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ABSTRACT
In this paper, we introduce a new agent-based method to build a
decision-aid tool aimed to improve policy design. In our approach,
a policy is defined as a set of levers, modelling the set of actions,
the means to impact a complex system.

Our method is generic, as it could be applied to any domain,
and be coupled with any agent-based simulator. We could deal not
only with simple levers (a single variable whose value is modified)
but also complex ones (multiple variable modifications, qualitative
effects, ...), unlike most optimization methods. It is based on the
evolutionary algorithm CMA-ES, coupled with a normalized and
aggregated fitness function. The fitness is normalized using esti-
mated Ideal (best policy) and Nadir (worst policy) values, these val-
ues being dynamically computed during the execution of CMA-ES
through a Pareto Front estimated with the ABM simulation. More-
over, to deal with complex levers, we introduce the FSM-branching
algorithm, where a Finite State Machine (FSM) determines whether
a complex policy can potentially be improved or has to be aborted.

We tested our method with Economic Policies on the French
LaborMarket (FLM), allowing the modification of multiple elements
of the FLM, and we compared the results to the reference, the FLM
without any policy applied. The policies studied here comprise
simple and complex levers. This experience shows the viability
of our approach, the efficiency of our algorithms and illustrates
how this combination of evolutionary optimization, multi-criteria
aggregation and agent-based simulation could help any policy-
maker to design better policies.
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1 INTRODUCTION
As artificial intelligence improves through the years, agent-based-
models (ABMs) of complex systems are beginning to be used more
and more, as they account for the heterogeneity of their elements,
and provide a deeper understanding of the mechanisms and inter-
actions inside those systems, than aggregated models. In this paper,
we aim to provide an ABM decision-aid tool to Policy Makers, in
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order to improve policy design; that is, to find the best policy ac-
cording to the model and to a set of objectives, set by the policy
maker.

By policy, we mean here (in the political or managerial or sys-
temic sense) any process, set of rules or laws that affect a complex
system (firm, economy, society, ...). The“optimality” of the policy
will be assessed using criteria, pre-defined by the Policy Maker.

Currently, two optimization approaches dominate the field of
policy improvement : Reinforcement learning (RL) [13] and Black-
BoxOptimization (BBO) [1]. RL has been often used to controlMulti-
Agent Systems and improve policies (in Robotics for instance) [3,
23], whereas, to our knowledge, very few BBO have been proposed
for ABM [12].

In fact, as shown in [23], RL and BBO could be quite similar, the
main difference being that, for RL, the optimization operates within
the complex system , with reward information being used in real
time to find optimal actions. Because we want to propose a generic
approach and a easy-to-use tool for any PM (who does not have
to know of the system works), we favor a BBO, where the system
is modeled by an ABM, simulated and taken as a black-box by the
optimization algorithm. In order to take benefit from both ABM
and optimization, the optimization algorithm will select a policy
to be tested, and an agent-based simulator will be used to evaluate
the outcomes of this policy (see Figure 2 below). We designed our
method to be as generic as possible, so it could be applied to any
domain, any complex system, and be coupled with any agent-based
simulator.

The paper is organized as follows : we define the concepts of
policies in Section 2, before explaining the whole optimization
process in Section 3. In Section 4 we will describe an application of
this process in an experience on economic policies on the French
Labor Market (FLM), before comparing this project to other related
works in Section 5 and concluding.

2 DEFINING POLICIES
2.1 Simple Policy
Broadly speaking, a simple policy is a set of measures that modify
a given Complex System – referred to as “the System” in this paper–
by changing the value of some of its parameters, denoted here sim-
ple levers (e.g for labor markets : minimal wage, unemployment
benefits). A simple policy will be modelled here as a set of simple
levers’ values, which means that some parameters are set to these
particular values (e.g minimal wage = 8 e/h). The simple levers
used in our experiment on the FLM are listed in Table 3.
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Figure 1: Example of a Complex Levers tree (CL Tree). Each
leaf node represents a Combination of Complex Lever val-
ues (CCL). FTC and TWC are defined in 4.1.

2.2 Complex Policy
The policy maker might want to test more elaborated policies that
could not be reduced to a change of one single continuous feature.
Some policy will change several (eventually many) features and/or
induce qualitative effects. In that case, a complex lever must be
used and is no longer a continuous value but a binary variable : one
activates the policy or not. This type of binary levers is more diffi-
cult to optimize, as most of optimization algorithms are designed
for continuous spaces (e.g. gradient descent). We will address the
optimization of complex levers in section 3.3 below.

