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ABSTRACT

We study the impact of using different organisational paradigms on
the design and implementation of a Multi-Agent System (MAS) for
Real-Time Strategy (RTS) games. We examine systems designed and
implemented according to a specific paradigm on their performance
in a practical scenario, as well as examining software-engineering
concepts like size and complexity entailed by the according imple-
mentations. In contrast to related theoretical work, we deal with the
practical constraints and implications of the paradigms by targeting
the prototypical RTS game StarCraft: Brood War. Through care-
ful analysis of this environment, agent systems for four separate
paradigms that operate at different levels of autonomy and commu-
nication are designed, implemented, and evaluated by thousands of
instrumented runs. One of the main findings is that using a central
processing agent, e.g. in a market-based approach, increases task
performance, but at the cost of increased code complexity.
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1 INTRODUCTION

Real-Time Strategy (RTS) games continue to be a challenging do-
main for Al, mainly because of the huge search space and the
uncertainty about what the opponent is doing (i.e., “fog of war”)
[22]. Multi-Agent Systems (MAS) can provide a layer of abstraction
for humans to design intelligent behaviours and systems that can
attempt to achieve their goal(s) in this domain [7]. Many different
models and ways to develop (i.e., design and implement) a MAS
have been proposed [8]. The current literature on models for logic-
based Al contains various such models that are mainly compared
on a theoretical basis. The implications of developing agent systems
based on such models for complex environments that involve ‘real-
world effects’ like latency, uncertainty and randomness remains
largely unstudied [20].
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This paper describes the design and execution of an experiment
using an RTS environment as a platform for a targeting-scenario in
order to compare multi-agent organisational paradigms. We focus
on the various ways in which a multi-agent system can be organised.
We aim to evaluate the practical implications of developing a multi-
agent system in a specific organisational paradigm. To this end, a
sufficiently complex environment is needed where implementations
of such models can be developed, executed and tested. The RTS
game StarCraft BroodWar (SC:BW) has emerged as a unified testbed
for multi-agent research [13, 21] and Al research in general [21, 26].

After evaluating related work in section 2, the experiment is
designed in section 3 through both considerations in the SC:BW
environment and design of the targeting-scenario. Next, by setting
up comparable metrics on both a performance level and a software
level in section 4, viable theoretical models are selected that are
suitable for this scenario based on two criteria in section 5.

The separation criterion for these paradigms is based on the
level of autonomy of the agents versus the level of communication
between those agents. In order to diversify the approaches on au-
tonomy versus communication, four different MAS paradigms from
literature have been selected: individual, swarm, market and hier-
archical. Each selected paradigm is carefully worked out a practical
implementation for the SC:BW environment.

In section 6, the outcomes and differences in performance (ie.,
effectiveness in win rate) between the organisational paradigms
are reported, as well as the differences from a software engineer-
ing perspective as entailed by the obtained software metrics, like
code size and complexity. The paper ends with a discussion of the
implications of these results and suggestions for future work in
section 7.

2 RELATED WORK

RTS games are widely regarded as an ideal testbed for AI [16, 21].
A prototypical RTS game like StarCraft involves long-term high-
level planning and decision making, but also short-term control
and decision-making with individual units. These factors and their
real-time constraints with hidden information make RTS games like
StarCraft ideal for iterative advancement in addressing fundamental
Al challenges [23]. Multi-agent systems seem to be a good fit for
addressing these challenges, allowing individual agents to reason
about their tactical decision making whilst communicating to make
decisions at a joint strategical level [13].

The work of Weber et al. [27] recognises the value of an agent-
oriented approach to RTS Al Their “EISBot” for StarCraft uses a
reactive planner together with several external components like
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case-based reasoning and machine learning. Similar to multi-agent
systems, the concepts of percepts and actions are used. However,
there is only a single ‘agent’ that is compartmentalised into sev-
eral specific managers based on different tasks in the game. This
approach is thus fundamentally a single-agent approach, whilst in
this work, we instead aim to compare organisational paradigms for
multi-agent systems.

Similarly, the work of Luotsinen et al. [18] compares twelve
paradigms of agency in a virtual environment with elements of turn-
based strategy games. However, their focus lies more on the areas
of economy and growth, whereas this paper focuses on combat
in an environment without turns. Moreover, the use of genetic
algorithms and learning introduces great measures of uncertainty.
In this work, in contrast, we limit randomness and uncertainty
with regards to the methodology as much as possible by creating
a consistent strategy across all paradigms and reducing external
influences of the environment.

