
Supple: Multiagent Communication Protocols with Causal Types
Akın Günay

Lancaster University
Lancaster, UK

akingunay@gmail.com

Amit K. Chopra
Lancaster University

Lancaster, UK
amit.chopra@lancaster.ac.uk

Munindar P. Singh
North Carolina State University

Raleigh, USA
singh@ncsu.edu

ABSTRACT
A (communication) protocol captures how agents collaborate by
specifying the messages they exchange. In particular, since the
information content of messages characterizes the interactions
a protocol specifies, message types can improve collaboration by
strengthening the specification of what each agent may legitimately
expect from another agent. In addition, in implementations, typing
information can enable improved verification of agents.

We introduce Supple, a protocol specification language that ex-
presses message schemas with typed parameters. Supple enables
definition of causal types for parameters that constrain how other
parameters are computed in a protocol enactment. We give the
formal semantics of Supple; characterize the liveness and safety of
Supple specifications; and provide decision procedures for them.

KEYWORDS
Communication protocols; Agent communication
ACM Reference Format:
Akın Günay, Amit K. Chopra, and Munindar P. Singh. 2019. Supple: Mul-
tiagent Communication Protocols with Causal Types. In Proc. of the 18th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), Montreal,
Canada, May 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Motivation Our setting is a decentralized multiagent system
(MAS) of agents communicating via asynchronous messaging. Each
agent is autonomous—acts on behalf of some real-world principal.
The agents are heterogeneous—each is independently implemented
or configured. Successful collaboration in such a setting requires
precise specification of each agent’s expectations of the others,
which is naturally accomplished via norms [13, 26, 31].

But how can agents realize their collaboration based on norms
despite decentralization? A protocol captures how agents communi-
cate separately from their internal decision making, e.g., in health-
care [17] and finance [19]. Prevalent protocol languages focus on
control flow concerns such as message ordering and occurrence,
facing an impedance mismatch with message meaning.

In contrast, we posit that to effectively support norms a protocol
must precisely characterize the exchange of information pertinent
to norms and avoid, which are extraneous to meaning [11, 25, 27].
Information-oriented languages [30, 34] address this challenge but
suffer from weak type support. We introduce stronger type support,
while retaining the asynchronous enactments.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 2019, Montreal,
Canada. © 2019 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Problem As our running example, we adopt an insurance auditing
scenario. In healthcare, HIPAA (US) and NHS (UK) specify auditing
protocols involving several stakeholders. In our scenario, the agents
involved are a subscriber S, insurer I, and auditor A. S buys policies
from I which it uses to make claims; A requests reports from I for
auditing, which list the claims that were paid out but for less than
the initial claimed amount.

A protocol language must deal with three collaboration failures.
One, liveness failure: the insurer may lack the information needed
to compute a report. Two, integrity failure: the report does not
contain all and only the correct results. Three, safety failure: agents
face a race situation where each attempts to produce authoritative
results for the same request.

Our problem is how can a protocol language support statically
verifying the absence of the above failures? And, how can we re-
late the structure of communication in a MAS to the structure of
information exchanged between agents.

Approach Our proposed language, Supple, builds on the intuition
that communication both produces and is constrained by informa-
tion. Supple introduces causal types for parameters as first-class
language elements that constrain how other parameters are com-
puted in a protocol enactment. A causal type specifies the type of
information on which a computation is performed, and the type
of information the computation yields. For example, a causal type
may specify a computation that can be applied to the claimed and
paid amounts of an insurance policy to compute the total payable
amount of the policy. The auditor may send a request for a report
including a function of the above causal type to express the selec-
tion criteria for the claims to be considered in the report and the
type of information to be reported for those claims.

Supple yields three main benefits. First, agents may enact the
same protocol instantiated with different functions to produce dif-
ferent report types. Second, agents can be verified against those
types. Third, protocols can be verified taking parameter types into
account. For example, if a protocol enables the auditor to send a
function of the above causal type to the insurer, it must enable the
insurer to acquire the necessary information to apply the function
during the enactment. Otherwise, the protocol is incorrect. Parame-
ter types enable static checking of protocols to prevent such errors
even though a function may be formulated at run time.

Literature Existing protocol specification approaches inadequately
specify what information may be exchanged through a protocol,
leading to ad hocmethods to ensure correctness. Several approaches
capture control flow: UML sequence diagrams [6], session types
[23], WS-CDL [35], RASA [21]) and 2CL [5], but none captures
information flow. FIPA [15] adds ontology annotations to mes-
sages but doesn’t relate information across messages. Günay et al.
[16], assign meanings to messages but don’t specify the underlying

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

781

message content precisely. Chopra et al.’s [10] Splee incorporates
queries into protocols, e.g., to specify that the winner in an English
auction protocol is the highest bidder, but treats them as untyped
descriptive annotations outside of Splee’s formalization. Supple
shares some motivations with business artifacts and data-centric
models [8, 24], which combine information abstractions with pro-
cess. Montali et al. [22] address verification of commitment-based
MAS with queries. However, these works typically do not address
decentralization, treating a multiagent system as a single machine.

Baldoni et al. [4] formalize agent types to check compatibility
with commitment protocols. Damiani et al. [14] formalize type
soundness of MAS in terms of agents and artifacts [7]. Supple
focuses on the complementary concern of specifying a protocol
independently of agent reasoning to promote loose coupling among
agents. In decentralized MAS, a protocol must handle loosely cou-
pled, asynchronous communication whereas the above approaches
require a shared memory that indirectly induces tight coupling
between the agents.

Contributions Supple provides (1) a language for enriched pro-
tocol specification; (2) a novel definition of safe and live proto-
cols; and (3) associated verification algorithms. Supple’s novelty
lies in introducing type abstractions for information in interaction
whereas existing work does not consider information modeling
of interactions. Supple’s significance lies in advancing interaction-
orientation: by specifying interactions in more detail, we can verify
protocols and agents without relying upon internal details. Expos-
ing implementations is anathema to engineering practice in any
setting and especially inapplicable in decentralized MAS.

2 BACKGROUND
We introduce information-based protocols by example. BSPL [28]
specifies protocols declaratively, constraining message via causal-
ity and integrity, and omitting control structures (e.g., sequencing,
branching, iteration). Listing 1 shows a BSPL protocol, CreatePolicy,
to create an insurance policy between an insurer (I) and a subscriber
(S). It declares three public parameters, pID (the protocol’s key),
premium, and date. A tuple of bindings for the public parameters
implies a complete enactment of the protocol. A protocol’s roles
and public parameters represent its interface for purposes of compo-
sition. Given a protocol, the bindings of public parameters adorned
pinq must be supplied from the enactment of some other protocol;
of those adorned poutq must be generated by enacting the protocol;
and of those adorned pnilq must neither be supplied nor generated.
A message schema is the special case of an atomic protocol. All
parameters of CreatePolicy are poutq, meaning that their bindings
are generated by enacting CreatePolicy.