We define a Complex Policy as a combination of simple and
complex lever values. If the policy includes n complex levers, we
have 2n possible Combination of Complex Lever (CCL) values.
Each CCL will be a leaf node in a binary tree – called the CL Tree,
as illustrated in Figure 1 with the case of our experiment (with
n = 2).

2.3 Policy Evaluation
The policy maker will use the levers (simple or complex) to define
the measures composing the policy, the modifications of the System
that the policy enforce. Then, in order to enable an evaluation of
this policy, s/he must specify the criteria, that are the variables
(numerical and continuous) that will measure the outcomes of
the policy, and its impact to the System. Therefore, we define an
optimal policy as a policy that optimizes a set of pre-defined criteria.
Eventually, the Policy Maker can weight differently the criteria, so
we suppose s/he enters a set of criteria weights wi (real positive
values), eventually identical for all criteria).

3 OPTIMIZATION PROCESS
The overall optimization process is depicted in Figure 2.

In accordance with our BBO approach, this process uses an
evolution strategy to generate the policies, which are then simulated
(the ABM simulator being considered as a black box), and evaluated
with a fitness score, to improve future generations of policies. We

decided to use CMA-ES [11] for the BBO algorithm as it has been
shown to be one of the most efficient ones [10, 17]. Moreover it has
been already successfully used with an ABM, in order to calibrate
its parameters [8].

To start the optimization process, the Policy Maker has to spec-
ify the levers and the criteria s/he aims to use. CMA-ES requires
to know the exact number of simple levers, and their respective
bounds, to generate the population (a set of policies) that will be
evaluated with the simulator. Each policy will be simulated dur-
ing H ticks, H being a parameter of our method. Moreover, if the
ABM is stochastic (that is often the case), we simulated the policy
multiples times (set by the parameter NS ), in order to reduce the
effects of this stochasticity, and the criteria will be averaged over
these replications to compute the fitness score of this policy. This
score helps CMA-ES to improve the next generations of policies,
and increases the chance of finding the optimal one in them.

However, when designing the fitness function we must take into
account that the criteria could be of very different order of magni-
tude : some criteria are percentages in [0,1] (like unemployment
rate) while some others are a lot bigger (like the average weekly
income per household). Moreover, some criteria are to be maxi-
mized (e.g. revenues, profits) while other need to be minimized (e.g.
unemployment rate).

To aggregate and normalize the criteria in the fitness function, we
choose an augmented weighted Tchebychev norm, as it has proven
to be efficient for multiple objective programming [21, 22, 27].

3.1 The augmented weighted Tchebychev norm
Following [26] and [6], we compute the fitness function as an aug-
mented weighted Tchebychev norm. If we have n criteria to opti-
mize, with each criteria having a (simulated) value ci and a weight
wi , it is given by :

f (c) =maxi=1, ...,n (wi .c̄i ) + ϵ
n∑
i=1

(wi .c̄i ) (1)

where c̄i are the normalized criteria, given by :

c̄i =


Idi−ci
Idi−Nai

if cineeds to be maximized

ci−Idi
Nai−Idi

if cineeds to be minimized
(2)

Idi is the Ideal value for criterion ci , and Nai is the Nadir (worst)
value for criterion ci . ϵ is a parameter (with a positive and small
value). The ideal point is defined to be the vector of the component-
wise infima of all Pareto-Optimal solutions’ values, while the Nadir
point is characterized by the componentwise supremum of these
values [16].

Thanks to equation 2 , we use Ideal and Nadir points to normalize
the criteria to [0,1], where a 0 corresponds to the best value and 1
the worst.

When we minimize f – given by Eq. 1, the criteria ci will have
to be close to Idi (i.e. close to the best possible value of the criteria,
from all the simulated points). The choice of Tchebychev norm
focuses on the worst component and therefore guarantees that
only feasible solutions close to the Ideal on every component will
receive a good score [6]. In addition, if ϵ is chosen small enough,
the practical possibility of reaching any Pareto-optimal solution
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Figure 2: Overall optimization process.

is kept by an appropriate choice of weightsw [26]. Moreover, the
second additive component of function f (ϵ

∑n
i=1(wi .c̄i ) allows

to discriminate solutions that give similar performance on crite-
rion ci by taking account other criterion values (c j with j , i).
This function allows us to chose the point that gives the smallest
(weighted) regret, preferring a more balanced solution rather than
an unbalanced one.

