
Gehrlein Stability in Committee Selection: Parameterized
Hardness and Algorithms

Sushmita Gupta

National Institute for Science

Education and Research,

Bhubaneswar, India

sushmitagupta@niser.ac.in

Pallavi Jain

The Institute of Mathematical

Sciences, HBNI, Chennai, India

pallavij@imsc.res.in

Sanjukta Roy

The Institute of Mathematical

Sciences, HBNI, Chennai, India

sanjukta@imsc.res.in

Saket Saurabh

The Institute of Mathematical

Sciences, HBNI, Chennai, India

University of Bergen, Bergen, Norway

saket@imsc.res.in

Meirav Zehavi

Ben-Gurion University, Beersheba,

Israel

meiravze@bgu.ac.il

ABSTRACT
In a multiwinner election based on the Condorcet criterion, we are

given a set of candidates, and a set of voters with strict preference

ranking over the candidates. A committee is weakly Gehrlein stable
(WGS) if each committee member is preferred to each non-member

by at least half of the voters. Recently, Aziz et al. [IJCAI 2017]

studied the computational complexity of finding a WGS committee

of size k . They show that this problem is NP-hard in general and

polynomial time solvable when the number of voters is odd. In this

article, we initiate a systematic study of the problem in the realm

of parameterized complexity. We first show that the problem is

W[1]-hard when parameterized by the size of the committee. To

overcome this intractability result, we use a known reformulation

of WGS as a problem on directed graphs and then use parameters

that measure the “structure” of these directed graphs.

In particular, we consider the majority graph, defined as follows:

there is a vertex corresponding to each candidate, and there is a

directed arc from a candidate c to c ′ if the number of voters that

prefer c over c ′ is more than those that prefer c ′ over c . The prob-
lem of finding WGS committee of size k corresponds to finding a

vertex subset X of size k in the majority graph with the follow-

ing property: the set X contains no vertex outside the committee

that has an in-neighbor in X . Observe that the polynomial time

algorithm of Aziz et al. [IJCAI 2017] corresponds to solving the

problem on a tournament (a complete graph with orientation on

edges). Thus, natural parameters to study our problem are “close-

ness” to being a tournament. We define closeness as the number

of missing arcs in the given directed graph and the number of ver-

tices we need to delete from the given directed graph such that the

resulting graph is a tournament. We show that the problem is fixed

parameter tractable (FPT) and admits linear kernels with respect to

closeness parameters. Finally, we also design an exact exponential

time algorithm running in time O(1.2207nnO(1)). Here, n denotes

the number of candidates.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

KEYWORDS
committee selection; social choice; parameterized complexity

ACM Reference Format:
Sushmita Gupta, Pallavi Jain, Sanjukta Roy, Saket Saurabh, and Meirav

Zehavi. 2019. Gehrlein Stability in Committee Selection: Parameterized

Hardness and Algorithms. In Proc. of the 18th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada,
May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
An important question in social choice theory is—“how to choose a

non-controversial committee of sizek?” Such a question ariseswhile
electing parliaments in modern democracies, selecting a group of

representatives in an organisation, in taking business decisions

or shortlisting tasks. In voting theory, all these scenarios can be

captured by multiwinner elections. In particular, the problem of

selecting a committee can be formulated as follows. Given a set

of candidates and a set of voters with strict preference ranking

over the candidates, find a committee of size k satisfying certain

acceptability criteria. However, what acceptability criteria should

be chosen? For a single winner election, Condorcet [7] suggested

that some candidate can be considered a winner if s/he is preferred

by at least half of the voters over every other candidate. Of course,

such a candidate may not exist. Fishburn [17] generalized the idea

of Condorcet for a single winner election to a committee. This defi-

nition of Condorcet committee requires that each voter has explicit

preferences over the committees, or there is some way to infer these

preferences. According to Fishburn, a committee is a Condorcet

committee if it is preferred by at least half of the voters over any

other committee of the same size. Darmann [9] defined two no-

tions of Condorcet committee, weak and strong, where preferences
over the committees are implicit. Specifically, a committee of a

given size k is weak (strong), if it is at least as good as (better than)

any other committee of size k in a pairwise majority comparison.

The problems corresponding to finding a weak (strong) Condorcet

committee of size k are Weak (Strong) Condorcet k-Committee.
Gerhlein [19] defined a new notion of Condorcet committee

by considering each candidate of the committee instead of whole

committee. According to his definition, a committee is Condorcet

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

511

if a candidate in the committee is preferred by at least half of the

voters to each non-member. Note that such a committee might not

exist. Moreover, a committee is called weakly (strongly) Gehrlein-
stable if every candidate c in the committee is preferred by at least

(more than) half of the voters in the pairwise election between c
and every non-committee member d . We would like to point out

here that when the number of voters is odd, weakly and strongly

Gehrlein-stable committee are equivalent. However, this is not the

case when the number of voters is even. We remark that, in the

literature, there are also other ways of comparing a committee with

other committees [4, 10, 12, 13, 23].

For the committee selection problem, extensive research has

been conducted to study voting rules and their stability in the con-

text of selecting a committee [6, 11, 22, 26]. Darmann [9] analyzed

the computational complexity of Weak and Strong Condorcet

k-Committee. He studied the problem with different voting rules,

including Borda voting, plurality voting, antiplurality voting, and

t-approval, where t ≥ 2. Specifically, he proved that Weak and

Strong Condorcet k-Committee are coNP-hard under Borda and
2-approval voting schemes. Furthermore, he showed that Weak

and Strong Condorcet k-Committee are polynomial time solv-

able under plurality and antiplurality voting schemes. For more

literature on multiwinner elections, we refer to [15].

Recently, Aziz et al. [1, 2] studied the computational complex-

ity of finding a Gehrlein-stable committee of size k . They proved

that finding a strongly Gehrlein-stable committee of size k (and

determining that one exists) can be done in polynomial time. How-

ever, computing a weakly Gehrlein-stable committee of size k is

NP-hard. Aziz et al. [1, 2] proposed to study this problem from

the perspective of parameterized complexity and exact exponential

time algorithms. In this article, we initiate a systematic study of

finding a weakly Gehrlein-stable committee of size k in the realm

of parameterized complexity. We call this problem as Gehrlein

Stable Committee Selection (GSCS).
We first show that GSCS isW[1]-hard when parameterized by

the size of the committee. That is, the problem is unlikely to admit

an algorithm with running time f (k)nO(1)
. To overcome this in-

tractability result, we seek relevant alternate parameters that could

lead to tractable algorithms. To achieve this, we consider a model

of GSCS as a problem on directed graphs and then use parameters

that measure the “structure” of these directed graphs. In particular,

we consider the majority graph [25], defined as follows. Given any

election E = (C,V), we define the majority graphME = (C,A)

on the vertex set C and an arc (c, c ′) ∈ A if and only if candidate

c is more popular than c ′ in the election E (denoted by c >E c ′).
In other words, (c, c ′) ∈ A if and only if the number of voters that

prefer c over c ′ is strictly more than those preferring c ′ over c . For
example, Figure 1 illustrates the majority graph corresponding to

the election in Table 1.

