a vertexv
′
i ∈ V , we have |v

[1]

i | =

β ×γi and
θi

β×γi
< α

β , the setv
[1]

i ∩W should contain at least one of

the candidates inW ′
. This implies that the vertices corresponding

to the candidates inW ′
form a dominating set of G. □

As in the case of dichotomous votes, if t ≤ −1 or t ≥ 1, then

MTSAV-WD can be solved in polynomial time. NP-hardness can be

shown for −1 < t < 1.

Proposition 3.8. MTSAV-WD is NP-hard for every rational num-
ber −1 < t < 1.

3.3 Parameter: k
For the parameterization with k , we already proved fixed-parameter

intractability results for MCCA-WD and MPAV-WD (Theorem 3.5)

and their trichotomous versions (Proposition 3.6). As shown in the

following theorem, MSAV-WD is also W[2]-hard with this parame-

terization.

Theorem 3.9. MSAV-WD and MTSAV-WD are W[2]-hard with
respect to k .

Proof. We prove the theorem by reducing Dominating Set to

MSAV-WD. Given a Dominating Set instance (G = (V, E),k ′),
whereV = {v ′

1
,v ′

2
, ...,v ′

n }, we construct anMSAV-WD instanceE =
(C,V ,k, t) in the same way as the one in the proof of Theorem 3.5,

except the parameter t := 1

n here. Since |v
[1]

i | ≤ n, MSAV(vi ,W ) ≥

t = 1

n if and only if |v
[1]

i ∩W | ≥ 1. This means that with t = 1

n , solv-

ing MSAV-WD on E = (C,V ,k, t) is equivalent to solving MCCA-

WD on E = (C,V ,k, t). Therefore, MSAV-WD is W[2]-hard with

respect to k . The case with trichotomous votes follows directly. □

3.4 Parameter: d
The next two theorems are dedicated to the parameterization withd .
The first result concerns with TCCA-WD. In contrast to the case of

dichotomous votes, where CCA-WD is FPT with respect to d , the
case with trichotomous votes turns out to be intractable.

Theorem 3.10. TCCA-WD is W[1]-hard with respect to the com-
bined parameter of d and k .

Proof. We prove the theorem by reducing Cliqe to TCCA-

WD. A clique K in an undirected graph G is a subset of vertices,

which form a complete graph. In other words, the vertices in K

are pairwise adjacent in G. Given a graph G = (V, E) and an

integerk ′, Cliqe asks for a size-k ′ clique. Cliqe isW[1]-complete

with respect to k ′ [20]. We construct a TCCA-WD instance E =
(C,V ,k,d) from (G = (V, E),k ′) as follows.

For each edge eu = {v ′
j ,v

′
l } ∈ E (assume j < l), we create

two candidates c2u−1 and c2u . To ease the presentation, we also

use c jl to refer to c2u−1 and c
l j
to refer to c2u , denoted as c2u−1=̃c

jl

and c2u =̃c
l j
. And letC1 =

⋃ |E |

u=1{c2u−1, c2u }. We add another set of

dummy candidates:C2 = {cp
��
2|E | < p ≤ 2|E |+k ′(k ′−1)−3(k ′−1)+

1}. SetC := C1∪C2. Further, we setk := 2k ′(k ′−1)−3(k ′−1)+1,d :=

k ′, and t := 1. To give a formal description of the construction of

the votes, we define the following function:

f (vi , cs ) =


1, cs ∈ C2,

1, cs ∈ C1, cs =̃c
jl , i = j,

0, cs ∈ C1, cs =̃c
l j , i = j,

−1, otherwise.

Then, f (vi , cs ) = 1 means that the candidate cs is approved by the

vote vi , f (vi , cs ) = −1 means that the candidate cs is disapproved
by the votevi , and f (vi , cs ) = 0 means thatvi abstains with respect
to cs . We create n votes vi in V , one-to-one corresponding to the

vertices v ′
i ∈ V . The votes vi are then constructed according to

the definition of f (vi , cs ). We show the equivalence between the

instances in the following.