The weights of each criterion are defined by the decision maker
in the initial policy, and are necessary to prioritize some variables
over others (according to their importance) in the optimization
process. Now, let us detail how Ideal and Nadir values are computed.

The Ideal point can be easily computed by optimizing each ob-
jective individually over the search space [16], while finding the
Nadir point is a difficult task, and its exact values could in many
cases only be approximated using heuristics [16, 25]. However, even
computing the Ideal point by running n single criteria optimization
would be too long, especially when there are many criteria. Thus,
we chose to compute the Ideal and Nadir points by incrementally
estimating the Pareto (PF)1 (PF), and taking, for each criterion, the
best and worst value found among the Pareto Front solutions :

(Nai , Idi ) =

{
(minc ∈PF ci ,maxc ∈PF ci ) to maximize ci
(maxc ∈PF ci ,minc ∈PF ci ) to minimize ci

(3)

This dynamic estimation of Ideal and Nadir allows us to con-
stantly improve their approximated values, getting more precise as
the optimization process progresses. We keep updating the Pareto
Front with each new simulated policies found during the evolution-
ary optimization process produced by CMA-ES.

3.2 Simple Policy Optimization
For a simple policy, we use CMA-ES to find the optimal lever values.
Thus, the optimization process will proceed in four main steps :

(1) New Population Generation : the CMA-ES algorithm gen-
erates a new population of points2, that are candidate solu-
tions for f minimization.

(2) Updating the Pareto Front : these new points needs to be
compared to all the points in the Pareto Front (PF). For each

1The Pareto Front is the set of all pareto-optimal solutions.
2Here, a point is a set of simple lever values.

non-dominated point p, we add it unless it is completely
dominated by a point in PF.

(3) Recalculate Ideal and Nadir : if at least one new point has
been added to the Pareto Front, then Ideal and Nadir need
to be updated because the new point may be better than
the Ideal (or worse than the Nadir) on a criteria, or might
have removed a point that gave the worst value for a criteria.
Thus, it is needed to recalculate Ideal and Nadir after every
generation if there was a change in the Pareto Front.

(4) Updating the Fitness Function : if Ideal and Nadir were
modified by the last generation, the fitness function needs to
be updated to use the new Ideal and Nadir. The updated fit-
ness function will be used to evaluate the current population,
and we return to step 1.

With Ideal and Nadir normalizing every criteria, and the Tcheby-
chev norm aggregating them, we now have a fitness function for
CMA-ES to use during the optimization process. Unlike usual fit-
ness function that are set once and never modified again, giving
the same result at any time during the algorithm, the result of the
augmented weighted Tchebychev norm can change over time be-
cause of the frequent updates of the Pareto front, and thus, of Ideal
and Nadir.

Now that we have described the main stages of our optimization
process, and before we present our experiment results, let us know
explain how we deal with complex policies, made of complex levers.

3.3 Complex Policy Optimization
To optimize a complex policy, made of simple and complex levers,
we proceed in two steps :

(1) Select a CCL (leaf node) in the CL tree to set a combination
of complex lever values,

(2) For this node, run the optimization process described in
section 3.2 above to find the optimal values of the simple
levers included in the policy.
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Figure 3: Finite State Machine (branching algorithm).

CMA-ES doesn’t work well with binary variables3, so we cannot
let CMA-ES decide on which CCL to optimize. Therefore, we de-
signed an algorithm to monitor and lead the optimization process
of the CCLs : the branching algorithm.

3.4 Branching algorithm
We designed the FSM-branching algorithm to select which combina-
tion of complex lever values will be chosen in the current CMA-ES
in order to optimize the simple levers in the case of a complex
policy. Several issues need to be considered in the creation of this
algorithm:

Assessing the potential of a CCL is not really possible without ex-
ploring it a little, because you cannot predict in advance the results
of an optimization (exploration) on a CCL. But it is nevertheless
possible to determine approximately if a CCL could be improved :
by looking at its evolution during the last iterations of CMA-ES. If
these iterations have improved the optimal policy of this CCL (by
reducing the fitness), then we can consider that this CCL can be
improved : that is if the fitness value has been reduced by at least Z
%, Z being a parameter of FSM-branching.