Now, note that if a committee S of size k is stable in an election

E = (C,V), then there does not exist a candidate u ∈ C \ S that is

preferred over any candidate in S in the pairwise election between

y and the candidates of S . This implies that there does not exist

a vertex u ∈ C \ S such that (u,v) ∈ A(ME) for some v ∈ S .
Hence, for any v ∈ S , all the in-neighbors of v in the graph ME

belong to S . Thus, the problem of finding WGS committee of size k

corresponds to finding a vertex subset X of size k in the majority

graph with the following property: the set X contains no vertex

outside the committee that has an in-neighbor in X . We will use

this formulation of the problem in the paper. In particular, we will

study the following problem.

Gehrlein Stable Committee Selection (GSCS)
Input: A majority graphME = (C,A) for an election E and a

positive integer k such that k ≤ |C|.

Question: Does there exist a subset of vertices S ⊆ C, |S | = k
such that for every v ∈ S , each of the in-neighbors of v (if any)

lies in S?

Such a set S is a solution to the problem.

Our algorithmic contributions. One way to discover relevant

parameters for studying a graph problem is to find a family of

graphs, say F , where the problem is polynomial time solvable;

then, the problem is studied with an edit distance—the number of

vertices/edges deleted (or edges added) to transform the input graph

into a graph in F—as a parameter. Aziz et al. [1, 2] showed that

GSCS is polynomial time solvable when the number of voters is

odd. Observe that the polynomial time algorithm of Aziz et al. [1, 2]

corresponds to solving the problem on a tournament. Thus, nat-

ural parameters to study our problem correspond to vertex/edge

editing operations into the family of tournaments. We study GSCS
with two “editing parameters”: the number of missing arcs in the

given directed graph (l) and the size of a tournament vertex dele-
tion set (tvd) (q)—that is, a subset of vertices whose deletion from

the given directed graph results in a tournament. The number l
corresponds to the number of pairs of candidates which are tied
among each other in the pairwise election and q could be thought

of as the smallest subset of candidates who are in a tie with some

candidate(s) such that the deletion of this subset will render the

resulting majority graph a tournament. Since tvd is smaller than

the number of candidates who are in a tie, it makes tvd a natural

parameter to study from a computational perspective. We show that

the problem is fixed parameter tractable (FPT) and admits linear

kernels with respect to the parameters l and q. In particular, we

obtain the following results.

• GSCS can be solved optimally in O⋆(1.2207n)1 time. Here,

n denotes the number of candidates (|C|). This resolves a

question asked in the conclusion of Aziz et al. [2].

• GSCS admits an FPT algorithmwith running timeO⋆(1.2738q).

• GSCS admits a kernel with 4q + 1 vertices. That is, there a is
a polynomial time algorithm that given an instance (ME ,k)
of GSCS returns an instance (M ′

E
,k ′) of GSCS such that

(ME ,k) is a yes-instance if and only if (M ′
E
,k ′) is a yes-

instance and |V (M ′
E
)| ≤ 4q + 1.

• GSCS admits an algorithm with running time O⋆(1.2207l)

and has a kernel with 2l + 1 vertices. These results are ob-
tained as corollaries to the results for the parameter q.

2 PRELIMINARIES
The set {1, . . . ,n} of consecutive integers from 1 to n is denoted

by [n]. For a (un)directed graph G, we denote the vertex set and

1
The O⋆

notation suppresses the polynomial dependence on the input size.

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

512

Voters Preference Ranking over the Candidates
v1 6 3 7 8 5 1 2 4 9 10

v2 6 1 7 4 9 5 8 3 10 2

v3 2 10 8 9 1 5 7 6 3 4

v4 2 10 4 5 3 8 7 1 6 9

Table 1: Example: Voting profile; v1,v2,v3,v4 are the voters,
{1, 2, . . . , 10} is the set of candidates.

S

1

2

3

4

5

6

7

89

10

Figure 1: Example: The blue vertices in the set S is a weakly
Gehrlein stable committee of size 5 for the voting profile
given in Table 1.

the (edge) arc set ofG by V (G) and A(G), respectively. LetG be an

undirected graph. We denote an edge between u and v as uv . LetG
be a directed graph. We denote an arc from u to v by an ordered

pair (u,v), and say that u is an in-neighbor of v and v is an out-

neighbor of u. For x ∈ V (G), N−
G (x) = {y ∈ V (G) : (y,x) ∈ A(G)}

and N+G (x) = {y ∈ V (G) : (x ,y) ∈ A(G)}. For X ⊆ V (G),G −X and

G[X] denote subgraphs of G induced on the vertex set V (G) \ X
and X , respectively. For v1,vt ∈ V (G), a directed path from v1 to
vt is denoted by P = (v1,v2, · · · ,vt), where V (P) ⊆ V (G) and for

each i ∈ [t − 1], (vi ,vi+1) ∈ A(G). In a directed graph G, we say a

vertex u is reachable from a vertex v , if there is directed path from

v to u. Let X ⊆ V (G).G[X] is called a strongly connected component
if every vertex in X is reachable from every other vertex in X . A
strongly connected component, X , is called maximal if there does

not exist a vertex v ∈ V (G) \X such that X ∪ {v} is also a strongly

connected component. Let x ∈ V (G). We define two sets R−G (x) and

R+G (x) as follows. R
−
G (x) = {x}∪{y ∈ V (G) : x is reachable from y}

and R+G (x) = {x} ∪ {y ∈ V (G) : y is reachable from x}. We call

R−G (x) and R+G (x) as in-reachability set and out-reachability set

of x in G, respectively. For S ⊆ V (G), R−G (S) = ∪v ∈SR
−
G (v) and

R+G (S) = ∪v ∈SR
+
G (v). The subscript in the notation for the neigh-

bourhood and the reachability sets may be omitted if the graph

under consideration is clear from the context. Given an undirected

graph G, complement of G is a graph G ′
such that V (G ′) = V (G)

and E(G ′) = {uv : u,v ∈ V (G) and uv < E(G)}. For details on
parameterized algorithms and kernelization, see [8, 18].

3 STRUCTURAL OBSERVATIONS
We start by making some simple observations that are crucial for

most of our arguments. The proof of the next lemma follows from

the definition of solution.

Lemma 3.1. Let (ME ,k) be a yes-instance of GSCS, and let S be a
solution. Furthermore, let v1 and vt denote two vertices in ME such
that there exists a path from v1 to vt inME . If vt ∈ S , then v1 ∈ S .

As a corollary to Lemma 3.1, we get the following.

Corollary 3.1. Let (ME ,k) denotes a yes-instance of GSCS, and
let S be a solution. Furthermore, let X denote a maximal strongly
connected component in ME .