Listing 1: A protocol to create an insurance policy.
Cr e a t e Po l i c y {
r o l e I , S
p a r a m e t e r o u t pID key , o u t premium , o u t date
I 7→ S : o f f e r [o u t pID , o u t premium]
S 7→ I : a c c ep t [i n pID , i n premium , o u t agreed]
S 7→ I : r e j e c t [i n pID , i n premium , o u t date]
I 7→ S : c r e a t e [i n pID , i n premium , i n agreed , o u t date]

}

CreatePolicy declares four message schemas. The ordering of
message schemas in a protocol listing is irrelevant to their oper-
ational ordering in an enactment. The message offer is directed
from the insurer to the subscriber to offer a new policy. Its two
parameters are adorned poutq, meaning that their bindings must be
produced by the insurer when emitting an offer message. In accept,
the parameters pID and premium are adorned pinq, meaning that
the subscriber must know the bindings of these parameters from
prior messages (e.g., offer) to emit accept. Each protocol and mes-
sage must have a key. The key parameters of a protocol are also key
parameters of its messages. Bindings of all parameters are unique
for each binding of the key parameters. Note that date is adorned
poutq in reject and create. Hence, in any enactment of CreatePolicy,
either only reject or only create can be emitted to ensure integrity.

Figure 1 shows two valid enactments of CreatePolicy with bind-
ings of the message parameters. In Figure 1a, the subscriber accepts
the insurer’s offer and in Figure 1b, the subscriber rejects the offer.

I S
offer[1, 10]

accept[1, 10, O
K]

create[1, 10, OK, 1.1.2018]

(a) S accepts offer.

I S
offer[2, 20]

reject[2, 20, 3.5.20
18]

(b) S rejects offer.

Figure 1: Valid enactments of CreatePolicy.

Listing 2 illustrates protocol composition. ReportPolicy refer-
ences CreatePolicy via its public parameters, and adds twomessages.
Here, rID identifies report instances, and forms a composite key
with pID to associate multiple policies with a report. The auditor’s
request for a report is captured as request, where amount indicates
the minimum premium amount the insurer should report. BSPL
enforces no constraints besides integrity on parameter bindings.
Hence, although amount is meant as a criterion to filter the reported
policies, ReportPolicy does not capture this intuition: ReportPolicy’s
enactments may include a report for any known pID.

Listing 2: Reporting insurance policies to an auditor.
Repo r t P o l i c y {
r o l e I , A
p a r a m e t e r o u t r ID key , o u t pID key , o u t amount , o u t

i n f o
C r e a t e Po l i c y (I , S , o u t pID key , o u t premium , o u t date)
A 7→ I : r e qu e s t [o u t rID , o u t amount]
I 7→ A : r e p o r t [i n rID , i n pID , i n amount , i n premium ,

o u t i n f o]
}

3 TYPES IN SUPPLE
The failure of Listing 2 to capture the desired constraint on report
highlights the need for a protocol language that provides language
support for information dependencies more generally than BSPL.
Specifically, BSPL supports poutq–pinq causal dependencies. How-
ever, it ignores pinq–poutq dependencies that would be needed
to correctly link the requested minimum premium amount in re-
quest with the information in report. In the section, we introduce

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

782

the notion of causal types, which enables specifying pinq–poutq
dependencies.

3.1 Atomic and Composite Causal Types
In Supple, each parameter with its adornment constitutes a distinct
causal type and may have a binding conforming to its type. For
example, in Listing 1, we interpret out pID and in pID, and out
premium and in premium as distinct causal types.

Whereas a data type in traditional languages defines how a value
may be interpreted by an application (e.g., premium is money in
Euros), a type in Supple defines the flow of information in a protocol.
We disregard data types since they are well-known (assume they
are strings throughout) and reserve the term “type” for causal types.

In Supple, the possible bindings of a type whose adornment is
poutq include any possible binding (i.e., any string). For instance,
the parameter premium can be bound to any string by the insurer
when emitting offer, since the type of the parameter is out premium.
Conversely, the possible bindings of a type for which the adornment
is pinq, depend on the existing bindings of the types, which share
the same parameter component, in all enactments. For instance, the
possible bindings of parameter premium in accept depend on the
existing bindings of the premium parameters in all messages.

A type is atomic when it consists of a single pair of adornment
and parameter components. A type may be a composite of multiple
atomic types. Protocols (and messages) have composite types over
their parameters’ types. For example, offer’s type in Listing 1 is the
composite type (out pID, out premium) with respect to the types of
its parameters (i.e., pID and premium). Note that an atomic type
is a special case of a composite type. We omit parentheses where
appropriate, as in out premium, reduce clutter.

3.2 Causal Type of a Computation
Our main focus is the notion of the causal type of a computation,
which we denote as T : I → O, where T is a name, and I and O
are composite types. I defines the type of information on which the
computation is performed and O defines the type of information
the computation yields. For instance, a computation whose type
is c: (in pID, in premium)→ (out c.pID, out c.premium, out c.info) is
performed on the information, whose type is (in pID, in premium),
yielding the information, whose type is (out c.pID, out c.premium,
out c.info). Note that in pID and out c.pID (and similarly in premium
and out c.premium) are different types.

The causal type of a computation enforces certain constraints
on the type of information the computation yields with respect to
the type of information on which the computation is applied.
Constraint 1: The atomic types that form a composite type I
must have pinq as their adornment because I defines the type of
information on which the the computation is performed. Hence,
this type of information must be known to the agent at runtime,
which is signified by the pinq adornment.
Constraint 2: If there is an atomic type t in I whose parameter
component is p (e.g., pID), and there is an atomic type t ′ in O whose
parameter component includes p prefixed with T (e.g., c.pID), then
(1) t ′ must have an poutq adornment, and (2) the bindings of t ′
that are computed must be a subset of the existing bindings of t
when the computation is performed. That is t ′ is a dependent type

on t . This pinq–poutq dependency, which is not captured in BSPL,
enables us to specify the causal type of computations that perform
information filtering, which we explore in Section 3.3.
Constraint 3: If there is an atomic type t ′ in O whose parameter
component is p without the prefix T (e.g., info without the prefix
c.), but there is no atomic type t in I whose parameter component
is p, then t ′ must have an poutq. This kind of a type enables us
to specify the production of new information as the result of a
computation and may be used to create mappings or aggregations,
which we explore in Section 3.3.

These constraints allow only certain adornments of atomic types
in I and O, which we can infer from the names of the atomic types.
Hence, we simplify the notation of causal types as follows. Using
Constraint 1, we drop pinq adornments from the atomic types in
I. Using Constraint 2, we drop poutq adornments and use of T as
a prefix of atomic types in O. Using Constraint 3 we drop poutq
adornments of atomic types in O. As a result, in the rest of the paper,
instead of c: (in pID, in premium)→ (out c.pID, out c.premium, out
c.info) we write c: (pID, premium)→ (pID, premium, info).