Corkill et al. [4] also evaluate the impact of agent organisations
on task performance, but does so in different domains (i.e., more
controlled simulations), varies on different aspects, and does not
evaluate the software engineering aspects as we do here.

3 EXPERIMENT

In order to be able to identify differences between organisational
paradigms without requiring a full-fledged StarCraft Al implemen-
tation, a specific scenario is needed that allows the multi-agent
systems to be relatively straightforward yet complex and varying
enough to be able to compare the impact of using different organ-
isational paradigms. To this end, a targeting game in SC:BW is
employed in this work. In other words, two armies that combat
each other on a specific location on the map. Both of these armies
consist of units with a certain amount of health points. Through
attacking, the units can reduce the health points of units on the op-
posing army. When units have no more health, they can no longer
attack and are removed from the battlefield.

The implementation of a multi-agent organisational paradigm
controls one army, with the goal of defeating the opposing army. A
main reason for choosing this specific scenario is that it does not
entail factors such as building, scouting and economy. By removing
these elements from the equation, there are less factors that can
influence the outcome, and the degree to which the outcome is
dependent on the organisational models is thus increased.

3.1 StarCraft: BroodWar

To measure the performance of each model accurately, the RTS
environment should provide detailed control. That means when
interacting with the environment, it is possible at any stage to in-
spect its state and to send commands to the environment to control
the actions of the units that exist within it. StarCraft (Brood War)
can be controlled using the Brood War Application Programming
Interface (BWAPI!). In the context of this paper, SC:BW has two
players: the player and the enemy player. All units belonging to the
player can be observed and controlled through BWAPL. the control
over the opposing army is given to the built-in AI of SC:BW, which
is the default Al that is included with the game. Internally, the game

Uhttps://github.com/bwapi/bwapi
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executes and progresses on a frame-by-frame basis, emulating the

concept of time?,

3.1.1 Repeatability. At the start of a regular game of SC:BW, a
few basic units of the different players spawn out of each others
vision, and thus exploration and the building of military units is
required. This lengthy process adds a lot of unwanted complexity.
In order to make our experiment (quickly) repeatable and to allow
fair comparisons between repeated executions, for each run, all
units must have the same starting health and starting positions.
The map builder StarEdit (which is provided by SC:BW) can be
used to create a custom map with an altered initial configuration. A
custom map thus allows each trial (i.e., running a battle from start
to finish) to start in a constant and replicable state, from which the
paradigms can be reliably compared.

3.2 Scenario Implementation

Even though the initial state of the scenario can thus be selectively
pre-defined, there are still a number of factors outside of the control
of an agent system that might significantly influence the result of
a trial. Based on careful examination of the environment, a list
of considerations is devised to capture the influential factors of
which the effects can be prevented. Below, for each consideration,
its undesirable effect is discussed together with a solution.

3.2.1 Battlefield. The entire battle must be held on a flat surface.
SC:BW has an internal chance that a shot misses, and this chance
increases from 2—é6 to % when shooting up-hill>. The map thus uses
the default ground level terrain in order to allow all units equal hit
chances.

3.2.2 Equal armies. The two armies must be of equal size and
strength. If the size or strength is different, for example by using
units that do different amounts of damage, the chance that the
outcome is decided by such a difference instead of the decisions
made by the agent system vastly increases.

3.2.3 Stationary units. Units must be able to stay stationary. If
they have to move, units can collide with each other because of their
pathing, which causes uncertain behaviour?. Collision handling is
an internal non-deterministic process in the SC:BW game engine;
taking this into account would add an additional layer of complexity
without being beneficial to comparing the agent systems. A solution
to this problem is to use ranged units, as they can target different
units without moving, and thus avoid this issue.

3.24 Ranged combat units. The implemented scenario specifi-
cally uses Marines®, as these units satisfy the previous requirement
and have been used before in research that also employs a SC:BW
combat situation [3, 9].