• If S ∩V (X) , ∅, then V (X) ⊆ S
• If v ∈ S , then R−

ME
(v) ⊆ S . Also, for every v ∈ V (ME) \ S ,

R+
ME

(v) ∩ S = ∅.

We also need the following hereditary property of the solution.

Lemma 3.2. Let S be a solution of GSCS for (ME ,k) and G be
a subgraph of ME . Then, S ′ = S ∩V (G) is a solution of GSCS for
(G, |S ′ |).

4 HARDNESS
In this section, we show that GSCS is W[1]-hard when parameter-

ized by the solution size k . Towards this, we give a parameterized

reduction fromMulticolored Cliqe (MCQ), a well-knownW[1]-
hard problem [16], to GSCS running in polynomial time.MCQ is

formally defined as follows.

Multicolored Cliqe(MCQ) Parameter: k
Input: A graph G, an integer k , and a partition of V (G) into k
sets V1,V2, · · · ,Vk such that each Vi is an independent set.

Question: Does there exist a set Z ⊆ V (G) such that G[Z] is a
clique?

Given an instance of MCQ, we create an instance of GSCS as

follows.

Construction. Let (G,k, (V1, · · · ,Vk)) be an instance ofMCQ. We

construct the majority graph D in the following way (see Figure 2).

(1) For each vertex v ∈ V (G), we introduce a vertex v and a

directed cycle Cv passing through v of size k2 in D. We call

the vertexv as the node vertex, and vertices ofCv (including

v) as the indicator vertices of v .
(2) For each e ∈ E(G), we introduce a vertexwe . We will refer

to these vertices as edge vertices.

(3) For each edge e ∈ E(G)with endpointsu andv , we introduce
the arcs uwe and vwe in D.

We set the size of the solution to be k ′ = k3 + k(k − 1)/2. It is a

well known fact that every directed graph is a majority graph of

some election [14]. So D is a majority graph. This completes the

description of the construction of an instance (D,k ′) of GSCS. Note
that the steps of the reduction can be executed in polynomial time.

The intuitive idea of the reduction is the following. The con-

struction enforces that when an edge vertex we is selected in a

solution, both the endpoints of e are selected in the solution of

GSCS. Moreover, when a node vertex v is selected, the directed

cycle Cv is also selected in the solution. Intuitively, this indicates

that v is in the solution to MCQ. The edge vertices in the solution

of GSCS correspond to the edges that are in the solution of MCQ.
We will show that due to size constraint of the solution there are

exactly k3 indicator vertices and k(k − 1)/2 edge vertices.

Now, we formally prove the equivalence between the instance

(G,k, (V1, . . . ,Vk)) of MCQ and (D,k ′) of GSCS.
Correctness. We start by observing following property of D.

Observation 4.1. V (D) =
⊎

v ∈V (G)

Cv ⊎
⊎

e ∈E(G)

we .

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

513

Cv2

Cvn

Cv1

v2 wv1v2

v1

wv2vn

vn

Figure 2: Construction of D. Here, n = |V (G)|, the green and
blue vertices are the node vertices and edge vertices respec-
tively, the vertices in the green set is the set of indicator ver-
tices, and the orange dashed lines show the directed cycles
of length k2 in D.

Now for the correctness we show the following equivalence.

Lemma 4.1. (G,k, (V1, · · · ,Vk)) is a yes-instance ofMCQ if and
only if I = (D,k ′) is a yes-instance of GSCS.

Proof. For the forward direction, assume that there exists Z ⊆

V (G) such that G[Z] is a clique in G with one vertex from each

Vi , i ∈ [k]. We show that there exists a solution of (D,k ′). Let
Z = {v1,v2, · · · ,vk }. Note that since G[Z] is a clique, for each

{i, j} ⊆ [k], the edge vivj is present in G. We construct a set S ⊆

V (D) from Z as follows.

S =
⊎
i ∈[k]

V (Cvi) ⊎
⊎

{i, j }⊆[k]

wvivj .

Now, we prove that S is a solution to (D,k ′). Note that |S | =
k3 + k(k − 1)/2. Therefore, it is sufficient to prove that there is no

arc (x ,y) in D such that x ∈ V (D) \ S and y ∈ S . Equivalently, we
prove that for each y ∈ S , N−(y) ⊆ S , by considering the type of

the vertex y.
If y is an indicator vertex, i.e., y ∈ V (Cvi), for some i ∈ [k], then,

by the construction of D, y has exactly one in-neighbor which is in

the cycle Cvi . Hence, N
−(y) ⊆ V (Cvi), i.e., N

−(y) ⊆ S . Suppose y
is an edge vertex. Let y = wvivj . Then, the in-neighbors of y are

vi and vj (see Figure 2). Notice that vi ,vj are in the clique. Hence,

both of them are in S . Therefore, for both the cases, N−(y) ⊆ S .
This proves the forward direction.

For the reverse direction, let S be a solution to (D,k ′). Let I ′ =

S∩⊎v ∈V (G)V (Cv), and E
′ = S∩⊎e ∈E(G)we . Due to Observation 4.1,

I ′
and E ′

are mutually disjoint. That is, S = I ′ ⊎ E ′
. Also, note

that since for each vertex v ∈ V (G), Cv is a strongly connected

component, by Corollary 3.1, if V (Cv) ∩ S , ∅, then V (Cv) ⊆ S .
Now we define V⋆ = {v ∈ V (G) : V (Cv) ⊆ I ′} and E⋆ = {e ∈

E(G) : we ∈ E ′}. We will prove that G ′ = (V⋆,E⋆) is a solution to

MCQ to (G,k).

Claim 4.1. |V⋆ | = k .

Proof. Suppose |V⋆ | = k⋆ < k . For each v ∈ V⋆
, V (Cv) ⊆ I ′

.

Hence, the number of indicator vertices in S is k⋆k2, which is less

than k3. Since k ′ = k3+k(k −1)/2, there must be strictly more than

k(k − 1)/2 edge vertices in S . However, since each edge vertex has

two node vertices as in-neighbors, and there are k⋆ node vertices

in S , there are at most

(k⋆

2

)
edge vertices in S . So the number of

vertices in S is k⋆k2 +
(k⋆

2

)
. This contradicts that the size of S is

k ′ = k3 + k(k − 1)/2.

Now, suppose |V⋆ | = k⋆ > k . Then, there are at least k⋆k2

vertices in S . Since k⋆k2 ≥ (k + 1)k2, we have that |S | > k ′, a
contradiction. □

Claim 4.2. |E⋆ | = k(k − 1)/2.

Proof. From Claim 4.1, there are k node vertices in S . Therefore,
S has k3 many indicator vertices. From Observation 4.1, we know

that the remaining vertices of S are from the set of edge vertices.

Since |S | = k3 + k(k − 1)/2, there are k(k − 1)/2 edge vertices. □

Now, we prove that the vertices are consistent with the edges.