“=⇒”: Suppose that there exists a size-k ′ cliqueK inG. We add toW
all candidates inC2 and the candidates cs inC1, who correspond to

the edges es = {v ′
j ,v

′
l } with v

′
j ∈ K and v ′

l ∈ K . Thus, we can get:

|W | = k ′(k ′ − 1) − 3(k ′ − 1) + 1 + k ′(k ′ − 1)

=2k ′(k ′ − 1) − 3(k ′ − 1) + 1 = k .

According to the definition of f (vi , cs ), for each vote vi ∈ V with

the corresponding vertex v ′
i ∈ K , there are k − 1 candidates cs ∈

(C1 ∩W ) satisfying f (vi , cs ) = 1. Similarly, there are k − 1 candi-

dates cs ∈ (C1∩W )with f (vi , cs ) = 0 and all k ′(k ′−1)−3(k ′−1)+1
candidates cs ∈ V2 satisfying f (vi , cs ) = 1. Thus, for a vote vi
with v ′

i ∈ K , we have:

|v
[1]

i ∩W | = k ′(k ′ − 1) − 2(k ′ − 1) + 1,

|v
[−1]

i ∩W | = k ′(k ′ − 1) − 2(k ′ − 1),

|v
[1]

i ∩W | − |v
[−1]

i ∩W | = 1 ≥ t .

In contrast, for a vote vi with v
′
i < K , we have:

|v
[1]

i ∩W | = k ′(k ′ − 1) − 3(k ′ − 1) + 1,

|v
[−1]

i ∩W | = k ′(k ′ − 1),

|v
[1]

i ∩W | − |v
[−1]

i ∩W | < t .

Therefore, the total TCCA-score ofW is TCCA(V ,W ) = k ′.
“⇐=”: Since the candidates c inC2 are approved by all votes, there is

always ak-committeeW containing all candidates inC2. Thus, |W ∩

C1 | = k
′(k ′ − 1). Then, for each vote vi ∈ V , we have:

|v
[1]

i ∩ (C2 ∩W )| − |v
[−1]

i ∩ (C2 ∩W )|

=k ′(k ′ − 1) − 3(k ′ − 1) + 1.

Observe that each candidate c ∈ C1 can be in v
[1]

i for exactly one

vote vi ∈ C1 and in v
[0]

j for exactly one vote vj ∈ C1 with i , j.
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Thus, for any size-k ′ subset V ′
of V , we have:∑

vi ∈V ′

|v
[1]

i ∩ (C1 ∩W )| ≤ k ′(k ′ − 1),∑
vi ∈V ′

|v
[0]

i ∩ (C1 ∩W )| ≤ k ′(k ′ − 1),∑
vi ∈V ′

|v
[−1]

i ∩ (C1 ∩W )| ≥ k ′ · k ′ · (k ′ − 1) − 2k ′ · (k ′ − 1)

= k ′(k ′ − 1)(k ′ − 2).

This means that there is a vote vi ∈ V ′
satisfying:

|v
[1]

i ∩ (C1 ∩W )| − |v
[−1]

i ∩ (C1 ∩W )| ≤ −(k ′ − 1)(k ′ − 3).

However, sinceW is ak-committee, there must be a setV ′′
ofd = k ′

votes vi , each of which satisfies:

|v
[1]

i ∩W | − |v
[−1]

i ∩W | ≥ t = 1.

This implies that for each vi ∈ V ′′
, we have:

|v
[1]

i ∩ (C1 ∩W )| − |v
[−1]

i ∩ (C1 ∩W )| ≥ −(k ′ − 1)(k ′ − 3).

Thus, for each vi ∈ V ′′
it satisfies that:

|v
[1]

i ∩ (C1 ∩W )| − |v
[−1]

i ∩ (C1 ∩W )| = −(k ′ − 1)(k ′ − 3).