3.25 Unit placement. Following from the use of ranged units, a
related constraint is that all such units must be able to target each
other, which is satisfied by placing them on the map within each
others shooting ranges. The units are placed in a grid formation, as
illustrated in Figure 1.

http://www.teamliquid.net/blogs/519872- towards-a- good-sc-bot-p56-latency
3 http://www.starcraftai.com/wiki/Chance_to_Hit
4https://www.codeofhonor.com/blog/the- starcraft-path-finding-hack
Shttps://liquipedia.net/starcraft/Marine
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3.2.6 Army size. The upper limit to the size of a player’s army is
bound by the physical limitation of the number of marines that can
be placed in each others weapon range. The lower limit is partly
inspired by Hu et al. [9]. In this work, a 5-versus-5 scenario is
used, in which a 100% winrate is obtained by an Al implementation.
Such a one-sided outcome due to the low number of units used is
undesirable here, as the purpose of this experiment is to identify
differences between the organisational paradigms. Variance in the
outcome of the trials is thus desired; if all implementations reach
a 100% winrate without actually requiring (complex) multi-agent
teamwork, there is little to compare them on. Because it takes
7 shots to eliminate an opposing marine®, it is more interesting
to simulate a battle with at least more than 7 units in order to
observe intelligent decision making on shot allocation and inter-
agent coordination by the MAS. An army size of 10 fits within both
the lower and upper limit, and is thus used as the size of both armies
in this custom map.

Figure 1: Scenario setup. In red are the units controlled by
the MAS, in purple the ones controlled by the built-in AL
The red lines illustrate the current target of each red unit.

By considering all factors listed above, the variance that can arise
from the scenario implementation is reduced. The outcome of a trial
thus becomes more dependent on the type and implementation of
the organisational paradigm used, and less trials will be needed in
order to compare the impact of (only the) organisational paradigms.

3.3 Internal Randomness

One of the consequences of SC:BW not being a theoretical concept
but a practical scenario is the fact that there are random factors
introduced intentionally by the game in order to add variance (and
thus a challenge for human players), which cannot be controlled
for by using a custom map. There are three conditions that can
influence the targeting scenario as described here, namely the initial
orientation of units, their weapon cooldown after an attack, and
the way in which the enemy Al is controlled.

®Each marine has 40 hit points, and marines deal 6 damage per shot.
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3.3.1 Initial Orientation. When units initially spawn, they face
a random direction. As they might face away from an enemy and
need time to rotate towards that enemy, it can take up to 4 extra
frames before they can shoot their first shot’. In order to quantify
the impact of this random factor, in each trial the total initial number
of frames spent rotating towards the enemy targets is measured
for both the player and the enemy player. Section 6 analyses these
values and determines their impact.

3.3.2  Weapon cooldown. When a Marine shoots, the weapon
used will go on cooldown, i.e. the unit will not be able to attack for a
certain number of frames. These cooldowns are slightly randomised
by the game, and can differ [—1, 2] frames when compared to each
other. In order to prevent the weapon cooldowns from affecting
the comparability of our results, the number of trials for each MAS
was kept relatively high.

3.3.3 Opposing army control. The opposing army must always
be controlled in the same way, as otherwise an additional inde-
pendent variable would be introduced, i.e. the opponent’s strategy.
Through a setting in the map builder, control over the opposing
army is given to the built-in AI of SC:BW. The enemy army is
also subject to both the random initial orientation and weapon
cooldown, but the control system that decides their strategy now
remains constant.

3.4 Performance Strategy

The given combat scenario depends heavily on units killing enemy
units, and thus reducing the opponent’s total fighting power before
the inverse happens. As all units are in combat range of each other,
targeting is the only way to influence the outcome in this specific
scenario. A good targeting strategy is the No-OverKill-Attack-Value
(NOK-AV [3]) targeting selection. This targeting mechanism aims
to prevent wasting additional shots on a target once lethal damage
has been (or will be) applied. This can be done by keeping track of
damage inflicted for each unit and keeping track of their remaining
health. The point of not overshooting (i.e., to not overkill) is impor-
tant, as marines can only shoot one bullet at a time. If for example
three Marines decide to simultaneously shoot a unit that could have
been neutralised by one shot, there are effectively shots wasted that
could have been allocated to other targets. Naturally, this problem
only worsens for larger groups of units. The unit with the lowest
health is the easiest to neutralise, and consequently decreases the
overall force of the army fastest. For this reason, as specified by
NOK-AV, the lowest-health unit is the highest-value target and thus
prioritised, but by keeping track of the shots (going to be) fired on
this target NOK-AV also ensures switching focus to another target
once lethal damage has been (or will be) dealt.