That is, we prove that if edge uv ∈ E⋆, then u,v ∈ V⋆
. Note

that if wuv ∈ S , then since u,v are the in-neighbors of the edge

vertexwuv , we have that u,v ∈ S . Hence, V (Cu) ⊆ S and V (Cv) ⊆
S . Therefore, if uv ∈ E⋆, then u,v ∈ V⋆

. Moreover, since G ′ =

(V⋆,E⋆), |E⋆ | = k(k − 1)/2, and |V⋆ | = k , we can infer that G ′
is

a clique of size k . Since each Vi is an independent set and G ′
is a

clique, G ′
cannot contain two vertices from any Vi . Hence, G

′
is a

solution to MCQ. □

Hence, we have proved the following theorem.

Theorem 4.2. GSCS is W[1]-hard when parameterized by the
size of solution.

5 EXACT ALGORITHMS FOR GEHRLEIN

STABLE COMMITTEE SELECTION

Let (ME = (C,A),k) be an instance of GSCS. Furthermore, let n
denote the number of candidates or the number of vertices in ME .

Observe that we can design an algorithm for GSCS by enumerating

all vertex subsets of size k and checking whether it forms a solution.

This algorithm runs in time O⋆(
(n
k
)
) = O⋆(2n). So a natural ques-

tion is whether we can design an exact algorithm that improves

over this brute-force enumeration algorithm.

In this section, we design a non-trivial exact algorithm for GSCS
running in time O⋆(1.2207n). The main idea of the algorithm is

inspired by Corollary 3.1. We find a subset of vertices with the prop-

erty that either all of them go to the solution or none of them go to

the solution. Once we have identified such a subset we recursively

solve two subproblems, one where these vertices are part of a solu-

tion we are constructing, and the other where none of these vertices

are part of the solution. Observe that a maximal strongly connected

component provides a natural candidate of subset vertices. The

algorithm indeed branches on strongly connected component of

sufficiently large size and when we do not have a maximal strongly

connected component of sufficiently big size we solve the problem

in polynomial time. We first give the polynomial time subcase of

our problem and then design the promised exact algorithm.

5.1 A polynomial time subcase
In this section, we give a polynomial time algorithm for GSCS
when majority graph,ME , is a disjoint union of directed acyclic

graphs and strongly connected components. That is, if we look

at the connected components of underlying undirected graph of

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

514

majority graph (that is, consider majority graph without the edge

orientations), then they are either a directed acyclic graph or a

strongly connected component in majority graph. We denote such

a family of graphs by Fdag+scc. Furthermore, let Fscc denote the
family of disjoint union of strongly connected components, and

Fdag denote the family of disjoint union of directed acyclic graphs.

We first give algorithms for GSCS on Fscc and Fdag, and then

use these to give our algorithm on Fdag+scc. We design an algo-

rithm for GSCS on Fscc, by reducing it to the well-known Subset

Sum problem. In the Subset Sum problem, given a set of integers

X = {x1, · · · ,xn }, and an integerW , the goal is to find a setX ′ ⊆ X
such that

∑
xi ∈X ′ xi =W .

Lemma 5.1. GSCS on Fscc can be reduced to Subset Sum in O(n)
time.

Lemma 5.2. [24] Given an instance (X ,W) of Subset Sum, there
exists an algorithm that solves Subset Sum in O(nW) time, where
n = |X |.

Using Lemmas 5.1 and 5.2, we get the following result.

Lemma 5.3. GSCS can be solved in O(nk) time on Fscc. Here, n
is number of vertices in the input graph, and k is the size of solution.

Now, we give a polynomial time algorithm for GSCS on Fdag.
The algorithm just selects the first k vertices of the topological

ordering in the solution.

Lemma 5.4. GSCS can be solved in O(n +m) time on Fdag. Here,
n is the number of vertices in the input graph, andm is the number
of arcs in the graph.

Now, we are ready to give a polynomial time algorithm forGSCS
on Fdag+scc. The algorithm first guesses how many vertices a so-

lution contains from strongly connected components and dags,
respectively. Then, it runs the algorithms given in Lemmas 5.3

and 5.4 and compute the desired solution.

Theorem 5.5. GSCS can be solved in O(nk2) time on Fdag+scc.
Here, n is number of vertices in the input graph, and k is the size of
solution.

5.2 Exact exponential time algorithm
Now, we proceed towards presenting the exact exponential algo-

rithm for GSCS. Towards this, we first prove the following struc-
tural result.

Lemma 5.6. Let (ME ,k) be an instance of GSCS such thatME <
Fdag+scc. Then,ME has a strongly connected component X of size
at least three such that either |R−(X)| ≥ 4 or |R+(X)| ≥ 4.

Proof. If there does not exist a strongly connected component

ofME of size at least three, then sinceME does not contain parallel

edges and self loops, ME is a dag, a contradiction to the fact that

ME does not belong to Fdag+scc. Thus, we know that there exists

a strongly connected component of size at least 3.

Let X be a maximal strongly connected component of ME such

that |X | is maximized. If |X | ≥ 4, we are done. Furthermore, observe

that if there exists a maximal strongly connected component X ,
such that |X | = 3, and either |R−(X)| ≥ 4 or |R+(X)| ≥ 4, we are

done. This implies that every maximal strongly connected compo-

nent of size 3 is a connected component in itself in the underlying

undirected graph ofME . If we remove these components fromME

we get a directed graph that does not have any strongly connected

component and hence it is a dag. This implies that ME belongs to

Fdag+scc, a contradiction. This concludes the proof. □

Now, we are ready to present the algorithm. Let (ME ,k) be an
instance of GSCS. We apply the following branching rule exhaus-

tively.

Branching Rule 5.1. Suppose X is a strongly connected component
in ME such that |X | ≥ 3 and either |R−(X)| ≥ 4 or |R+(X)| ≥ 4.
Branch by adding R−(X) to the solution or deleting R+(X) fromME .
Recurse on the instances (ME − R−(X),k − |R−(X)|) and (ME −

R+(X),k), respectively.

Lemma 5.7. Branching Rule 5.1 is correct.

Proof. We claim that (ME ,k) is a yes-instance of GSCS if and

only if either (ME −R−(X),k − |R−(X)|) is a yes-instance of GSCS
or (ME − R+(X),k) is a yes-instance of GSCS. In the forward

direction, let (ME ,k) be a yes-instance of GSCS and S be one of

its solutions. Consider a strongly connected component, X , ofME .

If x ∈ S ∩ X , then by Corollary 3.1, we have that R−(X) ⊆ S . Using
Lemma 3.2, S\R−(X) = S∩V (ME −R−(X)) is a solution ofGSCS for
(ME −R−(X),k − |R−(X)|). Now, suppose X ∩ S = ∅. By Corollary

3.1, R+(X) ∩ S = ∅. Therefore, by Lemma 3.2, S is also a solution to

(ME −R+(X),k). This completes the proof in the forward direction.