Listing 3 shows a Supple protocol that uses the causal type c:
(pID, premium) → (pID, premium, info) for a computation in our
scenario. The parameter c, whose type is c: (pID, premium)→ (pID,
premium, info) with the adornment poutq is used in the message
request to indicate the type of computation that the auditor requests.
When emitting request, the auditor can bind the parameter c to any
computation conforming to its type. The adornment of c in report
is pinq, meaning that the insurer must know the computation that
is bound to c in order to send an instance of a report.

Supple is indifferent to themeaning of parameter bindings. Hence,
the binding of c can be anything (e.g., a query or constraint) that the
agents can interpret as a computation. Type conformance verifica-
tion methods are out of our scope but program analysis techniques
or run-time verifiers [29] can possibly support verification.

Listing 3: Capturing causal types of computations.
R e p o r t P o l i c i e s V i aC o n s t r a i n t {
r o l e I , A
p a r a m e t e r o u t r ID key , o u t ⟦c⟧
type c : (pID , premium)→ (pID , premium , i n f o)
C r e a t e P o l i c y (I , S , o u t pID key , o u t premium , o u t date)
A 7→ I : r e qu e s t [o u t rID , o u t c]
I 7→ A : r e p o r t [i n rID , i n c , o u t ⟦c⟧]

}

Supple introduces ⟦⟧ notation to refer to the yielding composite
type (i.e., O in T : I → O) of a computation. For example, in
Listing 3, report includes ⟦c⟧, which corresponds to the composite
type (out c.pID, out c.premium, out c.info).

3.3 Causal Computation Patterns
We introduce major patterns that occur in a variety of applications.

3.3.1 Filter. Filter selects a subset of a parameter’s known bind-
ings according to the criteria defined in a computation. For example,
the auditor may request the insurer report exactly the policies that
satisfy some premium criteria (e.g., below a specified amount). List-
ing 4 shows ReportPremium, in which the parameter c is used to
define computations to represent such criteria. Listing 5 shows
such a computation specified as a (simplified SQL), which can be

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

783

assigned to c by the auditor for requesting only the policies with
premiums between 50 and 100.

Listing 4: Reporting premiums of selected policies.
ReportPremium {
r o l e I , A
p a r a m e t e r o u t r ID key , o u t ⟦c⟧
type c : (pID , premium)→ (pID , premium)
C r e a t e Po l i c y (I , S , o u t pID key , o u t premium , o u t date)
A 7→ I : r e qu e s t [o u t rID , o u t c]
I 7→ A : r e p o r t [i n rID , i n c , o u t ⟦c⟧]

}

In Filter, the computation yields a dependent type of its input. Let
K and P be the types of key and non-key parameters, respectively.
Filter is represented by the following type definition:

(K , P) → (K , P)

Listing 5: Example query in SQL to filter policies.
SELECT C r e a t e Po l i c y . pID AS pID

C r e a t e Po l i c y . premium AS premium
WHERE 50 < C r e a t e Po l i c y . premium < 100

3.3.2 Map. Map transforms bindings of a tuple of parameters
yielding new bindings for another tuple of parameters. For instance,
the auditor may request the insurer to report its debt for each claim,
which is the difference between the claimed and the paid amounts.
Listing 6 defines ReportClaimDebt referring to MakeClaim, which
makes a claim for an existing policy (identified by pID), and pro-
duces bindings of cID (claim’s key), claimed, and paid amounts. In
ReportClaimDebt, the insurer’s debt for each claim (i.e., cDebt) is
computed using claimed and paid according to the computation
that is bound to c (i.e., the claimed and paid amounts of each claim
in each policy are mapped to the debt for the corresponding claim).
Note that the outcome of c includes pID, which is needed to asso-
ciate the computed debt for a claim with the corresponding policy.

Listing 6: Reporting insurer’s debt per claim.
ReportCla imDebt {
r o l e I , A
p a r a m e t e r o u t r ID key , o u t ⟦c⟧
type c : (pID , cID , c la imed , pa id)→ (pID , cID , cDebt)
C r e a t e P o l i c y (I , S , o u t pID key , o u t premium , o u t date)
MakeClaim (S , I , i n pID key , o u t cID key , o u t c la imed ,

o u t pa id)
A 7→ I : r e qu e s t [o u t rID , o u t c]
I 7→ A : r e p o r t [i n rID , i n c , o u t ⟦c⟧]

}

Let K be a the type of key parameters, and P and R be the types
of non-key parameters. Map corresponds to the type:

(K , P) → (K ,R)

3.3.3 Reduce. Reduce yields bindings for a parameter by aggre-
gating another parameter’s bindings. For instance, the auditor may
want to know the total debt of an insurer for each policy, a solution
to which Listing 7 illustrates. In ReportPolicyDebt, the insurer’s debt
per policy is computed using the computation bound to c, which
assigns the insurer’s debt per policy to pDebt according to cDebt re-
ferring to ReportClaimDebt. Here, the key cID is not involved in the
yielding type of c, since the reduced debt information is associated
only with policies (and reports).

Listing 7: Reporting insurer’s debt per policy.

Repo r tPo l i c yDeb t {
r o l e I , A
p a r a m e t e r i n aID key , i n q , i n c , o u t ⟦c⟧
type c : (rID , pID , cID , cDebt)→ (rID , pID , pDebt)
ReportCla imDebt (I , A , o u t r ID key , o u t pID key , o u t

cID key , o u t cDebt)
I 7→ A : agg r ega t e [i n aID , i n c , o u t ⟦c⟧]

}

Let K1 and K2 be the types of key parameters, and P and R be
the types of non-key parameters. Reduce corresponds to:

(K1,K2, P) → (K2,R)

3.4 A Comprehensive Example
Listing 8 gives a comprehensive example that applies all of the
patterns introduced above, illustrating how the results of a compu-
tation may be used in another. In the example, the auditor requests
from the insurer reports on (1) its policies, using filter via c1; (2)
its debts for those policies, using map via c2; and, (3) its total debt
over those debts using reduce via c3.

Listing 8: Chaining computation results.
Repor t {
r o l e I , A
p a r a m e t e r o u t r ID key , o u t ⟦c3⟧
type c1 : (pID , premium)→ (pID , premium)
type c2 : (pID , c la imed , pa id)→ (pID , debt)
type c3 : (pID , debt)→ (t o t a lD eb t)
C r e a t e P o l i c y (I , S , o u t pID key , o u t premium , o u t date)
MakeClaim (S , I , i n pID key , o u t c la imed , o u t pa id)
A 7→ I : r e q P o l i c i e s [o u t rID , o u t c1]
I 7→ A : r e s P o l i c i e s [i n rID , i n c1 , o u t ⟦c1⟧]
A 7→ I : r eqDebts [i n rID , i n ⟦c1⟧ , o u t c2]
I 7→ A : r e sDeb t s [i n rID , i n c2 , o u t ⟦c2⟧]
A 7→ I : reqSum [i n rID , i n ⟦c2⟧ , o u t c3]
I 7→ A : resSum [i n rID , i n c3 , o u t ⟦c3⟧]

}

4 FORMAL MODEL AND VERIFICATION
Supple’s syntax enhances BSPL with causal types that constrain
bindings of parameters at runtime. The requisite computations may
be specified in any language that the concerned agents can interpret.
Computations may be specified at design time to accommodate
restricted situations such as in contracts or regulations.

