Session 3C: Engineering Multiagent Systems 1

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Engineering Scalable Distributed Environments and
Organisations for MAS

Alessandro Ricci
DISI, University of Bologna
Cesena, Italy
a.ricci@unibo.it

Olivier Boissier
Univ. Lyon, MINES Saint-Etienne
CNRS Lab. Hubert Curien, France
olivier.boissier@emse.fr

ABSTRACT

In MAS programming and engineering, the environment and the
organisation can be exploited as first-class design and program-
ming abstractions besides the agent one. A main example of a
platform implementing this view is JaCaMo, which allows the
programming of a MAS in terms of an organisation of cognitive
agents sharing a common artifact-based environment. However,
MAS models and platforms in general do not provide a satisfac-
tory approach for MAS developers to uniformly deal with distri-
bution at multiple dimensions — agent, environment, and organ-
isation. Typically, environments are either centralised in a single
node, or composed by parts that run on different nodes but with a
poor support at the programming and execution levels to deal with
that. In this paper, we tackle this problem by proposing a model
for engineering world-wide distributed environments and organ-
isations for MAS. The approach integrates the A&A (Agents and
Artifacts) conceptual model with a web/resource-oriented view of
distributed systems as proposed by the REST architectural style.
To evaluate the approach, an extension of the JaCaMo open-source
platform has been developed implementing the proposed model.

KEYWORDS

Multi-Agent Systems Engineering; Artifact-based Environments;
Distributed Systems; JaCaMo

ACM Reference Format:

Alessandro Ricci, Andrei Ciortea, Simon Mayer, Olivier Boissier, Rafael H.
Bordini, and Jomi F. Hiibner. 2019. Engineering Scalable Distributed En-
vironments and Organisations for MAS. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13-17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

The concept of environment can be used as first-class abstraction
in AOSE and MAS programming to model and design a software
layer providing agents different kinds of functionalities [38]: to

“Currently on a sabbatical leave funded by CAPES at the Universities of Genoa and
Oxford.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and Mul-
tiagent Systems (www.ifaamas.org). All rights reserved.

Andrei Ciortea
University of St. Gallen, Switzerland
Univ. Cote d’Azur Inria CNRS, France
andrei.ciortea@unisg.ch

Rafael H. Bordini*
School of Technology, PUCRS
Porto Alegre, RS, Brazil
rafael.bordini@pucrs.br

790

Simon Mayer
University of St. Gallen, Switzerland
ETH Zirich
simon.mayer@unisg.ch

Jomi F. Hubner
Federal University of Santa Catarina
Florianopélis, SC, Brazil
jomi.hubner@ufsc.br

mediate the access to the external environment; to create an ab-
straction layer to model/design/represent (non autonomous) re-
sources & services; to enable forms of mediated interaction, com-
munication and coordination among agents, enriching those ap-
proaches based on direct communication (e.g., agent communica-
tion laguages based on speech acts).

This viewpoint can be brought from design down to program-
ming level, by means of conceptual models that define environmen-
tal abstractions besides to agent abstraction to design and program
a MAS. An example of conceptual model supporting this view is
A&A (Agents and Artifacts), where the environment is modelled
in terms of workspaces and artifacts [30]. Then, in the context of
Multi-Agent Oriented Programming (MAOP) [4], the environment
is one of the multiple dimensions including also agents and organ-
isation used to design and develop a MAS.

A main example in literature is JaCaMo [4], a platform that
emerged from the combination of Jason [7] for programming indi-
vidual agents, CArtAgO [33] for the environment, and MOISE [22]
for organisation, all providing first class abstractions at each of
the three dimensions. Experience with the platform shows that
the synergies between the three dimensions provide a powerful ap-
proach for the development of complext multi-agent systems. All
the 3 dimensions in JaCaMo were conceived to be fully distributed,
thus allowing the development of massive multi-agent systems.
However, in practice, the implementation does not provide all the
required support for distribution, and to the best of our knowledge,
no agent platform that is similarly expressive in regards to all those
levels of abstractions and with support for transparent distribution
at all the levels is available.