4 METRICS

This section describes the performance metrics used for summaris-
ing the results of a performed trial of a MAS (using a specific
organisational paradigm) in the scenario as described in the previ-
ous section, as well as the software engineering metrics used for

"The orientation of a unit is described with a value in the range of
0 < orientation < 256. Marines have a turn rate of % per frame. Given that they can
turn both clockwise or counterclockwise, the worst-case turn duration is 4 frames.
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measuring the software engineering aspects of the implemented
agent systems.

4.1 Performance Metrics

In order to quantitatively measure the outcome in the described
scenario, providing insight into the effectiveness of the organisa-
tional paradigm used for an implementation, the following aspects
are taken into account:

(1) The number of surviving units (—10 < n < 10).
(2) The number of health points per surviving unit (array of
values 0 < v < 40).

For the first measurement, negative values indicate that the game
was lost, and thus how many units of the enemy force survived. The
number of surviving units is interesting on its own, as the ability to
let more (low health) units survive could for example be preferred
over having fewer (full health) units, depending on the situation.

From these two metrics, two additional aggregated metrics are
derived that can summarise the trial in two quantifiers. The first is
if the game is won (1 for victory or 0 for defeat), based on the sign
of the first metric. The second is the total remaining health, which
is computed by taking the summation of the total amount of health
points remaining for all units of the player (—400 < n < 400). This
derived metric can highlight how much health the organisational
paradigm has at the end of a trial, allowing for easy comparison
between the different organisational paradigms.

4.2 Software Metrics

In order to compare the implementations of the different organ-
isational paradigms, there is a need for measurements that can
aggregate the written software into something comparable. A way
to compare software is the use of software metrics, as they can be
used in practise to help characterise software systems [15]. Three
such metrics based on code statistic are: Average Lines of Code,
Average Number of Methods, and Average Cyclomatic Complexity.
Lanza and Marinescu [15] argue for the use of these metrics as they
are independent (i.e., when one of these metrics change the others
remain the same) and project independent (i.e., when the size of
the project increases or decreases the metrics do not). However, in
this work, we want to compare different implementation sizes too.
Therefore, switching the statistic based method Average Lines of
Code to Total Lines of Code provides more insight, as it relates the
total size of the implementations. With that adaptation, the metrics
are as follows:

(1) Total Lines of Code (LOC)
(2) Average Number of Methods (ANM)
(3) Average Cyclomatic Complexity (ACC)

In section 6, these metrics are reported and compared for all imple-
mentations.

5 MULTI-AGENT ORGANISATIONAL
PARADIGMS

A vast number of theoretical models of organisational paradigms
can potentially be applied in the described scenario [6, 11, 19]. In this
paper, we focus on paradigms that differ in the level of autonomy
and communication entailed by the organisational structure. The
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two factors are examined as illustrated in Figure 2. At the first
‘lowest’ level, all agents are autonomous individual entities that
do not communicate or take orders. The next autonomous level
allows communication between the entities, thus enabling agents
to choose to align their actions with other agents. As there is no
overarching entity in control, this is swarm-like behaviour. At
the halfway point for both communication and autonomy is the
market-based organisational paradigm. With jobs available for
agents to do, agents have some freedom to decide what tasks they
will perform, but ultimately they are taking orders as all tasks
have been created by a controlling agent. The last model is the
hierarchical paradigm with no autonomy and communications for
its agents. In this ‘fully hierarchical’ (or top-down) paradigm,
a tree-based structure is used in which each agent does as it is
instructed by its parent node. We note that ‘level of autonomy’ as
used here is similar to the inverse of the ‘level of hierarchy’ as used
by Livingstone [17].

Swarm

Level of Communication

Hierarchical

Level of Autonomy

Individual

3
>

Figure 2: An overview of the four organisational paradigms,
illustrating the level of autonomy and level of communica-
tion inherent to each approach.

5.1 Individual

The individual organisational model allows no communication
between agents. Figure 3 displays the organisational structure of
the Individual-based Multi-Agent paradigm. The main benefit of
this style is that there is no overhead in maintaining this paradigms
as agents are added or removed. Additionally, behaviour only needs
to be implemented from the point of view of a single agent, and in a
homogeneous setting, this behaviour can then be copied to all other
agents. The downside is that as communication is not possible, the
agents cannot easily coordinate to use team strategies. However, as
agents can still perceive the environment, they can observe what
their allied agents are doing and alter their own behaviour based
on that in order to benefit the overall strategy.