We propose to use a Finite State Machine (FSM) to monitor the
CCL exploration. Our FSM is depicted in Figure 3, and includes
three states :

Running : the CCL could potentially be improved, and has not
been paused in the current iteration of the branching algo-
rithm.

Paused : this configuration did not improve during X ticks of
CMA-ES, therefore it is paused. It will be woken up at the
next iteration of the branching algorithm.

Finished : this configuration has been paused Y times in a row,
with no improvement. It is therefore abandoned and will
never be explored again, because it can no longer be im-
proved. If all CCLs’ optimizations are finished, the policy opti-
mization is completed.

Moreover, we have 3 transitions in the FSM:
Running → Paused : this transition occurs when the CCL is

explored during X ticks of CMA-ES without significant im-
provement (i.e. above the required threshold) compared to
its state before exploration. The CCL is paused, and will
no longer be explored as long as there are other CCLs in
progress.

3There exists a version of CMA-ES to handle integer values, but it does not work well
for binary ones [9].

Paused → Running : (Awakening) when all CCLs are paused or
finished, then the branching algorithm wakes up all paused
branches, and makes them switch to the Running state.

Paused → Finished : if a CCL does not improve after Y suc-
cessive awakenings, then it is aborted. The FSM of this CCL
and switches to the Finished state : it will never be explored
again in this optimization process.

Each CCL has its own FSM, and the branching algorithm has
three parameters : X (the number of iterations before considering
pausing the CCL), Y (the number of awakenings with no improve-
ments to abort the CCL) andZ theminimal required fitness decrease
(in %) to consider that a CCL has improved its optimization.

The FSM-branching has the following qualities:

Termination : it is not possible for policies to improve endlessly,
as the more optimized the policy, the more difficult it is to
improve it even more. There will therefore inevitably be a
time when there will be no improvement after Y awakenings,
and the CCL will therefore be abandoned.

Potential exploitation : this algorithm evaluates the potential of
a CCL to know if it should be explored, and will therefore
explore all CCLs that have a potential for improvement.

Adaptive resources allocation : No CCL will monopolize all the
computing resources (unless it is the only one in progress),
and all improvable CCLs will be explored one after the other.
In addition, potential-free CCLs will quickly be abandoned,
leaving more time for potential CCLs.

To end this presentation of the FSM Branching, let us now ex-
plain why parallelization is not efficient here. Each CCL has a
CMA-ES for itself as they cannot share the same evolution strategy,
because each policy could have very different impacts on the Sys-
tem. As each CCL progresses independently, it could be possible to
parallelize all the CMA-ES, so that each optimization progress at
the same time, and then no branching algorithm would be required.
However, each population generated by CMA-ES needs to be eval-
uated by the simulator, and it takes NP × NS simulations to do so,
with NP being the size of the population generated, and NS the
number of simulations done for a single policy (as the model is sto-
chastic, it is necessary in order to reduce effects of randomness on
the result of the policy). For example, in the experience described in
the next section, we had NP = 48 and NS = 16, and thus we had 768
simulations per generated population for each CCL. Those 768 sim-
ulations need to be finished to update the Pareto Front and evaluate
the population. Since all CCLs share the same unique Pareto Front,
the process would need to wait for each CCL to finish their simula-
tions to proceed, losing most of the advantages of a parallelization.
Not to mention that this will add complex synchronization issues.
All in all, this makes parallelization simply inefficient to implement
our algorithms, so we decided to focus on optimizing one CCL at
the time, and using multiple threads to do the 768 simulations as
fast as possible using parallelization on a cluster.

The aim of the FSM-branching algorithm is precisely to allow
the optimization process to share the computing resources between
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Figure 4: Flowchart of our optimization algorithm.

the different configurations, while favouring the most promising
CCLs.

3.5 Overview of our optimization algorithm
The flow diagram in Figure 4 below summarizes the whole process.
The set P∗

c is made of the best policies found for CCL c (see section
3.6 below).

3.6 Policy Comparison Protocol
To end the presentation of our policy optimization method, we need
to explain how we should evaluate and compare the policies with

each other, which is one the main goals in policy design. Because
of the stochasticity of both CMA-ES and of the ABM simulator,
it is important to replicate not only the simulations, but also the
optimization process as CMA-ES may have found a sub-optimal
policy because of some events during the optimization process.
Therefore we launched multiple instances (NR ) of this optimization
process, and then we need to compare all these generated policies,
using the Policy Comparison Protocol, which proceeds as follows :

(1) During the optimization process, we build a set P∗
c of best

policies for each CCL c , the set of policies that have improved
the fitness function at least once during the execution of
CMA-ES. These policies are stored as a list, sorted in an
increasing order of fitness value, so that the first item stores
the optimal policy4.