The focus of this paper is on distribution and openness of agent
environments, which are essential properties of MAS at scale. MAS
environments need to be distributed for enabling physically and
logically use cases, for instance regarding world-wide autonomous
manufacturing systems [10]. At the same time, adopting central
properties of the Web architecture, they should be open, provid-
ing interfaces to the outside world that make them usable by any
type of (distributed/remote/external) agent, so that shared envi-
ronments can function as an interoperability mechanism for het-
erogeneous MAS. When dealing with distributed MAS, the model
adopted for the environment level should properly support distri-
bution as well. In the MAOP perspective, this holds for every di-
mension, including agents and organisations, and the distribution



Session 3C: Engineering Multiagent Systems 1

model adopted for one dimension may affect the one of another
dimension.

The problem tackled in this paper is that current models and
technology supporting environment as first-class abstraction do
not provide a satisfying approach for engineering distributed en-
vironments for MAS. Typically, application environments are ei-
ther centralised in a single node, or composed by parts that run
on different nodes but with a poor support at the programming
and execution levels to deal with that. In A&A model [30] and
in CArtAgO/JaCaMo implementation, an environment can be dis-
tributed in multiple workspaces on different nodes, however: (i)
there is no structure, so that a MAS is a flat sea of (unrelated)
workspaces; (ii) low-level details about the network address of
the workspaces is exposed in agent API and programs. The same
applies for the organisation dimension. In MOISE, the organisa-
tional basis of JaCaMo, the concept of organisation is implicitly
distributed, given that MOISE organisation can be managed by ar-
tifacts controlling each group and scheme individually. Unfortu-
nately, no efficient implementation of transparent distribution for
MOISE organisations is currently available.

In this paper we tackle this problem by proposing a distribu-
tion model/approach for environments and organisations in MAS,
taking core principles from the web and resource-oriented envi-
ronments as both inspiration and underlying fabric technologies
to satisfy the following requirements/features: (i) scalability — our
distribution mechanisms for MAS environments and organisations
should in principle be able to scale to the size of the Web. This
implies that we avoid tight coupling of individual components
and that we make use of paradigms that support scalability, such
as stateless interactions; (ii) interoperability — The platform can
be opened to agents, artifacts, and organisations written in dif-
ferent languages and technologies (other than agreeing to a com-
mon meta-model); (iii) flexibility & evolvability — our distribution
model needs to be as flexible as possible. The main reason for this
requirement is that components of large-scale systems need to be
enabled to evolve independently to foster evolvability of the sys-
tem as a whole. Consequently, agents that make use of distributed
environments should not depend on out-of-band information to
understand and navigate them; rather, this information should be
provided by the environment itself, just like in HATEOAS [13].

The outcome of this work is an effective model and tool to de-
sign and build distributed large-scale MAS organisations living in
distributed MAS environments. We believe that this could be an im-
portant contribution to advance the state-of-the-art in agent pro-
gramming platforms in the direction of increasing the uptake of
the paradigm. The remainder of the paper is organised as follows:
Sect. 2 provides a brief background about the state-of-the-art, fo-
cusing in particular on the A&A model and JaCaMo, which are
extended in this paper; Sect. 3 describes the proposed model about
distributed artifact-based environments and in 4 its mapping onto
the Web; Sect. 5 describes current implementation and first eval-
uation of the model using a real-world manufacturing case study;
Sect. 6 discusses the benefits of the approach and current limita-
tions as well, envisioning the next steps that will be taken about;
Finally Sect. 7 and Sect. 8 complete the paper discussing related
work and providing concluding remarks.

791

AAMAS 2019, May 13-17, 2019, Montréal, Canada

2 BACKGROUND

The reference model suggested in [38] for approaches implement-
ing application environments as first-class abstraction abstracts
from distribution of the multiagent system. In the case of dis-
tributed application (distributed MAS), the application environ-
ment typically has to be distributed over the processors of the ap-
plication nodes. For some applications, the same functionalities
of the application environment are deployed on each node. For
other applications, specific functionalities are deployed on differ-
ent nodes (e.g., when different types of agents are deployed on dif-
ferent nodes). Some functionalities provided by the application en-
vironment may be limited to the local context (e.g., observation of
the deployment context may be limited to resources of the local
deployment context); other functionalities may be integrated (e.g.,
neighbouring nodes may share state). Integration of functionali-
ties among nodes typically requires additional support. Such sup-
port may be provided by appropriate middleware. Examples are
support for message transfer in a distributed setting (e.g., [3]) and
support for a distributed pheromone infrastructure (e.g., [31]). Ac-
tually, the complexity of such as support — which is based on some
distribution model — depends on the abstraction layer that the en-
vironment is meant to provide.