In the backward direction, let S be a solution to GSCS for (ME −

R−(X),k−|R−(X)|). We claim that S∪R−(X) is a solution to (ME ,k).
Suppose not, then there exists u ∈ S and v ∈ V (ME) \ S such

that (v,u) ∈ A(ME). If u < R−(X), then (v,u) also belongs to

A(ME − R−(X)), a contradiction to the fact that S is a solution to

(ME − R−(X),k − |R−(X)|). Now, suppose u ∈ R−(X). Since v < S ,
v < R−(X), a contradiction to the fact that (v,u) ∈ A(ME). This

proves that S ∪ R−(X) is a solution to (ME ,k). Now suppose that

S is a solution to GSCS for (ME − R+(X),k). We claim that S is

also a solution to (ME ,k). Suppose not, then there exists u ∈ S
and v ∈ V (ME) \ S such that (v,u) ∈ A(ME). If v < R+(X), then

(v,u) also belongs to A(ME − R+(X)), a contradiction to that S
is a solution to (ME − R+(X),k). Now, suppose v ∈ R+(X). Since

u ∈ S , u < R+(X), a contradiction to that (v,u) ∈ A(ME). □

Theorem 5.8. GSCS can be solved in O⋆(1.2207n) time optimally,
where n is the number of vertices in ME .

Proof. Given an instance (ME ,k) of GSCS, we first check

whether ME belongs to the family Fdag+scc. If yes, then we can

solve the problem in polynomial time using Theorem 5.5. Other-

wise, using Lemma 5.6 there exists a strongly connected component,

X of size at least three such that either |R−(X)| ≥ 4 or |R+(X)| ≥ 4.

Now, we apply Branching Rule 5.1. The safeness of algorithm fol-

lows from the safeness of branching rule. The running time of the

algorithm is governed by the recurrence,T (n) ≤ T (n− 3)+T (n− 4),

which solves to O⋆(1.2207n). □

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

515

X ′

S2

S1

Q

T X

ST

Figure 3: An illustration of Algorithm 1 where vertices in
the red sets are in the solution

6 FPT ALGORITHMS FOR GSCS
Given an instance (ME ,k) of GSCS, let q be the size of tvd ofME

and l =
(n
2

)
− |A(ME)|. In this section, we design fixed parameter

algorithms for GSCS with respect to parameters q and l .
We first give an FPT algorithm (Algorithm 1) for GSCS when

parameterized by q. First, we state a known result which is the

starting point of our algorithm.

Proposition 6.1. [1] GSCS can be solved in the polynomial time
if the majority graphME is a tournament. Moreover, such a solution
is unique, if exists.

Let X be a tvd of ME . Note that X is a vertex cover - a set of

vertices such that each edge is incident to at least one vertex of

the set - of the complement graph of the underlying undirected

graph of ME . Hence, it can be computed in O⋆(1.2738q) time,

where q = |X |, using the FPT algorithm proposed by Chen et al. [5].

Note that T =ME − X is a tournament. Proposition 6.1 says that

every tournament has a unique solution. Thus, for our algorithmwe

first guess how many vertices from T are present in our potential

solution to (ME ,k). Once, we have guessed this number k1, we
run the algorithm mentioned in Proposition 6.1 and find the unique

solution of size k1, say ST , if exists. Having found the set ST , we
know that no vertex of T − ST goes into the solution. Hence, we

now apply Corollary 3.1 and reduce the problem to a directed graph

induced on a subset ofX . At this stage we run the exact exponential

time algorithm described in Theorem 5.8 and we are done. See

Figure 3 for illustration of the algorithm. A detailed description of

the algorithm is given in Algorithm 1.

Now, we prove the correctness of this algorithm.

Lemma 6.2. Algorithm 1 is correct.

Proof. To prove the correctness of algorithm, we prove that if

Algorithm 1 returns a non-empty set S , then it is a solution ofGSCS
to (ME ,k), otherwise (ME ,k) does not have a solution of GSCS.

Case A : Suppose S , ∅. We claim that S is a solution to

(ME ,k). Suppose not, then either |S | , k or there exists

w ∈ S , and w ′ ∈ V (ME) \ S such that (w ′,w) ∈ A(ME).

By the construction of S , if S , ∅, then |S | = k . Now, sup-
pose that there existsw ∈ S andw ′ ∈ V (ME) \ S such that

(w ′,w) ∈ A(ME). Following four cases are possible.

Case 1 : Supposew,w ′ ∈ V (T). Since S∩V (T) = ST ,w ∈ ST
and w ′ < ST . Since T is an induced subgraph of ME ,

(w ′,w) ∈ A(T), this contradicts the fact that ST is a solu-

tion to (T , |ST |).

Algorithm 1: FPT for GSCS

Input: A majority graph ME , a tvd, X of ME , and an

integer k .
Output: S , which is a solution of GSCS for (ME ,k), if

non-empty

1 S1 = ∅, Q = ∅;

2 for each k1 ∈ [k] do
3 if T has a solution of GSCS of size k1 then
4 let ST be the solution of (T ,k1) computed using

Proposition 6.1 ;

5 S1 = R−
ME

(ST) ∩ X , S2 = R+
ME

(V (T) \ ST) ∩ X ;

6 if S1 ∩ S2 = ∅ then
7 X ′ = X \ (S1 ∪ S2), k2 = k − |ST ⊎ S1 |;

8 if ME [X ′] has a solution of GSCS of size k2
then

9 let Q be a solution of (ME [X ′],k2)

computed using Theorem 5.8;

10 S = ST ⊎ S1 ⊎Q ;

11 return S .

12 end
13 return S = ∅

Case 2 : Supposew,w ′ ∈ X . Note that by the construction

of X ′
, X \ X ′ = S1 ⊎ S2. Note that S1 ⊆ S and S2 ∩ S = ∅.

Following four cases are possible.

Case(i) : Supposew,w ′ ∈ X \ X ′
. Sincew ∈ S , it follows

that w ∈ S1. Since w
′ < S , w ′ ∈ S2. Since (w ′,w) ∈

A(ME), and w is in the in-reachability set of ST in

ME ,w ′
also belongs to in-reachability set of ST inME .

Hence, w ′ ∈ S1, a contradiction to that S1 and S2 are
disjoint.

Case(ii) : Supposew ∈ X \ X ′
andw ′ ∈ X ′

. Sincew ∈ S ,
w ∈ S1. As argued above, since (w ′,w) ∈ A(ME), w ′

also belongs to S1, a contradiction to that X ′
and S1 are

disjoint.

Case(iii) : Supposew ∈ X ′
andw ′ ∈ X \X ′

. Sincew ′ < S ,
we have thatw ′ ∈ S2. Since (w

′,w) ∈ A(ME), andw ′

is in out-reachability set of V (T) \ ST in ME , w also

belongs to out-reachability set of V (T) \ ST in ME and

hence w ∈ S2, a contradiction to that X ′
and S2 are

disjoint.