As described in section 3.4, ideally agents target high-value tar-
gets first. This can be implemented by searching through the health
values of all enemy units to find the unit(s) with the lowest amount
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Environment

Environment
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Agent 1 Agent 2 Agentn

Figure 3: Individual based Multi-Agent Paradigm

of health points (HP). When all allied units employ this behaviour,
they will thus focus on eliminating that unit. When all enemy units
have the same HP, the agents can decide who to target either ran-
domly or by the target locations to again show uniform behaviour.

The second part required to satisfy the performance strategy
from section 3.4 is to not waste additional resources on a target that
has already been defeated. Theoretically, the individual paradigm
would be able to fully fulfil this constraint, as each unit can see if a
target is still standing or not. In practice, however, the agents have
to deal with a latency of two frames. This latency can cause shots
to be wasted by the individual model if, at the moment an agent
decides on a target, another one has already started preparing his
attack with the lethal shot. An example of a situation in which this
occurs is if there is an enemy marine with almost no health points
remaining, and two allied marines are available to shoot. The first
marine will fire the shot, and if communication was possible, the
next one would receive an update of the game state and decide not
to shoot the same target. However, as there is no communication
in this paradigm, the second marine cannot know someone else
is in the process of shooting the enemy marine. This causes the
second marine to shoot the same target (at the same time) and
consequently waste one bullet.

5.2 Swarm

The swarm-based organisational model assumes no agent is ‘above
the others’ in the pecking order. All agents have equal control and
autonomously decide what to do. The main benefit of this paradigm
is that its decentralised approach is very resilient to the loss of
agents in a harsh environment [25]. Due to agent casualties in the
targeting scenario, SC:BW can be considered a harsh environment.

The downside is that because any agent can communicate with
any other agent, from an implementation perspective this is a lot of
extra work compared to the individual paradigm. In order to limit
the complexity of the multiple communication channels, a swarm
can be implemented using a blackboard [24]. With this method, each
agent in the swarm synchronously gets access to the blackboard in
a round-robin fashion [1]. First to read the state of the organisation,
and then to decide and post what it will do based on the state of the
swarm. Figure 4 displays the organisational structure where agents
can both read and write to a collective state and interact with the
environment.

In our scenario, each target unit is added to the blackboard if
not seen before. For each target, the number of shots required to
neutralise it is maintained and updated by the agents belonging
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Figure 4: Swarm-based Multi-Agent Paradigm

to the swarm. Agents pick the target with the lowest health and
then immediately decrease the health by the number of damage
it can apply. Even with this simplified model, issues can still arise
and influence the performance. For example, if an agent reads the
blackboard and decides to shoot at a unit, but dies before being able
to actually fire the shot, the rest of the swarm will assume this shot
was fired.

5.3 Market

A newer and increasingly popular approach to hierarchical multi-
agent systems is the so-called market-based approach. This ap-
proach has already found success in multiple fields such as con-
trolling electricity grids [12, 14] and other load-based problems
[10].

Environment

A

A 4
> Agent1 [€T—> ‘:’oduisoen < Market
> Agent2 [«
> - ]
—» Agentn [€— D |Z| |ZI

Figure 5: Market-based Multi-Agent Paradigm

In a market-based system, individual agents take decisions that
benefit themselves the most, i.e. maximising their utility, but the
choices they make are limited by what a central auction house has
to offer [11]. This abstraction offers a method to define constraints
on two levels: locally as an agent can choose what is the best for
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it at that moment, and globally as the auction house can define its
offers to benefit the task at hand. Furthermore, no communication
between individual agents is required. Figure 5 displays this archi-
tecture in which the market observes the environment and creates
available items or tasks that can be obtained. The auction house
can then make these items available for bidding to the agents that
control the marines, taking the overall strategy into account.

The market-based paradigm is modelled in our scenario as a
single auction house selling ‘shots’ on enemy targets as the product
(e.g., resource allocation), where low-health targets are offered
before high-health ones. Individual agents can then bid on these
products with an offer that scales with their weapon cooldowns.
The auction house will sell the products to the highest bidders, and
then start a new bidding round for the agents that did not get to
buy a product if they wanted one. This continues until there are
either no more products or no more buyers.