In the A&A model [30] and concrete platforms such as
CArtAgO [33] and JaCaMo [4], the application environment
of a MAS can be designed and programmed in terms of non-
autonomous computational entities called artifacts representing re-
sources and tools shared by agents to do their job. From the agent
point of view, an artifact represents a piece of environment en-
capsulating some functionality and providing an interface to work
with it. The interface consists in a set of operations - i.e., actions
from the agent point of view — and a set of observable properties —
i.e., information items that an agent can perceive and reason about,
in terms of beliefs. Artifacts are created (by agents) and stored in
workspaces, functioning as “containers” each one running on a spe-
cific host (network node) of the MAS. From an agent point of view,
aworkspace represents a local context of work, where to create and
share resources related to some possibly cooperative activity. Sup-
porting distribution in this case implies allowing agents to work
concurrently in multiple contexts (workspaces), possibly running
on different nodes. Differently from the case of environments for
situated MAS [36] — where actions and perceptions are typically
related to some kind of context which is local to the agent — in this
case agents may need to act upon and perceive artifacts that are
logically and physically on a different nodes.

Fig. 1 shows a simple example using JaCaMo, which fully im-
plement A&A. In JaCaMo, a Jason agent can be spawn on some
node and the join one or multiple workspaces, either belonging
to its node or on a remote node. In the example, an agent run-
ning on host Node A works with artifacts of workspaces main,
w0 and w1, the latter hosted by a different node, Node B. In Fig.
2 shows the Jason agent code. In the plan for achieving the goal
Itest_workspaces the agent first creates a local w0 workspace,
creating inside a Counter artifact and using it (goal !do_stuff);
then, the agent joins the remote w1 workspace, then creating and
using a Counter artifact - named c1 - also there. Counter arti-
facts are simple counters, providing an inc action to increment the



Session 3C: Engineering Multiagent Systems 1

Node A

Node B

console

console

count [0 ]

inc

console

count 1]

0

ol

Figure 1: Agents and Workspaces in A&A

+!test_workspaces
<- createWorkspace("wo");

joinWorkspace("w@" ,WspIDQ);
println("hello in " ,WspID®);
ldo_stuff("co");
joinRemoteWorkspace("wl1","192.168.1.100" ,WspID1);
println("hello there ",WspID1);
ldo_stuff("c1").

+!do_stuff_on(Name)
<- makeArtifact(Name, "Counter", []1,1d);
focus(Id);
inc [artifact_id(Id)].

+count (V)
<- println("count changed: ",V).

Figure 2: JaCaMo example.

count and a count observable property, keeping track of the cur-
rent count.

This simple distribution model has two main weaknesses: (i) no
support for location transparency — in the agent code, a different
API is provided to work with local and remote workspaces; (ii)
no support for complex large-scale MASs — large-scale MASs can
be implemented in terms of large flat set of unrelated workspaces
spread over different nodes.

We look forward a model and a corresponding infrastructure
that would allow to raise the level of abstraction used to define
and manage distributed, possibly large-scale and scalable, artifact-
based environments. This includes the definition of a topology that:
(i) would make it possible for agents to refer and work with ar-
tifacts and workspaces in a distributed environment abstracting
from they physical network address; (ii) would support the design
of complex environments, eventually composed by a dynamic and
large set of workspaces running on different Internet nodes, and
(iii) would enable a level of interoperability and openness by ex-
ploiting as much as possible the web as the underlying architecture
and infrastructure on which the environment is running.

792

AAMAS 2019, May 13-17, 2019, Montréal, Canada

3 A MODEL FOR SCALABLE DISTRIBUTED
ARTIFACT-BASED ENVIRONMENTS

We adopt a hierarchical model for structuring a distributed envi-
ronment, using workspaces as basic unit/module of this structur-
ing. In A&A, the concept of workspace has been originally intro-
duced as a kind of container for artifacts [30, 33], a context of work
for agent activities, meaning that agents can be in execution some-
where and join a workspace in order to share that context of work.
However, instead of seeing a MAS as a flat set of workspaces, dis-
tributed in multiple nodes, each one running an independent piece
of the MAS, in the approach proposed here a distributed MAS is
modelled as a dynamic hierarchy of workspaces. See Figure 3.