Case(iv) : Suppose w,w ′ ∈ X ′
. Since Q ⊆ S , w ∈ Q and

w ′ < Q . Since ME [X ′] is an induced subgraph of ME ,

we have that (w ′,w) ∈ A(ME [X ′]), this contradicts

that Q is a solution to (ME [X ′], |Q |).

Case 3 : Suppose w ∈ V (T) and w ′ ∈ X . Since w ∈ S , w ∈

ST . Since w
′ < S , there are two cases, either w ′ ∈ S2 or

w ′ ∈ X ′ \ Q . Since (w ′,w) ∈ A(ME) and w ∈ ST , w
′

belongs to the in-reachability set of ST inME and hence

w ′ ∈ S1. Ifw
′ ∈ S2, then it contradicts that S1 and S2 are

disjoint. Ifw ′ ∈ X ′
, then it contradicts that S1 and X

′
are

disjoint.

Case 4 : Suppose w ∈ X and w ′ ∈ V (T). Since w ∈ S , w
either belongs to S1 or Q . Since (w ′,w) ∈ A(ME) and

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

516

w ′ ∈ V (T) \ S , clearly, w belongs to the out-reachability
set of V (T) \ S inME . Therefore,w ∈ S2. Ifw ∈ S1, then
it contradicts that S1 and S2 are disjoint. Ifw ∈ Q , then it

contradicts that Q and S2 are disjoint.
Case B : Suppose S = ∅. We claim that (ME ,k) does not have

a solution of GSCS. Towards the contrary, let Z be a solution

to (ME ,k). Let ZT = V (T) ∩Z and k ′ = |ZT |. Using Lemma

3.2, ZT is a solution to (T ,k ′). Since T is a tournament, by

uniqueness of solution of tournament (Proposition 6.1), ST =
ZT , where ST is a set returned in Step 4 of Algorithm 1 when

k1 = k
′
. LetZ1 = R−

ME
(ZT)∩X andZ2 = R+

ME
(V (T) \ ZT)∩

X . Using Corollary 3.1,Z1 ⊆ Z andZ2∩Z = ∅. Therefore,Z1
and Z2 are disjoint. Clearly, S1 = Z1 and S2 = Z2 in Step 5 of

Algorithm 1. LetX ′ = X\(Z1∪Z2). Note thatX = X ′⊎Z1⊎Z2.
Since Z1 ⊆ Z and Z2 ∩Z = ∅, Z ∩X = Z1 ⊎ (Z ∩X ′). Using

Lemma 3.2, Z ′ = Z ∩ X ′
is a solution to (ME [X ′], |Z ′ |).

Since there exist a solution to (ME [X ′], |Z ′ |), algorithm

finds a solution Q to (ME [X ′], |Z ′ |) in Step 9. Since Z =
ZT ⊎ (Z ∩ X) and Z ∩ X = Z1 ⊎ Z ′

, |Z ′ | = k − |ZT ⊎ Z1 | =
k − |ST ⊎S1 |. Therefore, Algorithm 1 returns S = ST ⊎S1⊎Q ,

a contradiction to that S = ∅.

□

Lemma 6.3. The running time of Algorithm 1 is O⋆(1.2207q),
where q is the size of tvd of majority graph ME .

Proof. In the algorithm, set ST (Step 4) can be computed in

polynomial time using Proposition 6.1 and set Q (Step 9) can be ob-

tained using Theorem 5.8 in O⋆(1.2207q) time. Hence, the running

time of the algorithm is O⋆(1.2207q). □

Theorem 6.4. GSCS can be solved in O⋆(1.2738q) time, where q
is the size of tvd of majority graph ME .

Proof. Given an instance (ME ,k) of GSCS, we first compute

vertex cover, X , of the complement graph of underlying undirected

graph of ME using an FPT algorithm which runs in O⋆(1.2738q)

time, where q is the size of vertex cover [5]. Now using Algorithm

1, we compute a solution S of GSCS to (ME ,k), if exists. The cor-
rectness of algorithm follows from Lemma 6.2. Since using Lemma

6.3, the running time of Algorithm 1 is O⋆(1.2207q), and we com-

pute X in O⋆(1.2738q) time, it follows that GSCS can be solved in

O⋆(1.2738q) time. □

Now, we give an FPT algorithm for GSCS when the number of

pairs of candidates which are tied among each other in the pairwise

majority contest are bounded.

Theorem 6.5. GSCS can be solved in O⋆(1.2207l) time when the
number of missing arcs in majority graph is l .

Proof. Given an instance (ME ,k) of GSCS, let X be a set of

vertices obtained by adding a vertex from each of the missing arcs.

Note that X is a tvd of ME , and |X | ≤ l . Now, using Algorithm

1, we compute a solution S of GSCS to (ME ,k), if exists. The
correctness of algorithm follows from Lemma 6.2. Since |X | ≤ l ,

using Lemma 6.3, we can solve GSCS in O⋆(1.2207l) time. □

7 A LINEAR VERTEX KERNEL FOR GSCS
In this section, we show that GSCS admits a kernel with O(q) ver-
tices, whereq is the size of tvd ofME . That is, we give a polynomial

time algorithm that given an instance (ME ,k) of GSCS returns

an instance (M ′
E
,k ′) of GSCS such that (ME ,k) is a yes-instance

of GSCS if and only if (M ′
E
,k ′) is a yes-instance of GSCS and

|V (M ′
E
)| ≤ 4q + 1.

Let (ME ,k) be an instance of GSCS. Let X be a set such that

T = ME − X is a tournament. Let t = |V (T)|. We know that

every tournament T has a Hamiltonian path—a path that visits

every vertex exactly once. Furthermore, a Hamiltonian path in

tournament can be computed in polynomial time [20]. Let H =

(v1,v2, · · · ,vt) be one such path. Now notice that no vertex in

{vk+1, · · · ,vt } belongs to any solution to (ME ,k) and thus, we

should be able to find a reduction rule that can reduce the size of

T to k + 1. However, this is still not the desired kernel. Next, we

change our perspective and see which vertices from T must be

in a solution of size k . Once we detect such a vertex, we can use

Corollary 3.1 to find a desired reduction rule.

Before diving into the details of the algorithm, we give an alter-

nate polynomial time algorithm to find a solution of GSCS, when
the majority graph is a tournament. This will be crucially used in

designing the kernelization algorithm.

Lemma 7.1. Let (G,k) be an instance of GSCS, whereG is a tour-
nament. Let |V (G)| = t , and H = (v1,v2, · · · ,vt) be a Hamiltonian
path inG . Furthermore, let S = {v1,v2, · · · ,vk }. If |R−G (S)| = k , then
S is a solution of GSCS to (G,k). Moreover, it is the unique solution
and can be computed in polynomial time.