(2) We launched multiple (i.e. NR = 7) full optimization runs5.
(3) So now we have a set P∗r

c for each CCL c and each run r .
Then, we build the union of all these sets (21 in this experi-
ment)
P∗ =

⋃NR
r=1

⋃NC
c=1 P

∗r
c , from which we compute a Global

Pareto Front, the Global Ideal and Global Nadir of all these
policies, and thus, giving us a Global Fitness Function Gf
that allows us to compare all the policies found in the sets
P∗r
c .

(4) In particular, for each CCL c , we compute the optimal policies
as the one giving the lowest Global Fitness in the set P∗r

c .
In our experiment, we obtained 358 policies in P∗. The Global
Pareto Front contained 268 policies, and each CCL has an optimal
policy, given by the best fitness score (withGf ) out of all its policies
inside the Pareto Front.

4 EXPERIENCE AND RESULTS
The goal of this experience is meant to be a proof of concept of our
methodology to find optimal policies, and is meant to show how to
analyze the results of the optimization process.

4.1 Experience settings
We chose to apply our methodology to the case of labor policies
in France. To do so, we use our ABM Labor Market Simulator,
WorkSim [8]6

In this paper, the experience focuses on the utilization of the three
available labor contract types that form the core of the FLM [19] :

4We have decided, at this stage, to store multiple best policies and not only the optimal
one, for two main reasons : (1) the order in this set depends on the Ideal and Nadir of
the optimization process, and may change when the Ideal and Nadir is updated by a
new generation, causing a change in the fitness function, and thus in P ∗

b ’s order ; and
(2) many best policies have a very close fitness value (difference below 0.01% in our
experiment) and could all be considered near the optimum.
5By full run, we mean a fully completed optimization run, i.e. when the algorithm in
Figure 4 is completed for all the CCLs (i.e. NC = 3.
6WorkSim is a comprehensive model of the labor market. The stock-flow accounting
of individuals, based on gross flows, is complete and endogenous. It is supplemented
by a stock-flow accounting of jobs for further analysis. The institutional environment
is modeled and based on labor law, which sets constraints on the possible decisions at
the microeconomic level, taking into account the specific characteristics of each agent,
worker or employer. It implements search on both sides of the market with multi-
jobs firms, inter-temporal decision processes under bounded rationality, anticipations
of demand shocks, learning, endogenous contract choices, endogenous salaries and
productivities, different types of human capital. WorkSim is calibrated on a large
number of targets of the French labor market, using CMA-ES.
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Open Ended Contract (OEC), Fixed Term Contract (FTC) and Tempo-
rary Help Contract (TWC)[18] 7. Using our optimization method, we
aim to study how the labor market could be optimized depending
on these available contracts. Hence we will study three different
configurations (depicted in Figure 1 above) :
Base : All three contract types are available.

-TWC : Temporary Working Contracts are prohibited (i.e.OEC and
FTC only ).

-FTC : Fixed Term Contracts are prohibited (i.e. OEC and TWC
only ).

Notice that we removed the case where FTC and TWC were dis-
abled, because past experiences have shown that the labor market
is severely sub-optimal when no fixed term contracts (FTC or TWC)
exist [7]. Similarly, we did not add another complex lever to analyze
the effects of the prohibition of OEC , as OECs are the core of the
labor market, and there is no point in trying to remove them.

Each of these configurations are defined by the same simple
levers, and the same criteria, and will be evaluated with the same
fitness function, as the Pareto Front, Ideal and Nadir are shared by all
these CCLs (see section 3.6 above). This allows us to easily compare
the results of each CCL as they follow the same format : levers,
criteria, and fitness function are all identical.

The parameters of our method are listed in Table 1. The criteria8
(with their weights) are listed in Table 2, and the 10 simple levers 9

we chose are listed in Table 3. Moreover, all the Labor Market Simu-
lator’s parameters are calibrated to reproduce many FLM statistics
for the year 2014, the agents are initialized to reproduce the real
FLM at a scale of 1/2300. Each simulation takes around 3 minutes
to run the H = 416 ticks10, which means that with 16 simulations
per point, it takes around 50 minutes for each CMA-ES iteration
to end (on a 48-cores computer grid, so each of the 48 CMA-ES
population runs on a single core). In the case of our experiment, it
took around 380 iterations of CMA-ES (shared between the CCL) –
around 14 days – to complete the optimization process.