Node X

Node W

Creation/ownership
link

Access link

Node Y

Node Z

Figure 3: Distributed environment overview.

The hierarchy, however, is logical rather than physical: the
workspaces of a MAS are (possibly) distributed into different
nodes, and linked together so that a workspace has always a par-
ent workspace (except the main/root workspace). In this view,
workspaces can be used as a recursive concept to explicitly struc-
ture a complex environment into nested contexts, possibly at a dif-
ferent level of abstraction, from a whole coarse grained view to
fine-grained contexts. Many real-world applications can be used
to illustrate clearly why this approach is useful; consider for exam-
ple a smart building, a factory floor, a smart city, and so forth, all of
which will naturally have a hierarchical structure for the relevant
workspaces.

Each workspace has a unique identifier wsp;; at the MAS level
and a local logical name wsp, (e.g., wsp0) which is unique with
respect to the parent workspace. Analogously to workspaces, an
artifact created within a workspace has an unique global identifier
art;g at the MAS level and a local logical name art, (e.g., myBlack-
board) which is unique at the workspace level.

In fact, the model allows for two types of links among
workspaces. The first type is given by creation links, relating a
parent workspace to child workspaces. This link is created when
an agent instantiates a new workspace (see 3.1), which happens
always with the specification of a parent workspace. The second
type is given by access links, relating two workspaces so that a
workspace can be referenced by multiple paths, possibly belonging



Session 3C: Engineering Multiagent Systems 1

to different multi-agent systems and hierarchies. For instance, an
access link could be created between workspace main.wsp1.wsp4
and main.wsp1.wsp3.b. This link can be created by an agent to as-
sociate two existing workspaces, which could even belong to differ-
ent multi-agent systems. This is useful in particular when an agent
is running in a MAS but needs to access resources of another MAS.
For instance, consider an agent running on a mobile entering into
a smart building.

3.1 From the Agent Perspective

Agents are spawned (or enter a MAS) in a specific workspace
(their home), which typically does not change during their life-
time within that MAS, except in the case of mobile agents. Once
a MAS is entered, an agent can work concurrently in multiple
workspaces of the MAS by simply joining them. A joinWSP action
is uniformly used to join any workspace of the MAS — either local
or remote — by simply giving a reference to it as argument. The
same workspace can be identified using different paths, depend-
ing on the links. Once a workspace is joined, the agent can inter-
act with all the artifacts of that workspace. The example shown in
Sect. 2 becomes:

+!test_workspaces
<- createWSP(main.wo@);

joinWSP(main.w@,WspIDQ);
println("hello in ",WspID®);
ldo_stuff("co");
joinWSP(main.w1,WspID1); // this is remote
println("hello there ",WspID1);
Ido_stuff("c1").

Besides joining, an agent can create a new workspace by means
of a createWSP action, specifying the identifier of the parent
workspace, the logical name to be used for the new workspace,
and the Internet node that should host it (using uniform identi-
fiers / logical names also for nodes i.e., no low-level networking
info such as IP addresses)!. If no node is specified, the node would
be the same as that of the parent workspace. Workspaces can be
removed by agents by means of a removeWSP action, specifying
the full name/path of the workspace to be removed. An agent can
link two different workspaces by means of a linkWSP action, speci-
fying the identifier of the two workspaces (linking and linked) and
the logic name used in the linking workspace to refer to the linked
one.

Finally, in the A&A model, any external action available to an
agent must be provided by some artifact. Accordingly, the actions
available to agents to work with workspaces are provided by a pre-
defined artifact called wsp, which is available in every workspace
by default (so there are multiple instances). The observable proper-
ties of wsp are used to store and make it observable to agents the
dynamic information about the workspace, in particular the set of
available artifacts, the set of agents that have their home there, the
set of agents that joined the workspace, the set of children and
linked workspaces.

I This node must have the infrastructure installed and running.