Below, superscripts ∗ and + denote zero or more, and one or
more repetitions, respectively. Delimiters ⌊ and ⌋ identify optional
expressions. Cardinality constraints are left informal for readability.

Table 1: Supple’s syntax.

Protocol −→ Name {role Role+parameter ⌊Parameter ⌊key⌋ ⌋+

⌊Type∗ ⌋Reference+ }
Reference −→ Name(Role+ Parameter+) |

Role 7→ Role : Name[Parameter+] ⌊:: Attachment ⌋
Type −→ type Name : (Parameter+) → (Parameter+)
Attachment −→ (Parameter+) → (Parameter+){ComputationSpec }
Parameter −→ Adornment (Name | ⟦Name⟧ ⌊.Name ⌋)
Adornment −→ in | out | nil

A protocol declaration involves a name, two or more roles, one
or more parameters, zero or more type definitions, and one or more
protocol and message references. A protocol reference consists of
either (1) a name, one or more roles, and one or more parameters

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

784

of the referred protocol or (2) a (message) name, exactly two roles,
one or more parameters, and an optional computation attachment.
A type definition consists of a parameter name, and two tuples of
parameters. A computation attachment consists of two tuples of
parameters and a computation specification. A parameter either
consists of an adornment and a name or a name enclosed in double
brackets. The latter refers to the outcome of a bound computation
from which individual parameters can be accessed using the p·q
notation. An adornment is either pinq, poutq, or pnilq.

4.1 Semantics
Supple enhances BSPL’s semantics [30]. The main contribution of
Supple pertains to the specification of causal types. As a result,
message instances in Supple must satisfy the type of their schema,
meaning that each bindingmatches the type of the bound parameter.
Below, ®σ denotes a finite list, which can be treated in places as a
set, and ®σ ↓®γ denotes projection of ®σ on to the elements of ®γ .

Definition 4.1. A protocol P is a tuple ⟨n, ®x , ®p, ®k, ®q, F ,T ⟩, where
n is the protocol’s name and ®x , ®p, ®k, ®q are lists of roles, public pa-
rameters, key parameters, and private parameters, respectively,
such that ®k ⊆ ®p. F is a finite set of references, such that ∀f ∈
F : f = ⟨nf , ®xf , ®pf , ®kf ⟩ is a public projection of a protocol Pf =
⟨nf , ®xf , ®pf , ®kf , ®qf , Ff ,T ⟩ satisfying ®xf ⊆ ®x , ®pf ⊆ ®p ∪ ®q, and ®kf =
®pf ∩ ®k . T is a finite set of causal types, such that ∀t ∈ T : t =
⟨pt , ®ut , ®wt ⟩ satisfying pt ∈ ®p ∪ ®q, ®ut ⊆ ®p ∪ ®q, and ®wt ⊆ ®p ∪ ®q.

T formalizes causal types of the form T : I → O that we intro-
duce in Section 3.2. Specifically, in a type ⟨pt , ®ut , ®wt ⟩ ∈ T , pt , ®ut ,
and ®wt correspond to T , I, and O, respectively. For convenience,
we treat causal types as shared by all references of a protocol.

Definition 4.2. A message schema ps 7→ r : m ®p(®k)q is an atomic
protocol ⟨m, {s, r }, ®p, ®k, ∅, ∅, ∅⟩ with roles s and r , and no references.

Definition 4.3. A message instancem[s, r , ®p, ®v] associates a mes-
sage schema ps 7→ r : m ®p(®k)q with a list of values, where | ®v | = | ®p |.

Definition 4.4. A universe of discourse (UoD) is a pair ⟨R,M⟩
where R is a set of roles, andM is a set of message names, each
with its parameters, and sender and receiver roles from R.

Definition 4.5. The history of a role x , Hx , is a sequence of mes-
sage instancesm1,m2, . . ., each emitted or received by x .

A role’s history captures the local view of the role with respect
to the message instances that are sent and received by the role.

Definition 4.6 captures when a messagem is viable in the history
of role x . Below we use ®pI and ®pO for the lists of pinq and poutq
adorned parameters, respectively, and ®p⟦⟧ is the list of causal type
parameters, which are enclosed in ⟦⟧ (i.e., the computation that is
bound to the causal type parameter is performed to yield bindings
of parameters in the outcome of its type definition). Intuitively, (1)
ensures thatm is either sent or received by x ; (2) ensures thatm
does not violate uniqueness of parameter bindings; (3) ensures that
x knows the bindings of all pinq adorned parameters and does not
know the bindings of any poutq or pnilq adorned parameter; (4)
ensures that a causal type parameter is bound to a computation
before the computation yields bindings; (5) ensures that, if p is a

causal type parameter that is bound to a computation, x knows
the bindings of every parameter in ®u, before emitting the message
with the outcome of the computation that is bound to p—which
satisfies Constraint 1 in Section 3.2; and (6) ensures that for every
parameter p in ®w , if there is a parameter u in ®u whose base name is
equal to p, then the bindings of p must be a subset of the known
bindings of u—which satisfies Constraint 2 in Section 3.2. In (6)
base returns the unqualified name of a parameter (i.e., base(p) = p,
and base(p.q) = q). Note that Definition 4.6 satisfies Constraint 3
from Section 3.2 implicitly via (2) and (3), which ensure that poutq
adorned parameters are bound preserving integrity.

Definition 4.6. A message instancem[s, r , ®p, ®v] with key param-
eters ®k ⊆ ®p is viable at role x ’s history Hx iff these hold:

(1) r = x (reception) or s = x (emission)
(2) ∀mi [si , ri , ®pi , ®vi] ∈ Hx : if ®k ⊆ ®pi and ®vi ↓®k= ®v ↓®k then
®vi ↓ ®p∩®pi= ®v ↓ ®p∩®pi (messages respect keys)

(3) ∀p ∈ ®p : p ∈ ®pI iff (∃mi [si , ri , ®pi , ®vi] ∈ Hx & p ∈ ®pi &
®k ⊆ ®pi)

(4) ∀p ∈ ®p : if p ∈ (®pO ∩ ®p⟦⟧) then ∃mi [si , ri , ®pi , ®vi] ∈ H
x and

p ∈ ®pi and ®k ⊆ ®pi .
(5) ∀p ∈ ®p : if p ∈ ®p⟦⟧ and ⟨p, ®u, ®w⟩ ∈ T then ∀ui ∈ ®u :

∃mi [si , ri , ®pi , ®vi] ∈ H
x and ui ∈ ®pi and ®k ⊆ ®pi

(6) ∀p ∈ ®p : if ⟨q, ®u, ®w⟩ ∈ T and p ∈ ®w and u ∈ ®u and base(p) =
base(u) then ∃mi [si , ri , ®pi , ®vi] ∈ H

x and ®k ⊆ ®pi and ®vi ↓®k=
®v ↓®k and ®vi ↓u= ®v ↓p

An enactment of a protocol is a vector of its roles’ histories.