5.4 Hierarchical

The structure as seen in Figure 6, where a central Control Agent
decides the strategy and commands the agents it has control over, is
what we call the (fully) hierarchical model. In theory, this paradigm
functions like a tree, and can have multiple levels. Various existing
SC:BW Al bots make use of multi-layered hierarchical architectures
that have a middle layer that groups agents into squads [21]. We did
consider ‘squads’, which are similar to holarchies [5]. However, on
the limited army size used, the paradigm would add more overhead
than benefits.

Environment

Agent1 [«
Agent2 (€
Control |
Agent
________ (____
Agentn [€

Figure 6: Hierarchical based Multi-Agent Paradigm

This experiment uses one level, where the control agent directly
commands the agents connected to the marines in the environment.
This top-down approach, together with the individual approach,
is the most simple in terms of implementation at the start, as only
one agent needs to be implemented. Only this agent needs to make
decisions, and as long as the task and environment are confined to a
single scenario, this offers a simple and effective abstraction. How-
ever, this structure does not quite scale, as a lot of decision making
has to be done in one place. If, for example, the environment would
have multiple tasks in multiple locations at potentially different
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time frames, a (top-down) hierarchical system quickly grows in
terms of complexity.

The experiment in this paper, however, entails a single-task
scenario, so it is valuable to compare the performance of this single-
layer hierarchical organisational structure. For the implementation,
the root node, i.e. the control agent, reads the whole environment.
Based on the state of all its sub-nodes and the target units, the
control agent selects the best targets for each individual agent (NOK-
AV) and orders them to target them for the next shot. These sub-
nodes are also agents, but they do not do any information processing
of their own; their only information is what target the control
agent ordered them to target. This approach does not require any
communication between individual agents either, except listening
to the control agent that is specifically introduced (similar to an
auction house in the market-based approach).

6 RESULTS

This section described how the agent systems were evaluated and
provides the results obtained from the experiment according to the
metrics as described in section 4.

6.1 Preparation

In this work, we created entities as cognitive bodies around the
in-game StarCraft units. These entities function as our agents, and
each are responsible for the (rational) control of one in-game unit.
Each agent is capable of executing tasks autonomously whilst com-
municating with the other agents. Agents that are not bound to
in-game units are also used in order to reason about the state of
the environment and (proactively) delegate MAS behaviour (e.g.,
the auctioneer in the market-based paradigm).

All multi-agent organisational paradigms have been implemented
using Java 8 and are built on top of BWMirror 8. There are a mul-
titude of specialised agent programming languages such as Jason,
2APL, GOAL, and others [2]. However, obtaining software metrics
from these specialised languages is not (yet) easily achievable. Java,
however, has a long history in the software development world and
has a multitude of source code analysis tools available. Moreover,
interfacing (cognitive) agent systems to StarCraft is not a trivial
task; the first work to this effect was published only very recently
[13]. In order to obtain fair comparisons of the software metrics,
each model is optimised with respect to those metrics.

Each system has full control over the allied units in the example
scenario map as defined in section 3.2. This is achieved by play-
ing on the game mode Use Map Settings, which is the game mode
that supports custom maps. Each MAS implementation (and thus
organisational paradigm) was run 1000 times. The results of each
run were stored according to the metrics as defined in section 4.
Every run has been executed on the same machine under identical
conditions.

6.2 Performance Metrics

In Table 1, the aggregated results of the performance metrics are
listed for each organisational paradigm.

The first column, Pyi,, shows the percentage of games won
out of the 1000 games in total. Because a change in Py, directly

8https://github.com/vjurenka/BWMirror
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Table 1: Performance metrics

Paradigm Pwin | Munits | Ounits | Hhp Ohp r-value
Individual 0.927 | 2.71 | 0.99 73.72 | 30.18 | 0.132
Swarm 0.920 | 2.70 1.00 71.63 | 30.54 | 0.125
Market 0.951 | 3.22 0.99 94.21 | 31.60 | 0.119
Hierarchical | 0.937 | 3.00 1.00 85.38 | 31.47 | 0.128

influences the numbers of the other columns, only the winning
trials were used to compute the values displayed in those columns,
thus allowing for objective comparisons between the paradigms.
The mean (pynits) and standard deviation (oypits) show the aver-
age number of units that survived a winning run. The next two
columns, pi, and oy, show the mean and standard deviation for
the aggregated total health of all surviving units. Higher values
indicate the organisational paradigm on average had more health
points remaining at the end of each winning run. The final column
displays the random orientation factor as discussed in section 3.3,
which can be analysed for correlation between the pypits to deter-
mine if the random initial orientation of each unit influenced the
outcome of a trial.