793

AAMAS 2019, May 13-17, 2019, Montréal, Canada

3.2 Formalisation

We conclude the section with a formal presentation of the pro-
posed model, aimed at presenting the ideas unambiguously. A MAS
can be represented as a tuple:

mas = {mas;q, Ag, Art, Wsp)

where Ag is a set of agents, Art a set of artifacts, and Wsp the set
of workspaces. Each agent ag € Ag can be defined by a tuple:
ag = {ag;q, wsph;q, {(wspjiq : agn,...})

where ag; 4 is the agent unique identifier at the MAS level, wsph; 4
is the identifier of the agent home workspace, and {wspj;g
agn, . . .} is the dynamic set of workspaces that the agent joined.,
each element including the workspace identifier and the logical
name used by that agent within that workspace. Each artifact
art € Art can be defined by a tuple:

art = {art;q, wsp;q : arty)

where art;; is the artifact unique identifier at the MAS level and
wsp;q : arty is the identifier of the workspace hosting the artifact,
including its local name. Each workspace w € Wsp can be defined
by a tuple:

w = (wsp;q, parent;g : wspn, {ch;q : chp, ..

where wsp; g is the workspace unique identifier at the MAS level,
parent;q : wspy is the identifier of the parent workspace along
with the local name as a child workspace, {ch;; : chp,...} is the
set of children workspaces, and finally {mas;y : Ink;q : Inkp, ...}
is the set of linked workspaces. The set of artifacts of a workspace
always include the wsp artifact. Artifacts in general can have a
dynamic set of observable properties, which can be perceived by
agents focusing on them. The observable state of the wsp artifact
includes the following properties::

wspstate = (Art, HAg, JAg, CW'sp, LWsp)
where:
Arg = {artifact(arty, art;q), . . .}
is the set of observable properties related to hosted artifacts.
HAg = {hosted_agent(agy, agiq), - - -}
is the set of observable properties related to hosted agents.
JAg = {joined_agent(agn, ag;q), - - .}

is the set of observable properties related to agents that joined the
workspace.

CWsp = {child_wsp(wspp, wsp;q), - - .}
is the set of observable properties related to children workspaces.
LWsp = {linked_wsp(wspp, wsp;q, mas;g), . . .}

is the set of observable properties related to linked workspaces.

Js{mas;g < Ink;g : Inkpg, ..

4y



Session 3C: Engineering Multiagent Systems 1

Root URL of the MAS:

https://acme.org:8080/mymas /main

o——=O0

Figure 4: MAS web resource.

/console

[artifacts

/working-agents  /agent-0

URI of a

workspace /bob

/hosted-agents

/alice

/child-wsps Iwsp1

Iwsp2

linked-wsps Iwsp5

Figure 5: A workspace Web resource.

4 MAPPING ONTO THE WEB

The distribution model described in Section 3 is mapped onto the
Web such that every element of a MAS — workspaces, agents, ar-
tifacts — is represented (and accessible) as a Web resource, as pro-
posed by the REST architectural style [13].

The MAS itself is represented as a Web resource represented
by the logical path http://<node>/{mas-name}, and is the root of
the logical resource hierarchy shown in Fig. 4. This logical path —
which is meant to be used in programs — is mapped by the platform
itself to an IR, as an immutable identifier generated and managed
by the JaCaMo platform. Every entity of the MAS - agents, arti-
facts, workspaces — has both an IRI generated by the platform and
one or multiple logical paths to access the entity as a web resource.

The MAS web resource includes the sub-resource /main point-
ing to the root (main) workspace of the MAS. A GET request on
this sub-resource gets a representation of the main workspace.

Each workspace is represented as a Web resource with the hier-
archical structure shown in Fig. 5. This hierarchy includes:

o /artifacts, container for artifacts located in this workspace;

o /working-agents, listing the sessions related to agents who
joined this workspace;

e /hosted-agents, listing the agents that entered the MAS us-
ing this workspace as host/home workspace;

794

AAMAS 2019, May 13-17, 2019, Montréal, Canada

/props

Icount

/operations finc

Ksub#}

/bob

/mailbox

—O—O

Figure 6: Web resources for artifacts and agents

o /child-wsps, listing the workspaces that are children of this
workspace;

o /linked-wsps, listing the names of the workspaces that are
linked by this workspace.

An agent can enter the MAS by issuing a POST request on
the hosted-agents sub-resource, including in the payload the in-
formation possibly needed for its authentication. If the request
is accepted, the workspace becomes the home workspace for the
agent and a new working session is created, listing this session
in /working-agents. Once entered, an agent can crawl the web of
workspaces accessing to child-wsps and linked-wsps, to eventually
join and work with other workspaces.