We can then conclude:∑
vi ∈V ′′

|v
[−1]

i ∩ (C1 ∩W )| = k ′(k ′ − 1)(k ′ − 2),∑
vi ∈V ′′

|v
[1]

i ∩ (C1 ∩W )| = k ′(k ′ − 1),∑
vi ∈V ′′

|v
[0]

i ∩ (C1 ∩W )| = k ′(k ′ − 1).

Therefore, the vertices corresponding to the votes inV ′′
must form

a clique with the edges corresponding to the candidates in C1 ∩W ,

which completes the proof. □

Finally, we prove the hardness of TPAV-WD with d being a

constant.

Theorem 3.11. TPAV-WD is NP-hard and W[1]-hard with k as
parameter, even if d = 0.

Proof. We prove the theorem by reducing the Independent

Set on D-Regular Graphs (ISRG) problem to TPAV-WD. A D-
regular graph is an undirected graph where all vertices have the

same degreeD. An independent set of a graph is a set of vertices, no

two of which are adjacent. Given aD-regular graph G = (V, E) and

an integer k ′, ISRG asks for an independent set of size at least k ′.
ISRG is known to be NP-hard [16] and it is easy to show that if D
is not a constant, then ISRG is W[1]-hard with respect to k ′. We

can construct a TPAV-WD instance E = (C,V ,k,d) from (G =

(V, E),k ′) as follows.
We have three sets of candidates: |C1 | = |V|, that is, the candi-

dates inC1 one-to-one correspond to the vertices inV , |C2 | = k
′−1,

and |C3 | = 1. There are also three sets of votes: |V1 | = |E |, that is,

the votes inV1 correspond to the edges in E, |V2 | = ⌊D ·
k ′(k ′+1)2
2k ′+1 ⌋+1,

and |V3 | = D · k ′. Then, C = C1 ∪ C2 ∪ C3 and V = V1 ∪ V2 ∪ V3.
Further, set k := 2k ′ and d := 0. Finally, we define the following

function, which indicates the construction of the votes. In the fol-

lowing, a votevi ∈ V1 corresponds to an edge ei ∈ E andv ′
j denotes

the vertex corresponding to the candidate c j ∈ C1. We use v ′
j ∈ ei

to denote that a vertex v ′
j is an endpoint of an edge ei .

д(vi , c j ) =



1, vi ∈ V1, c j ∈ C1,v
′
j ∈ ei ,

0, vi ∈ V1, c j ∈ C1,v
′
j < ei ,

0, vi ∈ V1, c j ∈ (C2 ∪C3),

−1, vi ∈ V2, c j ∈ C1,

1, vi ∈ V2, c j ∈ (C2 ∪C3),

0, vi ∈ V3, c j ∈ (C1 ∪C2),

−1, vi ∈ V3, c j ∈ C3.

The votes are constructed according to д(vi , c j ). More specifically,

д(vi , c j ) = 1 means that the candidate c j ∈ v
[1]

i , д(vi , c j ) = −1

means c j ∈ v
[−1]

i , andд(vi , c j ) = 0 means c j ∈ v
[0]

i . In the following,

we show that G has a size-k ′ independent set, if and only if there

is a k-committeeW satisfying TPAV(V ,W ) ≥ d = 0.

“=⇒”: Suppose that there exists a size-k ′ independent set I in graph

G. SetW := I ′ ∪C2 ∪C3, where I
′
contains the candidates in C1

corresponding to the vertices in I . Thus, we have:

|W | = k ′ + (k ′ − 1) + 1 = 2k ′ = k .

For each vi ∈ V1, with the degree of each vertex being D, we have:

|v
[1]

i ∩W | ≤ 1, v
[−1]

i = ∅, and∑
vi ∈V1

TPAV(vi ,W ) = D · k ′.

For each vi ∈ V2, it holds:

|v
[−1]

i ∩W | = |v
[1]

i ∩W | = k ′, and∑
vi ∈V2

TPAV(vi ,W ) = 0.

For each vi ∈ V3, we have:

|v
[−1]

i ∩W | = 1, |v
[1]

i ∩W | = 0, and∑
vi ∈V3

TPAV(vi ,W ) = −D · k ′.