Proof. Since |R−G (S)| = k , for every v ∈ S , N−
G (v) ⊆ S . Hence,

S is a solution of GSCS to (G,k). Next, we will prove that it is

the unique solution. Suppose not, then let S ′(, S) be a solution of

GSCS to (G,k). Since |S ′ | = |S |, there exists a vertexv⋆ ∈ S ′ \S , i.e.,
v⋆ ∈ {vk+1, · · · ,vt }. Note that P = (v1,v2, · · · ,v

⋆) is a subpath

of H . Each vertex in P can reach v⋆ via the path P . Hence, V (P) ⊆
R−G (v

⋆). Also, since v⋆ < {v1,v2, · · · ,vk }, the number of vertices

in P is at least k + 1. Hence, |R−G (v
⋆)| ≥ k + 1. Since v⋆ ∈ S ′, using

Corollary 1, R−G (v
⋆) ⊆ S ′, this contradicts that S ′ is a solution to

(G,k). Since the Hamiltonian path in a tournament can be found in

polynomial time [21], S can be computed in polynomial time. □

Now, we are ready to give the detailed description of the algo-

rithm. First, we describe how to find a tvd, X , of size at most 2q.
Recall that every tvd ofME is also a vertex cover of the comple-

ment graph,G , of the underlying undirected graph ofME . Thus, to

get the desired X , we find a vertex cover of G using a well-known

factor 2-approximation algorithm for the Vertex Cover problem

[3]. Note that T = ME − X is a tournament. Next, we define a

sequence of reduction rules. At any point of time we apply the

lowest indexed reduction rule that is applicable. That is, a rule is

applied only when none of the preceding rules can be applied. After

an application of any rule, we reuse the notationME to denote the

reduced majority graph.

Reduction Rule 7.1. Let (ME ,k) be an instance of GSCS and let
T =ME −X . Furthermore, letH = (v1,v2, · · · ,vt) be a Hamiltonian
path inT . If t > k+1, then construct the majority graphM ′

E
such that

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

517

M ′
E
=ME − {vt }, and N+

M′
E
(vt−1) = N+

ME
(vt−1) ∪ N+

ME
(vt) \

{vt−1}. The resulting instance is (M ′
E
,k).

Lemma 7.2. Reduction Rule 7.1 is safe.

Proof. Suppose (ME ,k) is a yes-instance of GSCS and S is a

solution to (ME ,k). We prove that S is also a solution to (M ′
E
,k).

Suppose not, then there exists x ∈ S , and y ∈ V (M ′
E
) \ S such that

(y,x) ∈ A(M ′
E
). If y , vt−1, then (y,x) also belongs to A(ME), a

contradiction to the fact that S is a solution to (ME ,k). Supposey =
vt−1, then by the construction ofM ′

E
, either (vt−1,x) ∈ A(ME)

or (vt ,x) ∈ A(ME). If (vt−1,x) ∈ A(ME), then it contradicts

the fact that S is a solution to (ME ,k). Suppose (vt ,x) ∈ A(ME).

Now, we show that vt < S which will lead to the contradiction that

S is a solution to (ME ,k). By Lemma 3.2, S ∩V (T) is a solution to

(T , |S ∩ V (T)|) and by Lemma 7.1, we know that it is the unique

solution to (T , |S ∩V (T)|). Since t > k + 1, by Lemma 7.1, we have

that vt < S ∩V (T). Since vt ∈ V (T), it follows that vt < S .
For the other direction, suppose S ′ is a solution to (M ′

E
,k). We

prove that S ′ is also a solution to (ME ,k). Suppose not, then there

exists x ∈ S ′, and y ∈ V (ME) \ S ′ such that (y,x) ∈ A(ME). If

y , vt , then (y,x) also belongs to A(M ′
E
), a contradiction to that

S ′ is a solution to (M ′
E
,k). Suppose y = vt . Since T

′ = T − {vt } is
a tournament, using Lemmas 3.2, and 7.1, we have that S ′ ∩V (T ′)

is the unique solution to (T ′, |S ′ ∩V (T ′)|). Note that (v1, · · · ,vt−1)
is also a Hamiltonian path inT ′

. Since t > k + 1, by Lemma 7.1, we

have that vt−1 < S
′ ∩V (T ′). Hence, vt−1 < S

′
. Therefore, x , vt−1.

Since y = vt , and (y,x) ∈ A(M ′
E
), by construction of M ′

E
, we

have that (vt−1,x) ∈ A(M ′
E
). Now, since vt−1 < S

′
, it contradicts

that S ′ is a solution to (M ′
E
,k). □

If Reduction Rule 7.1 is not applicable, then |V (T)| ≤ k + 1. Since
|X | ≤ 2q, we have that ME has at most 2q + k + 1 vertices. Hence,
the next lemma follows.

Lemma 7.3. If k ≤ 2q, and Reduction Rule 7.1 is not applicable,
then |V (ME)| ≤ 4q + 1.

Now, it remains to bound the number of vertices in T by O(q)
when k > 2q.

Reduction Rule 7.2. Let (ME ,k) be an instance of GSCS and let
T =ME − X . And, letH = (v1,v2, · · · ,v |V (T) |) be a Hamiltonian
path in T . If k > 2q and |R−T ({v1, · · · ,vk−2q })| > k , then output a
no instance of constant size.

Lemma 7.4. Reduction Rule 7.2 is safe.

Proof. Suppose k > 2q, and |R−({v1, · · · ,vk−2q })| > k . We

prove that (ME ,k) is a no instance of GSCS. Suppose not, let S
be a solution of GSCS to (ME ,k). Since k > 2q, and |X | ≤ 2q,
we have that any k size solution for ME must contain vertices

outside X . That is, it must contain at least k − 2q vertices ofT . Note
that using Lemma 3.2, S ∩V (T) is a solution for (T , |S ∩V (T)|) and
using Lemma 7.1, it is the unique solution for (T , |S ∩V (T)|). Since
|S ∩V (T)| ≥ k − 2q, using Lemma 7.1, {v1, · · · ,vk−2q } ⊆ S ∩V (T).
Hence {v1, · · · ,vk−2q } ⊆ S . Since R−T ({v1, · · · ,vk−2q }) > k , |S | >
k , a contradiction to that S is a solution to (ME ,k). □

Reduction Rule 7.3. Let (ME ,k) be an instance of GSCS and let
T =ME −X . Furthermore, letH = (v1,v2, · · · ,vt) be a Hamiltonian

path in T . If k > 2q, then delete R−
ME

(v1) from ME . The reduced
instance is (M ′

E
,k ′), where M ′

E
=ME − R−

ME
(v1) and k ′ = k −

|R−
ME

(v1)|.

Safeness of Reduction Rule 7.3 follows from Corollary 3.1 and

Lemma 7.1. Now, we give the main result of this section.

Theorem 7.5. GSCS admits a kernel with 4q + 1 vertices.