The Web API of a workspace web resource includes the interface
to work with artifacts and workspaces, wrapping the functionali-
ties provided by the wsp artifact. In particular an agent can:

e join a workspace by doing a POST on /working-agents;

e create a new artifact in the workspace by doing a POST on
/artifacts, including the logical name and the parameters
in the payload. The artifact can be disposed by issuing a
DELETE on the corresponding web resource;

e create a new workspace by doing a POST on /child-wsps,
specifying in the payload the logical name of the workspace.
By default the workspace is created locally, on the same
node of the parent workspace; instead, if the workspace is
meant to be created on a remote node, the node IRI must be
specified in the request?;

e link an existing workspace to this workspace by issuing a
POST on /linked-wsps, specifying in the payload the IRI of
the workspace to be linked and the logical name to be used
to refer to it from this workspace.

Fig. 6 (top) shows the resource hierarchy related to the artifact
usage interface, in terms of properties /props and operations /oper-
ations. In the example, c0 is a counter, featuring a count observable
property and an inc operation. The sub-resource /subs keeps track
of the subscriptions related to agents who are focusing (observing)
the artifact. The Web API for an agent to work with an artifact
includes:

e triggering the execution of an operation (i.e., executing an
action) by performing a POST on the specified operation,

%In the case of remote workspace creation, a JaCaMo infrastructure runtime must be
installed and running on the node where the workspace is meant to be created.



Session 3C: Engineering Multiagent Systems 1

e.g. /operations/inc, specifying in the payload the parame-
ters;

o focusing the artifact by issuing a POST on /subs, that is, cre-
ating a new subscription to receive updates about observ-
able properties and observable events.

Finally, the Web API include the possibility to send a message
to an agent by doing a POST on the /mailbox sub-resource which
is included in the agent resource representation (Fig. 6, bottom),
specifying the details of the speech act in the payload.

5 IMPLEMENTATION AND FIRST
EVALUATION

In this section, we first report on our implementation of the pro-
posed distribution model, and then present concrete scenarios for
applying this model in the context of industrial automation do-
main — for programming world-wide agent-based manufacturing
systems.

5.1 Implementation

To validate the proposed distribution model, we implemented an
extension of the JaCaMo platform [4]. In particular, we extended
the CArtAgO framework to allow agents to join and work in re-
mote workspaces in a seamless manner through the Web.

Each JaCaMo node® in our extension now exposes an
HTTP API that allows remote clients to interact with local
CArtAgO workspaces. The HTTP API follows the mapping pre-
sented in Section 4. To this end, we extended CArtAgO elements —
workspaces, artifacts — to use IRIs as unique identifiers. The IRIs
are generated automatically and are minted to elements: if an IRI
is assigned to an element that is later destroyed, the IRI cannot be
reassigned to a new element.

When an agent joins a workspace using the joinWorkspace op-
eration, the logical path of the workspace is passed as a parame-
ter and the platform translates it to an IRL If the IRI identifies a
remote workspace, the join operation is translated to an HTTP re-
quest (see Section 4) that is sent to the remote JaCaMo node in
order to create a remote CArtAgO session in that workspace for
the requesting agent. If the requesting agent is the first agent on
the local node to join that remote workspace, a local workspace
is created that acts as a facade for the remote workspace. Future
agents joining the remote workspace from the same node will au-
tomatically join the local facade workspace as well (the operation
is handled automatically by the platform). The facade workspace
is used as a proxy: all operations performed by agents within the
facade workspace are translated to HTTP requests (see Section 4)
and are forwarded to the remote workspace; likewise, all notifica-
tions from the remote workspace are routed back to agents through
the facade workspace.

To route remote notifications to agents, the payload of the
HTTP request issued to join a remote workspace includes a call-
back IRI that identifies the requesting agent’s CArtAgO session in

3 A JaCaMo node is a JaCaMo runtime in execution, that typically coincides with a
host/machine - but in principle you can run multiple nodes on the same host/machine
using different Internet ports. A JaCaMo node can host multiple workspaces. Differ-
ently from the previous version of JaCaMo, the node concept is not meant to appear
e.g. in the agent code: the idea is that at the modelling/programming level we want
to have only workspaces, even in the case of distributed environments.

795

AAMAS 2019, May 13-17, 2019, Montréal, Canada

the local facade workspace. This callback IRI is then used to route
notifications from the remote workspace to the agent through the
facade workspace. For instance, if an agent focuses on an artifact
in the remote workspace, it will receive notifications whenever the
artifact’s observable properties change or an observable event is
generated. These notifications are routed through the local facade
workspace and handled in the same way as local CArtAgO no-
tifications. From an agent’s viewpoint, interaction with remote
CArtAgO workspaces is thus seamless.