6.2.1 Performance. The winrates of each implementation are
within 4% of each other, but are significantly different, as determined
by one-way ANOVA (F = 5.847, p = .001). In order of winrate, the
swarm-based implementation had the lowest chance of winning
with 0.920 and also has the lowest health remaining for all units
at 71.63. The individual implementation has a similar winrate of
0.927 and a near identical average number of units surviving as the
swarm-based implementation. The hierarchical implementation
performs second best at a 0.937 winrate and also has a higher
average amount of surviving units at 3 compared to the 2.7 of
the swarm-based and individual implementations. The amount of
surviving units is also significantly different for each organisational
paradigm (F = 58.842,p = 0). The highest winrate is achieved by the
market-based implementation at 0.951, together with the highest
average number of units surviving. The third and final metric of
average health also has significant differences (F = 108.032, p = 0).
The market-based implementation has the highest average health
remaining at the end of 1000 trials.

6.2.2 Random Influence. In order to measure how significantly
the random factors as described in 3.3 influenced the results, the
initial orientations were captured for each unit. The total number
of frames required for turning towards the opposing army units
was tallied for both armies, and the difference is taken as the orien-
tation difference (e.g., if the MAS had to turn a total of 30 frames
for all units, and the enemy had to turn 34 frames, the orientation
difference is —4). The orientation difference and the amount of health
remaining for the organisational paradigm of each trial are plotted
against each other in a scatter-plot as seen in Figure 7. For each
paradigm, the horizontal axis is the orientation difference and the
vertical axis the amount of health remaining. Based on the r-value
(the statistical value for the relationship between the two plotted
variables), it is safe to conclude that there is no significant cor-
relation between the random orientations and the outcome of a
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individual orientation impact (r-value: 0.132) swarm orientation impact (r-value: 0.125)

Health remainin

o
Orientation difference

Figure 7: Scatter plots of the orientation difference between
both armies vs. the remaining health for the 4 MAS.

trial®. As each organisational paradigm shows a similar r-value, the
amount of influence this randomness introduces is, as expected,
equal for each paradigm. Because the average measured orientation
difference over all trials for each MAS was less than 0.2, this factor
can be safely ignored.

6.3 Software Metrics

In Table 2, the collected software metrics are given for each or-
ganisational paradigm. The metrics were determined by using the
program SourceMonitor!?.

Table 2: Software metrics

Paradigm LOC | ANM | ACC
Individual 91 2.5 1.90
Swarm 137 3.0 1.56
Market 215 3.2 1.51
Hierarchical | 152 2.3 3.78

For the total amount of lines of code (LOC), the largest difference
is between the individual and market-based implementations with
91 and 215 respectively. The larger code size for the market-based
implementation is inherent to its core design; the market-based im-
plementation requires additional code for the auction house and the
products it sells. In contrast, the individual implementation requires
almost no extra code as only one agent needs to be implemented.
The swarm-based and hierarchical implementations sit in between
with 137 and 152 lines of code, where the blackboard and the con-
trolling agent lead to the extra code that these implementations
require respectively.

9 A larger negative orientation difference value (e.g. —10) would indicate that the other
army has to turn more, and thus waste time turning instead of shooting. If there was a
strong correlation between turning time and the health remaining, we would expect
to see the health decrease as the orientation difference increases. This can not be

concluded from the scatter plots, so we can assume little to no correlation exists.
Ohttp://www.campwoodsw.com/sourcemonitor.html
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An independent-samples t-test shows that the average number of
methods (ANM) metric results can be split into two groups (£(2) =
4.95, p = .038): the individual and hierarchical implementations
with 2.3 and 2.5 methods on average, and the swarm-based and
market-based implementation with 3.0 and 3.2 methods on average.
This small difference likely comes from the fact that both the swarm-
based and market-based implementations require data classes: the
blackboard and the product respectively.

The ACC metric has one outlier: the hierarchical implementation,
with a value of 3.78. This higher average complexity (ACC) is due
to the control agent needing to track all of the agent states and
making decisions for them. The market-based and swarm-based
implementations, however, offer layers of abstraction that reduce
the overall ACC, which explains their slightly lower ACC compared
to the individual implementation.