4.2 Overall comparison of policies
To give an overview of the optimal policies outcomes, we displayed
them in a radar chart, as shown in Figure 5. Note that,in this Figure,
we display the inverted values (1 − x) of the normalized criteria
value x in order to have 1 for the optimal value for a normalized
criteria, and 0 for the worst value, as it is commonly done in radar
charts, and allows us to compare the configurations easily, criteria
by criteria, or as a whole. The criteria are sorted by descending
7Let us briefly summarize the main features of these labor contracts. The MainOEC
features are : no duration limit, probationary period, no firing costs for the first year, no
termination costs if quitting, variable firing costs when firing. The Main FTC features
are : maximum duration of 18 months including the possibility to be renewed once,
a grace period after the termination of the contract during which the job cannot be
filled, a small probationary period, allowance at the end of the contract: 10 % of total
gross salary. FTC cannot be broken without heavy penalties (paying the remaining
salary part). TWC is a special type of FTC since the employer is a Temporary Help
Agency. The agency provides workers to the client firm for a mission, and is paid by
regular firms to find these workers. It usually finds a suitable employee faster than
regular firms, and also screens and train sometimes workers better than firms.
8We selected here 9 frequently used labor market measures
(see e.g. http://www.oecd.org/sdd/labour-stats/ for definitions.).
9These levers have been derived from the economical programs of the candidates at
the last French presidential election.
10In our Labor Simulator, one tick corresponds to one week in reality. Thus, we chose
to run each simulation during 8 years to ensure that a steady state has been reached.

Name Description Value
General

NC Nb. of CCL 3
NR Nb. of full runs 7

CMA-ES
σ Step size 0.3
NP Population size 48
NS Nb. simulations per evaluation 16
H Duration of each simulations 416 ticks

Tchebychev
ϵ Weight of sum component 0.001

FSM-Branching
X Nb.of CMA-ES iter. before pausing 3
Y Nb. of pauses before aborting 15
Z Required fitness improvement 1 %

Simulator
NA Total number of agents 23000

Nb. of individuals 20000
Nb .of firms 3000

Table 1: List of parameters for our optimization method,
with their values for our experiment.

criteria weight (clockwise). The Reference is obtained by running
the FLM Simulator without any optimization (no policy applied, no
modifications of the FLM), and will serve as a baseline to compare
the policies.

For a more quantitative analysis, we use the criteria outcomes
displayed in Table 2. First of all, 3 criteria did not result in significant
differences (shaded in gray in the Table) and therefore we ignored
them for our analysis.

Now, how could we rank the 4 policies ? We propose to perform
a weighted Condorcet voting [24], using the following ranking
function based on the criteria weights.

For each CCL c , we count the number of times it strictly domi-
nates a CCLd , using the followingweight-based preference relation:

c ≻ d ⇐⇒
∑

i :(ci>di )
wi >

∑
j :(dj>c j )

w j (4)

where di is the value of CCL d on criterion i .

We found – from our results – that −FTC is the Condorcet winner
and we obtained the following strict order :

−FTC ≻ Base ≻ −TWC ≻ Re f

However, the Condorcet voting method is purely ordinal. To
account also for the criteria outcomes, we compute an aggregated
score Sw as the weighted sum of the normalized criteria, by limiting
the sum to criteria giving significant differences. These SW scores
confirmed the above order, they are displayed in Table 2 (last line).