5.2 Applications in Industrial Automation

We present several application scenarios that demonstrate the use-
fulness of the proposed distribution model in the context of indus-
trial automation. The scenarios build upon our previous experi-
ence with the deployment of a JaCaMo-based MAS in a prototypi-
cal production cell [10]. In our previous deployment, the concrete
objective was to create highly adaptive production cells that can
be reconfigured on-the-fly in order to enable mass customization,
i.e. the manufacturing of customized products at mass-production
cost. In that deployment, we encapsulated manufacturing devices
(e.g., pick-and-place robots) as CArtAgO artifacts, and manufactur-
ing agents programmed in Jason were able to synthesize produc-
tion plans based on semantic descriptions of artifacts located in
their workspaces. We used semantic MOISE [39] organizations to
coordinate manufacturing agents.

The application scenarios presented in this section expand this
deployment from a single production cell to a world-wide manu-
facturing system composed of multiple production cells that are
distributed geographically and can contain a variety of production
equipment. Multiple such geographically distributed manufactur-
ing cells could compete for orders [28], or they could cooperate to
produce more complex products collaboratively, forming a "global
collective intelligence for manufacturing” [10].

Autonomous Marketplaces for Manufacturing — The core idea be-
hind this application scenario is that — by virtue of our extension
to the JaCaMo platform - collaborate in the manufacturing of a
product in light of an order workflow that includes non-functional
constraints. Concretely, in this scenario, a customer orders a prod-
uct to be manufactured by our world-wide manufacturing system,
but requires that at least 60% of the production process value-add is
generated in a specific country (this is required to allow labeling a
product as Swiss-made, for instance) — our marketplace is free to de-
cide where and how the other half of the process value-add is gen-
erated. To enable this scenario in our implementation, we would
assign individual production cells to a Web of Workspaces that is
structured as a geographic hierarchy. Agents can then navigate
this hierarchy and ask for price estimates on different levels of the
tree (e.g., in Europe; in Switzerland; in St. Gallen), where requests
are propagated toward the tree’s leaf nodes (i.e. the workspaces
and production cells). In our implementation, this would take the
form of logical paths that induce this geographic hierarchy, e.g.
europe.ch.st-gallen.celll. Note that this scenario is not spe-
cific to the concrete non-functional constraint — geography, in this
case. Rather, our implementation supports any constraint that can
be mapped to an assignment of production cells to (hierarchical)
workspaces.



Session 3C: Engineering Multiagent Systems 1

Distributed Manufacturing — After the ordering process has been
completed, our autonomous production cells need to produce
the ordered product, in a distributed way. To efficiently steer
this process, a production engineer who is using our system can
make use of domain-specific taxonomies that are superimposed
on the Web of Workspaces and structure them - this structure
can, for instance, be based on the ANSI/ISA-95 standard, to struc-
ture workspaces according to the type of manufacturing process
(batch/continuous/repetitive), or on the DIN 8580 norm to structure
workspaces according to the type of industrial action they perform
(DIN 8580 defines six main types of industrial actions and a hierar-
chy of actions underneath each of these types). In our implementa-
tion, these taxonomies can be expressed as logical paths between
a hierarchy of workspaces where, again, the leaf workspaces con-
tain the concrete production cells. This would allow to organize a
world-wide manufacturing system in a way that enables produc-
tion engineers to use their own domain-specific vocabulary and
taxonomies when programming the system, and specifically to di-
rectly access production cells with the desired capabilities.

Distributed Failure Management — During execution of the produc-
tion process, failures of individual production devices or entire pro-
duction cells might occur. In these cases, the production plan might
need to be adapted, subject to the non-functional constraints that
are specified in the order. Ideally, local supervising agents of a de-
ficient workspace would be notified of these problems and could
decide whether they can cope with the problem locally or whether
it needs to be escalated to a higher level. Our implementation sup-
ports this scenario since notifications can not only be received by
local agents but travel across workspaces, which constitutes a nat-
ural escalation mechanism: if the local supervisor cannot handle
a problem, agents in hierarchically superior workspaces can take
care of it, deciding whether a solution can be found at their level,
and whether this solution is consistent with the non-functional re-
quirements that are part of the order in question.