7 DISCUSSION

In this paper, we implemented 4 different multi-agent systems based
on well-known organisational paradigms from literature. These
multi-agent systems where evaluated based on various performance
and software metrics in order to give insight into the differences
between the according organisational paradigms. Based on the
results provided by the metrics, this section interprets and describes
the identified differences between the organisational paradigms.

The market-based and hierarchical approaches use some kind of
central processing agent that can calculate performance strategies
using the larger picture, as it has knowledge and control of the field
agents. Based on an independent-samples t-test on piynits (£(3691) =
12.299, p = 0), it can be concluded that when having a central
control agent the MAS loses fewer units, and so the chance of
survival for an agent with less autonomy increases. However, when
looking at software engineering metrics, it can also be concluded
that these systems are more complex (in one way or another). The
market implementation uses the most lines of code (215) and the
hierarchical implementation has double the average cyclomatic
compared to the other implementations (3.78). The hierarchical
organisational paradigm becomes exponentially hard to scale when
more factors, battles or units types are added as they will only
increase the cyclomatic complexity further.

The main difference between the individual and swarm-based
implementations is minor but crucial. Agents in the individual im-
plementation base their actions on what they observe, whilst agents
in the swarm-based implementation can rely on information being
exchanged between them. The main challenge for individual ap-
proaches is dealing with the delay from observing the environment,
whereas swarm-based approaches have the added complexity of
handling communication. In this scenario specifically, with a minor
latency of two frames, it can be concluded based on the very simi-
lar win percentages, units alive and unit health points remaining
metrics of individual and swarm!!, that there is no benefit to
sharing target information and investing time into a shared
blackboard. With more latency, allied units have more frames
in which they could falsely conclude that an already neutralised
target is still alive. We therefore hypothesise that if the latency

1 An independent samples T-test indeed shows no significant differences between
individual and swarm on any individual metric.
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increases, the swarm-based organisational paradigm will perform
better compared to the individual paradigm.

Another distinction can be made between the individual and
hierarchical implementations compared to the swarm-based and
market-based implementations. The former not having to deal with
any communication (the hierarchical implementation does not en-
tail interaction between agents except for unconditionally follow-
ing orders originating from one source), whereas both the swarm-
based and market-based approaches are based on collaboration
that adds implementation complexity for the communication pro-
tocols that may or may not be worth the time (i.e., careful attention
needs to be given to make sure tasks are distributed synchronously
in order to prevent duplicate or unassigned tasks). When look-
ing at the data, we can see that the variance oy, is lower for the
communication-less paradigms, i.e. when the complexity of commu-
nication is avoided. Moreover, independent-samples t-tests show
that the average amount of units (¢(3691) = 3.363,p = .001) and
the average amount of health (¢£(3691) = 3.436, p = .001) is sig-
nificantly higher for the paradigms employing (inter-agent)
communication. However, such communication does not have
a direct effect on the winrate; the hierarchical paradigm ‘avoids’
communication effectively by directly commanding all units. Fi-
nally, as seen from the software metrics, the market-based and the
swarm-based implementations have a higher-than-average num-
ber of methods and contain more lines of code than the individual
implementation.

In conclusion, the data suggests that for this scenario, more au-
tonomy or more communication does not necessarily help.
The middle ground approach of the market-based paradigm, how-
ever, stands out by having a better performance for all measured
metrics, although at the cost of more implementation effort.

Future Work. The experiments as discussed in this paper are
limited to one scenario. In future work, additional factors such as
multi-tasking and adaptive capabilities could be explored. To this
end, one could devise a scenario with multiple simultaneous battles.
We predict that the individual and swarm-based solutions will
require almost no modifications, the market-based implementation
will need minor changes to the utility functions on the local and
global level, and the hierarchical MAS will require a major rewrite
or the addition of a new layer of controlling agents. At this scope,
the transition to a holon-based approach could be beneficial.

Another approach would be to repeat the experiment in similar
scenario in another RTS game, or another similar environment with
either more or less latency. This could (dis)prove our hypothesis
about the effect of this latency on the swarm-based approach.

Finally, when tools that can calculate software metrics on (cogni-
tive) agent programming languages are available, re-implementing
the four multi-agent systems in one of these languages could pro-
vide more insight into the effects of using such dedicated languages.
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