To briefly comment this result, we first observe that the opti-
mization actually worked, as the configurations outperforms the
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Figure 5: Radar charts of the final optimal policies found for each configuration. The (abbreviated) criteria are displayed in
the same order as for Table 2, clockwise.

w Criteria Base -FTC Ref -TWC

Unemployment rate (%) 8.6 8.1 9.9 9.5
10

0.21 0.16 0.37 0.32

71.9 72.5 72.6 70.1
5 Global activity rate (%)

0.44 0.37 0.36 0.64

OEC share (%) 83.5 85.5 82.3 85.4
3 (from all active contracts) 0.74 0.53 0.87 0.53

Median income per house- 1587 1590 1512 1544
3 hold share (in e/month) 0.62 0.61 0.78 0.71

Average firm profit per 1052 1093 1004 1066
3 employee (in e/week) 0.51 0.23 0.83 0.41

Yearly Probability of being 5.7 5.8 5.7 5.9
2 fired (when on OEC) 0.34 0.37 0.28 0.46

Weekly Share of OEC hires 8.13 6.6 7.4 13.9
1 (%) 0.66 0.81 0.73 0.08

Job vacancy rate (%) 6.92 3.21 7.17 11.38
1

0.29 0.03 0.3 0.6

Unemployment duration 72 84 79 81
1

0.1 0.21 0.16 0.18

SW 6,9 4,9 10 6,8

Table 2: List of the 9 criteria and weight values w . We dis-
play the optimal raw values values for our 3 CCL and the
Reference. The numbers in italics are the normalized values
(0=best), and the list line displays their Sw score. The shaded
lines indicates no significant difference between the policies.
The best value for each criteria is displayed in bold.

Reference. Although they obtained the same aggregated score SW ,
Base dominates −TWC in the Condorcet voting, because it per-
formed better on the criterion with the highest weight (Unemploy-
ment rate). Of course, we could obtain very different rankings if we
change the weight values : any decision-aid tool is sensitive to the
way the policy maker will weight his/her criteria. Moreover, these
weights may be difficult for a policy maker to determine accurately.
Such an issue is outside the scope of this paper, but let us just men-
tion that we could combine our approach with weight elicitation
techniques [4] to facilitate these settings.

4.3 Comparison between the two best policies
To end this results section, we focus on the comparison of the two
best policies: −FTC and Base . If we look at the simple lever values
found by our optimization process (Table 3), we can see that Base
and −FTC converged towards a similar values for several levers :
they both raised the minimum wage (SMIC), the RSA base value
(that acts as a work welfare benefit), the unemployment minimum
daily allocation, and the reduction coefficient of insurance charges.
All these levers impact the working class as they improve their
income (during unemployment and unemployment), and their em-
ployability (reduction of employer’s labor charges). However,−FTC
and Base differ significantly in 4 levers : TWC renewals (doubled in
−FTC) , maximum TWC duration (divided by 2), Unemployment
maximal benefit for 50+ (/2) and unemployment maximal allocation
divided by 2 as well. It is beyond the scope of this paper to discuss
the underlying economic and social consequences of these choices.
However, from a methodological point of view, it is important to
point out that these levers values must be taken into account when
evaluating and comparing policies, as they entail political choices
and have direct impacts on the system entities (firms, individuals,
the State,... in our case).

Finally, looking at the criteria values, we found that −FTC out-
performs Base significantly on 4 criteria: Unemployment (146k
fewer unemployed individuals), OEC share (+594k OEC contracts),
a slight increase in profit per employee (+4 %) and a vacancy rate
divided by more than 2. Overall −FTC seems to reduce unemploy-
ment (-546k unemployed compared with the Reference), improve
income for households , profits for firms and strongly reduces the
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vacancy rate, which shows than the job matching is much more
efficient with −FTC .

How to explain such a good performance of −FTC ? Why the
removal of FTC contracts seems to perform better that the removal
of TWC contracts ? To explain this result, we take advantage of our
agent-based approach and looked at the outputs of our Labor Simu-
lator. We found that individuals chose TWC jobs to gain experience,
and obtain a permanent contract more easily after accumulating
enough experience, while companies "abuse" less fixed-term con-
tracts (in −FTC), and use temporary contracts only for rapid labour
needs to satisfy an increase in demand. In addition, the recruitment
of TWC jobs is much faster than FTC, and its higher cost is therefore
offset by the absence of vacancy costs (i.e. costs induced when a job
remains vacant, eventually for a long time) . These observations
will have to be further studied, as our aim in this paper is mainly
to illustrate how our methodology works in a real case.

Levers Base −FTC Ref
Reduction coeff. for insurance charges 2.47 2.75 1.6
SMIC (minimum wage in e/h) 9.2 9.7 8.05
Nb of allowed FTC renewals 2 N/A 2
Nb of allowed TWC renewals 1 3 2
Maximum duration of FTC (in weeks) 79 37 72
Unemploy. max benefit duration (50yo+) 166 84 144
Unemploy. max benefit duration (< 50yo) 100 106 96
Unemploy. max. daily allocation (in e) 347 122 241
Unemploy. min. daily allocation (in e) 36 39 29
RSA base value (in e/ month) 670 656 500

Table 3: List of the ten simple levers used in our experiment
on FLM, and their optimal values for the 2 best CCL and the
Reference.