Definition 4.7. Let ⟨R,M⟩ be a UoD. A history vector over ⟨R,M⟩
is [H1, . . . ,H |R | , such that ∀s, r : 1 ≤ s, r ≤ |R| ⇒ H s is a history
and (∀m[s, r , ®p, ®v] ∈ H r : m ∈ M andm[s, r , ®p, ®v] ∈ H s).

Definition 4.8. A history vector is viable if and only if each of its
histories is empty or it arises from the addition of the emission or
reception of a viable message by any role to a viable history vector.

Definition 4.9. Let ⟨R,M⟩ be a UoD. The universe of enactments
UR,M for ⟨R,M⟩ is the set of viable history vectors with exactly
|R | dimensions over the instances of messages inM.

Definition 4.10. The intension of a message schema ps 7→ r : m
®p(®k)q for the UoD ⟨R,M⟩ is ([s 7→ r : m ®p(®k)])R,M = {H |H ∈

UR,M and ∃®v, i, j : H s
i =m[s, r , ®p, ®v] and H

r
j =m[s, r , ®p, ®v].

Definition 4.11. Let P = ⟨n, ®x , ®p, ®k, ®q, F ,T ⟩ be a protocol. The
intension of P for the UoD ⟨R,M⟩ is ([P])R,M = (∪cover(P,G)
(∩Gi ∈G ([Gi])R,M)) ↓®x , where cover(P,G) ≡ G ⊆ F such that
∀p ∈ ®p : (∃Gi ∈ G : Gi = ⟨ni ,xi ,pi ⟩ and p ∈ ®pi).

Definition 4.12. Let P = ⟨n, ®x , ®p, ®k, ®q, F ,T ⟩ be a protocol. The
universe of discourse of P is UoD(P) = ⟨roles(P),msgs(P)⟩, where
roles(P) = ®x ∪ (∪i roles(Fi)) and msgs(P) = ∪iFi .

4.2 Liveness and Safety
Liveness and safety are key correctness properties of protocols. A
protocol is live if every enactment of the protocol can be completed
by producing bindings for all public parameters. A protocol is safe
if no key constraint is violated in any enactment.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

785

Definition 4.13. A protocol P is live if and only if each history
vector in UoD(P) can be extended by finitely many message emis-
sions and receptions to a history vector in UoD(P) that is complete.

Definition 4.14. A protocol P is safe iff all key constraints apply
across all histories in each history vector in ([P])UoD(P).

Liveness and safety in Supple go beyond those of BSPL. In Supple,
liveness requires, if there is causal type parameter that is bound
to a computation, the role who performs the computation, must
know the bindings of the parameters on which the computation
is performed. For instance, consider LivenessFailure in Listing 9,
which is a variant of ReportClaimDebt in Listing 6.
Listing 9: Liveness fails for variant of ReportClaimDebt.

L i v e n e s s F a i l u r e {
r o l e I , A , S
p a r a m e t e r o u t r ID key , o u t ⟦c2⟧
type c1 : (pID , cID , c la imed , pa id)→ (pID , cID , cDebt)
type c2 : (pID , cID , comp la in t)→ (pID , cID , cDebt)
/ / C r e a t e P o l i c y and MakeClaim as b e f o r e
A 7→ I : a ud i tRepo r tReque s t [o u t rID , o u t c1]
I 7→ A : aud i tRepo r t [i n rID , i n c1 , o u t ⟦c1⟧]
S 7→ A : comp la in tSubmi s s i on [o u t rID , o u t comp la in t]
A 7→ I : c omp la in tRepo r tReques t [i n rID , o u t c2]
I 7→ A : comp la in tRepo r t [i n rID , i n c2 , o u t ⟦c2⟧]

}

LivenessFailure includes an additional causal type c2 and new
messages complaintSubmission, complaintReportRequest, and com-
plaintReport to capture the scenario where a subscriber makes a
complaint about a policy to the auditor, and the auditor requests a
report from the insurer about the policy that is subject to the com-
plaint. The type definition of c2 requires complaint to be available
to the insurer. However, complaint appears only in complaintSub-
mission, which is sent from the subscriber to the auditor. Thus, the
insurer can never send a complaintReport in any enactment where it
receives a complaintReportRequest message. Note that some enact-
ments of LivenessFailure can be completed, e.g., enactments where
the auditor sends a auditReportRequest, which does not refer to c2.
This protocol would be live if complaint were included as an pinq
parameter in complaintReportRequest.

Safety of a protocol means that each of its enactments ensures
integrity of the information exchanged. Safety may be violated if
two or more roles (1) as in BSPL, may bind the same parameter; or
(2) as added by Supple, concurrently perform the computation that
is bound to a causal type parameter. For instance, SafetyFailure in
Listing 10, where the auditor requests the total claimed amount for
a policy from both insurer and subscriber, is unsafe.

Listing 10: Safety failure.
S a f e t y F a i l u r e {
r o l e I , A , S
p a r a m e t e r o u t r ID key , o u t ⟦c⟧
type c : (pID , cID , cClaim)→ (pID , pClaim)
/ / C r e a t e P o l i c y and MakeClaim as b e f o r e
A 7→ I : r e qTo t a lCa l im I [o u t rID , o u t c]
A 7→ S : r eqTo ta lC l a imS [i n rID , i n c]
I 7→ A : r e pTo t a lC l a im I [i n rID , i n c , o u t ⟦c⟧]
S 7→ A : r epTo ta lC l a imS [i n rID , i n c , o u t ⟦c⟧]
}

Both repTotalClaimI and repTotalClaimS use the same computa-
tion, bound to c, to determine the total claims for a policy. However,
because of asynchrony, the same information is not available to all

parties and applying the same computation may produce different
results, thus violating integrity. For example, in Figure 2, which
shows a possible enactment omitting the binding of c for readability,
the auditor sends reqTotalClaimI and reqTotalClaimS to the insurer
and subscriber, respectively. The insurer computes the total claim
amount for the policy, where pID is equal to p1, before receiving the
submitClaim message of the subscriber. Hence, the insurer sends
repTotalClaimI with pClaim of 0 to the auditor. In the meantime,
the subscriber submits a claim for 15 to the insurer and, therefore,
responds to the auditor’s request by sending repTotalClaimS with
pClaim of 15. As a result, the auditor receives inconsistent bindings
of pClaim, which violates integrity for the binding p1 of key pID.