Altogether, we have

∑
vi ∈V TPAV(vi ,W ) = D ·k ′+0−D ·k ′ = d = 0.

Thus, there exists a k-committeeW satisfying TPAV(V ,W ) ≥ d = 0.

“⇐=”: The key observation for this direction is that everyk-committee

W satisfies C2 ∪C3 ⊆ W . Suppose that this is not true. LetW be

a k-committee with (C2 ∪C3) \W , ∅. Thus, |(C2 ∪C3) \W | = l
and |C1 ∩W | = k ′ + l for an integer l > 0. Therefore, we have

TPAV(V1,W ) =
∑
v ∈V1

TPAV(v,W ) ≤ D(k ′ + l),

since G is a D-regular graph. Moreover, we have

TPAV(V2,W ) =
∑
v ∈V2

TPAV(v,W )

= − |V2 |(
1

k ′ − l + 1
+

1

k ′ − l + 2
+ · · · +

1

k ′ + l
)

< − (D
k ′(k ′ + 1)2

2k ′ + 1
)(

1

k ′ − l + 1
+ · · · +

1

k ′ + l
).
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Further, we have TPAV(V3,W ) =
∑
v ∈V3 TPAV(v,W ) ≤ 0. Thus, the

total TPAV-score ofW is

TPAV(V ,W ) = TPAV(V1,W ) + TPAV(V2,W ) + TPAV(V3,W )

<D(k ′ + l) − (D
k ′(k ′ + 1)2

2k ′ + 1
)(

1

k ′ − l + 1
+ · · · +

1

k ′ + l
).

The right side of the inequality is clearly less than 0, resulting in a

contradiction.

WithC2 ∪C3 ⊆W , we know |W ∩C1 | = k
′
. Then, it is true that

TPAV(V2,W ) = 0 and TPAV(V3,W ) = −Dk ′. SinceW is a committee,

TPAV(V1,W ) ≥ Dk ′. Due to (C2 ∪ C3) ∩ v
[1]

i = ∅ for each vi ∈

V1 and the fact that each candidate in C1 ∩W can be in v
[1]

i for

exactly D votes vi inV1, we can conclude that there is no vote vi ∈

V1 with |v
[1]

i ∩W | > 1. This means that no edge in G is between the

vertices, which correspond to the votes in C1 ∩W . Clearly, these

vertices form an independent set of size k ′. □

4 CONCLUDING REMARKS
In this paper, we studied the parameterized complexity of the win-

ner determination problem of committee elections under three

variations of the classical AV rule, namely, Chamberlin-Courant

Approval Voting (CCA), Proportional Approval Voting (PAV), and

Satisfaction Approval Voting (SAV). Hereby, we considered both

dichotomous and trichotomous votes, complementing and extend-

ing the previous works on parameterized complexity of AV-based

elections [28, 31, 34]. We also investigated the maximin version of

CCA, PAV, and SAV, where the committee has to maximize the min-

imal satisfaction score of all voters. A collection of fixed-parameter

tractable and intractable results has been achieved with respect to

four natural parameters, that is, the number of votes n, the num-

ber of candidatesm, the size of committee k , and the lower bound

on the total/individual satisfaction bound d/t . We observe that

in the cases of dichotomous and trichotomous votes, the winner

determination problem admits almost the same parameterized com-

plexity behaviour. This holds for all three AV-variations. The only

exception we can identify is CCA with the total satisfaction d as

parameter. There exists a parameterized algorithm for CCA with

dichotomous votes, while the case of trichotomous votes leads to

an intractability result.

There are two problems left open in Table 1. First, the com-

plexity of computing a k-committee in an election with PAV and

dichotomous votes remains unsolved for the total dissatisfaction

parameter d . The trichotomous case is NP-hard even with d = 0.

Second, we conjecture that the maximin version of PAV with tri-

chotomous votes is fixed-parameter tractable with respect to the

number of votes. Here, one might need a more involved ILP formu-

lation. Finally, we leave it for future work to extend the study with

trichotomous votes to other multiple winner rules.
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