Proof. Consider an instance (ME ,k) of GSCS. Let G denote

the complement graph of underlying undirected graph of ME . We

first find a vertex cover, X , of G of size at most 2q using factor 2-

approximation algorithm for VertexCover [3]. Note thatX is a tvd
ofME . Therefore,T =ME −X is a tournament. Suppose Reduction

Rule 7.1 is not applicable, then |V (T)| ≤ k + 1. If k ≤ 2q, then using

Lemma 7.3, |V (ME)| ≤ 4q + 1. Now, suppose that k > 2q. Then,
Reduction Rule 7.2 or 7.3 is applicable. After exhaustive application

of Reduction Rules 7.2 and 7.3, either we return a no-instance of

constant size or k ≤ 2q. As argued above if k ≤ 2q, we have that
|V (ME)| ≤ 4q + 1. Note that each of the reduction rules can be

applied in the polynomial time, and each of them either declare

that the given instance is a no instance or reduces the size of the

graph. Therefore, the overall running time is polynomial in the

input size. □

Recall that l is the number of missing arcs between the vertices

in ME . Let X be a set of vertices obtained by adding a vertex from

each of the missing arcs. Note that X is a tvd ofME , and |X | ≤ l .
Since q is the size of tvd of ME , q ≤ l , we get the following as a

corollary to Theorem 7.5.

Corollary 7.1. GSCS admits a kernel with 2l + 1 vertices, where l
is the number of missing arcs in the majority graph.

8 CONCLUSION
In this paper we studied Gehrlein Stable Committee Selection

problem in the realm of parameterized complexity. We put forward

a parameterized complexity map of the problem, by way of W-

hardness, fixed-parameterized tractability, and kernelization. We

showed that the problem is W[1]-hard when parameterized by

the size of the committee, yet it admit fixed parameter tractable

algorithms and linear kernels with respect to alternate structural

parameters which encode the “closeness” of the underlying ma-

jority graph of the given election to a tournament. It would be

interesting to study parameterized complexity of the committee

selection problem under domain restrictions and with respect to

other voting rules. Another natural direction is to study the problem

with respect to other relevant parameters.

ACKNOWLEDGEMENT
We thank one of the reviewer of an earlier version of the paper for

suggesting the current version of the proof of Theorem 4.2, which

is simpler than our earlier proof. Pallavi Jain was supported by

SERB-NPDF fellowship (PDF/2016/003508) of DST, India. Meirav

Zehavi was supported by ISF (1176/18).

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

518

REFERENCES
[1] H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and Piotr Skowron. 2017. The con-

dorcet principle for multiwinner elections: from shortlisting to Proportionality.

In IJCAI. 84–90.
[2] H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and P. Skowron. 2017. The condorcet

principle for multiwinner elections: from shortlisting to Proportionality. CoRR
abs/1701.08023 (2017).

[3] R. Bar-Yehuda and S. Even. 1981. A linear-time approximation algorithm for the

weighted vertex cover problem. Journal of Algorithms 2, 2 (1981), 198–203.
[4] S. J. Brams, D. M. Kilgour, and M. R. Sanver. 2007. A minimax procedure for

electing committees. Public Choice 132, 3-4 (2007), 401–420.
[5] J. Chen, I. A. Kanj, and G. Xia. 2010. Improved upper bounds for vertex cover.

Theoretical Computer Science 411, 40-42 (2010), 3736–3756.
[6] D. Coelho. 2005. Understanding, evaluating and selecting voting rules through

games and axioms. Universitat Autònoma de Barcelona,.

[7] M. D. Condorcet. 1785. Essai sur l’application de l’analyse, a la probabilite des

decisions rendues a la pluralite des voix. (1785).

[8] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.

Pilipczuk, and S. Saurabh. 2015. Parameterized algorithms. Springer.
[9] A. Darmann. 2013. How hard is it to tell which is a Condorcet committee?

Mathematical Social Sciences 66, 3 (2013), 282–292.
[10] M. Dummett. 1984. Voting procedures. (1984).

[11] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. 2017. Properties of multi-

winner voting rules. Social Choice and Welfare 48, 3 (2017), 599–632.
[12] E. Elkind, J. Lang, and A. Saffidine. 2011. Choosing collectively optimal sets of

alternatives based on the condorcet criterion. In IJCAI, Vol. 11. 186–191.
[13] E. Elkind, J. Lang, and A. Saffidine. 2015. Condorcet winning sets. Social Choice

and Welfare 44, 3 (2015), 493–517.

[14] P. Erdős and L. Moser. 1964. On the representation of directed graphs as unions

of orderings. Math. Inst. Hung. Acad. Sci 9 (1964), 125–132.
[15] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. 2017. Multiwinner voting:

A new challenge for social choice theory. Trends in Computational Social Choice
74 (2017).

[16] R. Fellows, D. Hermelin, F. A. Rosamond, and St. Vialette. 2009. On the parame-

terized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410,
1 (2009), 53–61.

[17] P. C. Fishburn. 1981. An analysis of simple voting systems for electing committees.

SIAM J. Appl. Math. 41, 3 (1981), 499–502.
[18] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. 2018.

Kernelization: theory of parameterized preprocessing. Cambridge University Press.

[19] W. V. Gehrlein. 1985. The Condorcet criterion and committee selection. Mathe-
matical Social Sciences 10, 3 (1985), 199–209.

[20] P. Hell and M. Rosenfeld. 1983. The Complexity of Finding Generalized Paths in

Tournaments. Journal of Algorithms 4, 4 (1983), 303–309.
[21] J. B. Jensen and P. Hell. 1993. Fast algorithms for finding hamiltonian paths

and cycles in in-tournament digraphs. Discrete Applied Mathematics 41, 1 (1993),
75–79.

[22] E. Kamwa. 2017. On stable rules for selecting committees. Journal of Mathematical
Economics 70 (2017), 36–44.

[23] B. Kaymak and M. R. Sanver. 2003. Sets of alternatives as Condorcet winners.

Social Choice and Welfare 20, 3 (2003), 477–494.
[24] J. M. Kleinberg and É. Tardos. 2006. Algorithm design. Addison-Wesley.

[25] J.F. Laslier. 2011. Tournament Solutions and Majority Voting. Springer Berlin

Heidelberg. https://books.google.co.in/books?id=2bJ_MQEACAAJ

[26] S. Salvador and D. Coelho. 2008. How to choose a non-controversial list with k

names. Social Choice and Welfare 31, 1 (2008), 79–96.

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

519

https://books.google.co.in/books?id=2bJ_MQEACAAJ

	Abstract
	1 Introduction
	2 Preliminaries
	3 Structural Observations
	4 Hardness
	5 Exact Algorithms for Gehrlein Stable Committee Selection
	5.1 A polynomial time subcase
	5.2 Exact exponential time algorithm

	6 FPT Algorithms for GSCS
	7 A linear vertex kernel for GSCS
	8 Conclusion
	References