A I S
reqTotalClaimI[r1]
reqTotalClaimS[r1]

submitClaim[p1,c1,15]

repTotalCalim
S[r1,p1,0]

repTotalCalim
I[r1,p1,15]

Figure 2: Integrity of pClaim is violated in unsafe protocol.

4.3 Verification of Supple Protocols
To verify correctness, we derive the following propositional logic
expressions from a Supple protocol (1) C: its causal structure, indi-
cating how information flows via its messages; (2) S: its unsafety,
i.e., that twomessages that produce bindings for the same parameter
both occur; and (3) L: its liveness failure, i.e., some parameters re-
main unbound even tough every agent sends every viable message,
and the infrastructure delivers all messages. Safety and liveness
hold when C ∧ S and C ∧ L, respectively, are unsatisfiable.

Algorithm 1 specifies how we create the causal structure of
a protocol as a propositional logic expression as a conjunction
of subexpression. For readability, we define the subexpressions
separately in Definitions 4.15–4.19.

Algorithm 1: Generation of the causal structure of a protocol
P as a proposition logic expression.

input :P = ⟨n, ®x , ®p, ®k, ®q, F ,T ⟩
output :CP // expression of P’s causal structure

CP ← message-reception-exp // Definition 4.15
∧information-transmission-exp // Definition 4.16
∧information-reception-exp // Definition 4.17
∧information-minimality-exp // Definition 4.18
∧message-ordering-exp // Definition 4.19

return CP

Given a protocol P = ⟨n, ®x , ®p, ®k, ®q, F ,T ⟩, Algorithm 1 uses the
following sets of propositional symbols. (1) A finite set P of px
symbols for each parameter p ∈ ®p ∪ ®q and for each role x ∈ ®x ,
which model observation of p by x . (2) A finite setM ofmx symbols
for each message m ∈ F and for each role x ∈ ®x , which model
observation ofm by x . (3) A finite set of bei ,ej symbols for every
(ei , ej) pair in P ∪M, which model observation of ei before ej . For

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

786

readability, we write bei ,ej in predicate form as before(ei , ej). (4) A
finite set of tei ,ej symbols for every (ei , ej) pair in P ∪M, which
model observation of ei together with ej . For readability, we write
tei ,ej in predicate form as with (ei , ej).

Definitions 4.15–4.19 define the subexpressions in Algorithm 1.
We provide examples for Report protocol in Listing 8.

Definition 4.15. (Message Reception) A message is received only
if it is emitted earlier:∧

m∈F
(¬mr ∨ before(ms ,mr))

Formessage reqDebts, Definition 4.15 yields the expression¬reqDebtsI∨

before(reqDebtsA , reqDebtsI).

Definition 4.16. (Information Transmission) For every message
schema ps 7→ r : m ®p(®k)q ∈ F , s either does not emitm, or:
• before the emission ofm, s observes all pinq parameters in
®p that are not bound to a computation:

exp1 =
∧

p∈ ®pI \ ®p⟦⟧

before(ps ,ms)

• and, s observes all pinq parameters in the outcome of all
causal type parameters in ®p before the emission ofm:

exp2 =
∧

⟨q, ®u, ®w ⟩∈ ®pI∩®p⟦⟧

(
∧
p∈ ®w

before(ps ,ms))

• and, s observes all the requisite parameters of all poutq
causal type parameters in ®p before the emission ofm:

exp3 =
∧

⟨q, ®u, ®w ⟩∈ ®pO∩®p⟦⟧

(
∧
p∈®u

before(ps ,ms))

• and, s observes all poutq parameters in ®p that are not bound
to a computation together with the emission ofm:

exp4 =
∧

p∈ ®pO \ ®p⟦⟧

with (ps ,ms)

• and, s observes all the outcome parameters of all poutq causal
type parameters in ®p together with the emission ofm:

exp5 =
∧

⟨q, ®u, ®w ⟩∈ ®pO∩®p⟦⟧

(
∧
p∈ ®w

with (ps ,ms))

Hence, we generate:∧
m∈F
(¬ms ∨ (exp1 ∧ exp2 ∧ exp3 ∧ exp4 ∧ exp5))

For example, for pA 7→ I: reqDebts[in rID, in ⟦c1⟧, out c2]q and
c1 of type (pID, premium)→(pID, premium), Definition 4.16 yields
¬reqDebtsA∨(before(rIDA , reqDebtsA)∧ before(pIDA , reqDebtsA)∧

before(premiumA , reqDebtsA)∧ with (c2A , reqDebtsA)).

Definition 4.17. (Information Reception) For everymessage schema
ps 7→ r : m ®p(®k)q ∈ F , r either does not observem, or r observes all
parameters ofm either before or together with the reception ofm:∧

m∈F
(¬mr ∨ (

∧
p∈ ®p

(before(pr ,mr) ∨ with (pr ,mr))))

For example, considering only premium for brevity, for message
pI 7→ A: resPolicies[in rID, in c1, out ⟦c1⟧]q and c1 of type (pID,
premium)→(pID, premium), Definition 4.17 yields ¬resPoliciesA∨

(before(premiumA , resPoliciesA)∨(with (premiumA , resPoliciesA))):

Definition 4.18. (Information Minimality) For every role x in ®x
and parameter p in ®p, p is either not observed or p is observed
together with a messagem in F (F ′ ⊆ F comprises messages ps 7→
r :m ®pm (®km)q ∈ F where (x = s or x = r , and p ∈ ®pm)):∧

x ∈ ®x and p∈ ®p

(¬px ∨
∨
m∈F ′

with (px ,mx))

Definition 4.19. (Ordering) For every pair of messagesmi andmj

in F that are emitted by x in ®x , x may observe them in some order,
but not together (F ′ ⊆ F comprisesmessages ps 7→ r : m ®pm (®km)q ∈
F , where x = s or x = r):∧

mi ,m j ∈F ′
(¬mi

s ∨ ¬m
j
s ∨ before(mi

s ,m
j
s) ∨ before(mj

s ,m
i
s))

4.3.1 Correctness of Causal Structure Generation. Let P be a
protocol for which Algorithm 1 generates the causal structure CP .

Theorem 4.20. (Correspondence) For every viable history vector
of P, there is a model of CP , and vice versa.

Proof Sketch. We use induction in the forward direction. An
empty H corresponds to an empty CP without any propositions.
Inductively, for every viable message m that extends H , we can
extend CP form’s emission using the above information transmis-
sion clauses, and form’s reception using the reception clause. Con-
versely, given CP , we can constructH , simply appending messages
instances that correspond to the message emission and reception
propositions to the histories of the corresponding roles. �

Theorem 4.21. (Termination) Algorithm 1 always terminates.