5 RELATEDWORKS
We chose CMA-ES over the other Single-Objective Optimization
(SOO) methods, as it has shown to be the most efficient and fastest
algorithms [10]. However, since our decision problem is multi-
objective by nature, why did we not use a Multi-Objective Opti-
mization (MOO) approach ? First of all, MOO are generally much
slower than SOO [15], up to the point that MOO are almost impos-
sible to use in practice when the number of criteria rises [5]. This is
particularly problematic for our approach that used a quite detailed
agent-based simulation to evaluate each outcome, and therefore
demanding in terms of computation time. A second argument that
favors a SOO approach over MOO concerns our need to allow the
policy maker to weight his/her criteria: this is easily done in SOO
with a weighted aggregation, and impossible with MOO.

Furthermore, the combination of CMA-ES with a Pareto-Front
computation has already been proposed in the CMA-PAES model
[20], this method combining a MOO version of CMA-ES with the
Pareto Archived Evolution Strategy [14] to improve the solution
generation that was sub-optimal in PAES. Like our approach, CMA-
PAES dynamically builds a Pareto Front to obtain the optimal poli-
cies but, like many MOOmethods, it does not help to chose the best
one among these. Moreover, CMA-PAES does not handle weights,
nor complex levers (we would obtain a single Pareto Front for each

CCL and could not compare them). In fact our aims differ: CMA-
PAES seeks exhaustive optimal policies (the most diverse one) while
we look for a single (or a reduced set) of best optimal policies (e.g.
Condorcet winner).

Finally, we proposed a method to compute Ideal and Nadir, using
a simulated estimation of the Pareto Front. While the Ideal point can
be obtained in a MOO by optimizing each criteria separately, the
Nadir point is more complicated. Thus, Nadir-Soco [25] estimates
the Nadir point, using the "Extreme-To-Nadir" method that focuses
on knee points [2]. Nadir-Ejor [16] finds the Nadir by optimizing Q
sub-problems derived from the initial one, that are the optimization
of the Q − 1 combinations of the Q objectives separately. This is a
very costly approach in term of time and computing resource.

Moreover, these two methods implicitly imply that the criteria
are somehow negatively correlated (improving one criteria must
deteriorate the other ones), but this is not the case in all decision
problems, where some criteria could be independent. Hence our
approach is more generic as it does not rely on such assumption.

6 CONCLUSION
In this paper, we proposed a new approach to aid policy design by
combining agent-based simulation with evolutionary optimization
and multi-criteria aggregation techniques. We introduced a new
optimization method based on CMA-ES coupled with a dynamic
estimation of the Pareto Front. This estimation is done by the agent-
based simulation, and enables to compute Ideal and Nadir points,
these points being used to normalize the fitness function.

One of the advantages of our approach is its genericity : it could
be applied to any number of criteria, any set of criteria weights, any
agent-based simulator. Moreover, unlike existing methods, we do
not only deal with simple policies (made of quantitative levers) but
can also process complex policies, made of several configurations
(CCL), for which we proposed the FSM-branching algorithm to
optimize the computation of the configurations.

We also introduced an algorithm to compare policies after the
completion of the optimization process, We illustrated our method
in a real case, the French Labor Market, where we used a fairly
detailed Labor Market Simulator to study how new arrangements
of labor contracts could improve important criteria (e.g. employ-
ment). The method selected an unexpected solution (to remove
FTC contracts), and in that case it clearly dominated the others,
being even a Condorcet winner11 . Moreover, one benefit of our
approach is that it allows both to find an optimal solution but also
an estimated Pareto Front that allow a policy maker to study other
solutions (close to the optima).

Future works will focus on a more in-depth exploration of the
behaviour of our algorithms: the sensitivity of its parameters (in
Table 1), and a benchmark comparison with MOO. Like every opti-
mization approaches, we also aim to study deeper how we could
estimate the quality of the optimal policy, and its unicity, although
these questions are known to be very difficult, both theoretically
and in terms of the required computational resources.

11Of course, this would not always be the case, our method does not guarantee in any
way to find such a winner for any application.
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