4.3.2 Safety. A protocol’s safety requires that, if any parameter
is adorned poutq in two or more messages, only one of these mes-
sages is emitted. Hence, integrity of parameter bindings cannot be
violated. This means that for any pair of messagesmi andmj in a
protocol (and with corresponding poutq adorned parameters piO
and p jO , respectively) where p

i
O ∩ p

j
O , ∅, we must not infer the

clausemi
s i ∧m

j
s j from the causal structure of a protocol.

Definition 4.22. Given a protocol’s list of messages F , let ®f be
the list of every message pair (mi ,mj) for which piO and p

j
O are

the respective poutq adorned parameters and piO ∩ p
j
O , ∅. The

Unsafety expression of the protocol is:∨
(mi ,m j)∈ ®f

(mi
s ∧m

j
s)

Let P be a protocol, CP be the causal structure of P, and SP
be the unsafety expression of P as in Definition 4.22. We decide on
P’s safety by checking the unsatisfiability of CP ∧ SP .

Theorem 4.23. A protocol P is safe iff CP ∧SP is not satisfiable.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

787

Proof Sketch. If CP ∧ SP is satisfiable, by Theorem 4.20, we
can construct a history vector that contains two messages that bind
the same poutq parameter. Conversely, if CP∧SP is not satisfiable,
by Theorem 4.20, we cannot construct a history vector in which
more than one message binds the same poutq parameter. �

4.3.3 Liveness. A protocol is live if every enactment of the proto-
col can be completed (i.e., every public parameter is bound). Below,
we give a procedure for determining liveness. Definition 4.24 cap-
tures that some public parameter is observed by no role in the
protocol.

Definition 4.24. (Lack of Public Parameter Observation) Let ®p be
the list of a protocol’s public parameters and Xp be the set of roles
in the protocol who are either sender or receiver of at least one
message in the protocol, which includes p as a parameter.

expa =
∨
p∈ ®p

(
∧
x ∈Xp

¬px)

However, some parameters may not be observed if an agent
chooses to not communicate. For purposes of determining liveness,
we therefore assume that if some messages are viable given an
agent’s history, the agent sends one such message. Definition 4.25
captures this constraint.

Definition 4.25. (Emission of a Viable Message) Letm be a mes-
sage, ®pmI and ®pmO be the list of pinq and poutq adorned parameters
ofm, and s be the sender ofm.

expb =
∧
m∈F
(ms ∨

∨
pi ∈ ®pmI

¬pi ∨
∨

po ∈ ®pmO

)

Further, some parameters may not be observed if messages are
lost. For purposes of determining liveness, we therefore assume
that every emitted message is received. Definition 4.26 captures
this constraint.

Definition 4.26. (Nonlossy Communication) Letm be a message
with sender role s and receiver role r .

expc =
∧
m∈F
(¬ms ∨mr)

Let, LP be expa ∧ expb ∧ expc , where expa , expb , and expc are
the corresponding expressions in Definitions 4.24, 4.25, and 4.26,
respectively, for protocol P. We decide on the liveness of P by
checking the unsatisfiability of CP ∧ LP .

Theorem 4.27. A protocol P is live iff CP ∧LP is not satisfiable.

Proof Sketch. If CP ∧ LP is satisfiable, by Theorem 4.20, we
can construct a viable history vector that cannot be extended via
message emission (maximality) or reception (lossless transmission),
and yet is incomplete. Conversely, if P is live, we know that each
history vector of P is either complete or can be finitely extended to
a complete history vector. Hence, CP ∧ LP is not satisfiable. �

5 DISCUSSION
Supple introduces a new abstraction of types in protocols, on which
there is little work, and supporting checking of important properties.
As noted in Section 1, these contributions coincide with the growing
interest in data-aware specifications. Also, as noted in Section 1,

existing work when it applies types does so only for static ontology
annotations on fields and doesn’t consider information modeling of
interactions, let alone the advanced typing techniques we introduce.

Our overarching contribution lies in elucidating an important
aspect of information-based protocols via causal types. Supple ex-
tends information-based protocol specification approaches with
causal types for constraining the information that is communicated
in a protocol. Supple treats causal type parameters as first-class
information parameters, which enables the agents (1) to define com-
putations during enactment of a protocol, and (2) to communicate
them and their results as they communicate any other information.
Supple formalizes causal types and incorporates them into verifi-
cation of a protocol’s safety and liveness. At the technical level,
Supple provides a flexible and formal method to define constraints
on the exchanged information in a protocol.

Recent protocol languages, besides BSPL, incorporate informa-
tion. HAPN [34] complements state machine-based representation
of protocols with guards and effects. A major conceptual differ-
ence is that HAPN supports system parameters, whose bindings are
produced exogenously to the interaction, indicating shared state
between agents and incorporation of internal decision-making in
the specification of public interactions. In Supple, by contrast, in-
teraction state as captured by parameter bindings is neither global
nor includes any agent’s internal state. SPY [23] adds assertions to
session types to constrain communicated values. However, neither
HAPN nor SPY support causal types as in Supple.

Winikoff and Cranefield [33] study the testability of BDI agent
programs and identify challenges in scalability. Supple could fa-
cilitate addressing those challenges in a MAS setting in two ways.
First, decoupling agents through interactions would reduce the
verification problem to verifying each agent separately. Second,
the existence of a strong type discipline can reduce the burden on
testing by eliminating certain kinds of interaction errors early.

An interesting future direction is to develop the rest of our vision
by mapping norms [3, 9, 12] and concomitant computations to
Supple to enable grounding norms in communications [2, 20]. Splee
gives the example of auctions: the auctioneer’s commitment to seller
to declare the highest bidder as winner yields a query attachment
(i.e., a computation in Supple) that aggregates over all bids receives
to produce a binding for winner. Supple can facilitate realizing
secure collaboration [32] by enabling interaction based on norms,
for example, to generate information protocols that undergird the
implementation of information sharing and privacy policies [1].

Notice that as protocol languages support increasingly sophisti-
cated constraints, they would enable aspects of norms to be regi-
mented [18]. For example, the Splee query attachment would pre-
vent auctioneers from communicating false winners. Returning to
Supple, it would prevent the insurer from sending reports that do
not meet the computation specified by the auditor. Norm languages
could be potentially be enhanced with annotations to indicate pos-
sibilities for regimentation.

Acknowledgments. We thank the anonymous reviewers for
their helpful comments. Günay and Chopra were supported by EP-
SRC grant EP/N027965/1 (Turtles). Singh thanks the US Department
of Defense for partial support under the Science of Security Lablet.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

788

REFERENCES
[1] Nirav Ajmeri, Jiaming Jiang, Rada Y. Chirkova, Jon Doyle, and Munindar P. Singh.

2016. Coco: Runtime Reasoning about Conflicting Commitments. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence (IJCAI). IJCAI,
New York, 17–23.

[2] Huib Aldewereld, Sergio Álvarez-Napagao, Frank Dignum, and Javier Vázquez-
Salceda. 2010. Making Norms Concrete. In Proceedings of the 9th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). IFAAMAS,
Toronto, 807–814.

[3] Alexander Artikis, Marek J. Sergot, and Jeremy V. Pitt. 2009. Specifying Norm-
Governed Computational Societies. ACM Transactions on Computational Logic
10, 1 (Jan. 2009), 1:1–1:42.

[4] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
2018. Type checking for protocol role enactments via commitments. Autonomous
Agents and Multi-Agent Systems 32, 3 (2018), 349–386.

[5] Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti, and Federico
Capuzzimati. 2014. Engineering Commitment-Based Business Protocols with
the 2CL Methodology. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 28, 4 (July 2014), 519–557.

[6] Bernhard Bauer and James Odell. 2005. UML 2.0 and Agents: How to Build
Agent-Based Systems with the New UML Standard. Engineering Applications of
Artificial Intelligence 18, 2 (March 2005), 141–157.

[7] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-Agent Oriented Programming with JaCaMo. Science of
Computer Programming 78, 6 (June 2013), 747–761.

[8] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. 2013. Foundations
of Data-Aware Process Analysis: A Database Theory Perspective. In Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS). ACM, New York, 1–12.

[9] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. 2013. Repre-
senting and Monitoring Social Commitments using the Event Calculus. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS) 27, 1 (2013), 85–130.

[10] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2017. Splee: A
Declarative Information-Based Language for Multiagent Interaction Protocols.
In Proceedings of the 16th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, São Paulo, 1054–1063.

[11] Amit K. Chopra and Munindar P. Singh. 2008. Constitutive Interoperability.
In Proceedings of the 7th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, Estoril, Portugal, 797–804.

[12] Amit K. Chopra and Munindar P. Singh. 2016. Custard: Computing Norm States
over Information Stores. In Proceedings of the 15th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). IFAAMAS, Singapore,
1096–1105.

[13] Amit K. Chopra and Munindar P. Singh. 2016. From Social Machines to Social
Protocols: Software Engineering Foundations for Sociotechnical Systems. In
Proceedings of the 25th International World Wide Web Conference. ACM, Montréal,
903–914.

[14] Ferruccio Damiani, Paola Giannini, Alessandro Ricci, and Mirko Viroli. 2012.
Standard Type Soundness for Agents and Artifacts. Scientific Annals of Computer
Science 22, 2 (2012), 267–326.

[15] FIPA. 2003. FIPA Interaction Protocol Specifications. (2003). FIPA: The Foundation
for Intelligent Physical Agents, http://www.fipa.org/repository/ips.html.

[16] Akın Günay, Michael Winikoff, and Pınar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192–229.

[17] HL7. 2007. Health Level Seven. (2007). http://www.hl7.org.
[18] Andrew J. I. Jones and Marek J. Sergot. 1993. On the Characterisation of Law

and Computer Systems: The Normative Systems Perspective. In Deontic Logic in

Computer Science: Normative System Specification, John-Jules Ch.Meyer and Roel J.
Wieringa (Eds.). John Wiley and Sons, Chichester, UK, Chapter 12, 275–307.

[19] Bhavik Katira. 2015. Syndicated Loan FpML Requirements: Business Requirements
Document Version 2.0. TR. The LSTA Agent Bank Communications Working
Group, International Swaps and Derivatives Association.

[20] Thomas Christopher King, Akın Günay, Amit K. Chopra, and Munindar P. Singh.
2017. Tosca: Operationalizing Commitments over Information Protocols. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). IJCAI, Melbourne, 256–264.

[21] Tim Miller and Jarred McGinnis. 2008. Amongst First-Class Protocols. In Proceed-
ings of the 8th International Workshop on Engineering Societies in the Agents World
(ESAW 2007) (Lecture Notes in Computer Science), Vol. 4995. Springer, Athens,
208–223.

[22] Marco Montali, Diego Calvanese, and Giuseppe De Giacomo. 2014. Verification of
data-aware commitment-based multiagent system. In Proceedings of the 13th In-
ternational Conference on Autonomous Agents and Multiagent Systems. IFAAMAS,
Paris, 157–164.

[23] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. 2013. SPY: Local Ver-
ification of Global Protocols. In Proceedings of the International Conference on
Runtime Verification (LNCS), Vol. 8174. Springer, 358–363.

[24] Michael Rovatsos, Dimitrios I. Diochnos, and Matei Craciun. 2015. Agent Pro-
tocols for Social Computation. In Joint Proceedings of the Sixth International
Workshop on Collaborative Agents Research and Development and Second Interna-
tional Workshop on Multiagent Foundations of Social Computing (Communications
in Computer and Information Science), Vol. 541. Springer, 94–111.

[25] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40–47.

[26] Munindar P. Singh. 1999. An Ontology for Commitments in Multiagent Systems:
Toward a Unification of Normative Concepts. Artificial Intelligence and Law 7, 1
(March 1999), 97–113.

[27] Munindar P. Singh. 2000. A Social Semantics for Agent Communication Lan-
guages. In Proceedings of the 1999 IJCAI Workshop on Agent Communication
Languages (Lecture Notes in Artificial Intelligence), Vol. 1916. Springer, Berlin,
31–45.

[28] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491–498.

[29] Munindar P. Singh. 2011. LoST: Local State Transfer—An Architectural Style
for the Distributed Enactment of Business Protocols. In Proceedings of the 9th
IEEE International Conference on Web Services (ICWS). IEEE Computer Society,
Washington, DC, 57–64.

[30] Munindar P. Singh. 2012. Semantics and Verification of Information-Based
Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.

[31] Munindar P. Singh. 2013. Norms as a Basis for Governing Sociotechnical Systems.
ACM Transactions on Intelligent Systems and Technology (TIST) 5, 1 (Dec. 2013),
21:1–21:23.

[32] Munindar P. Singh. 2015. Cybersecurity as an Application Domain for Multiagent
Systems. In Proceedings of the 14th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). IFAAMAS, Istanbul, 1207–1212. Blue Sky
Ideas Track.

[33] Michael Winikoff and Stephen Cranefield. 2014. On the Testability of BDI Agent
Systems. Journal of Artificial Intelligence Research (JAIR) 51 (Sept. 2014), 71–131.

[34] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59–133.

[35] WS-CDL. 2005. Web Services Choreography Description Language Version 1.0.
(Nov. 2005). www.w3.org/TR/ws-cdl-10/.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

789

http://www.fipa.org/repository/ips.html
http://www.hl7.org

	Abstract
	1 Introduction
	2 Background
	3 Types in Supple
	3.1 Atomic and Composite Causal Types
	3.2 Causal Type of a Computation
	3.3 Causal Computation Patterns
	3.4 A Comprehensive Example

	4 Formal Model and Verification
	4.1 Semantics
	4.2 Liveness and Safety
	4.3 Verification of Supple Protocols

	5 Discussion
	References