6 DISCUSSION

The distributed manufacturing use case and the three discussed
scenarios have been useful to evaluate the effectiveness of the ex-
tension described in this paper to A&A and to the JaCaMo plat-
form with realistic challenges. In the following we summarise the
key benefits and limitations of the approach, in particular related
to MAS programming and MAS execution.

6.1 Impact on MAS Design and Programming

Distribution at the design level — The model makes it possible to
explicitly design at a proper level of abstraction how a MAS envi-
ronment (and a MAS) should structured as a distributed system, ab-
stracting from a low-level network view. Workspaces are no more
just containers but an abstraction to describe (and deploy) the en-
vironment (MAS) structure at a logical (vs. physical) level.

Location transparency and level of abstraction in agent programs —
Distributed resources (artifacts, workspaces) can be referenced in
agent programs abstracting from their physical location. An agent
can refer to a remote workspace (e.g., to join) without specifying
its network address.

796

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Agent heterogeneity — The mapping on the Web fabric makes it pos-
sible for agents written in different languages and technologies to
enter and work in a MAS based on artifact-based environments,
without the need of developing any further specific integration
technology.

Distributed organisations — In JaCaMo the part of the platform im-
plementing the organisation based on MOISE - the organisation
infrastructure — is implemented as a set of artifacts [21]. Then, the
new model allows for deploying organisations that are distributed
not only in terms of the involved agents (running on different
nodes), but also in terms of the infrastructure implementing the
management of the organisation. Besides, it is an enabling concep-
tual layer that could trigger an extension of the organisation meta-
model to explicitly consider the distribution model when defining
groups, social schemes, etc.

6.2 Impact on MAS Execution

Scalability — As discussed in literature [37], the engineering of
agent environments for large-scale MAS accounts for several chal-
lenges, including the development of scalable structure and access
to resources, scalable communication and interaction models. In
this regards, the new model makes it possible to describe large-
scale environments and MAS as a dynamic and structured web of
workspaces, instead of a large flat set of unrelated workspaces. This
structure can be dynamically expanded (or contracted) by means
of agents creating (or deleting) workspaces, including linking ex-
isting workspaces possibly belonging to different MASs. There are
no centralisations that would undermine scalability. A workspace
still represents for agents a context of work—running on some spe-
cific node; however, a complex workspace can be structured e.g. as
a hierarchy where some levels are on the same node and children
workspaces are distributed on different nodes.

Principled failure handling & Resiliency — The hierarchical struc-
ture makes it possible to implement (at the infrastructure level) a
supervision strategy based on the ownership means commitment
principle [25], so that a parent workspace is responsible for man-
aging failures of children workspaces. In a MAS setting, this means
that if a workspace (and related hosted resources) becomes unavail-
able — because of e.g. a crash of the node or network problems —
this event should be made observable to agents running in the par-
ent workspace, so as to properly react. In the extended model, a
failure of a child workspace is made observable as an event gener-
ated by the wsp artifact of the parent workspace. Agents can enact
some resilience policy by focusing this artifact and then promptly
react to the failure event.

6.3 Limitations and Next Steps

Current model does not fully exploit hypermedia as implied by
REST-full architectures [13] and this negatively impact of the level
of openness of the approach, which can be largely improved. A next
step in this direction is to support semantic hypermedia for dy-
namic discovery of artifact interfaces, decoupling agents from ar-
tifacts through hypermedia controls. In literature, a first proposal
in this direction can be found in [8]. This implies defining a more
meaningful model and support for a semantic layer, which is cru-
cial to achieve a full-fledge support for openness. For instance,



Session 3C: Engineering Multiagent Systems 1

when programming agents using logical paths for environments,
we currently blend identification (the path itself) and semantics
(the environment semantic model / topology is embedded in the
path). This is good because it simplifies agent programming, but it
also has limitations in terms of representing / semantic modeling
of / reasoning about the environment. A next step could be to sep-
arate the semantic modeling of environments (for which we could
use ontologies) from the uniform identification of environmental
abstractions (workspaces, artifacts).

7 RELATED WORK

A first approach for designing distributed artifact-based environ-
ments in JaCaMo is proposed in [27]. It is based on hierarchical
structuring of workspaces, similarly to the model proposed in this
paper. The key different with respect to that work — besides de-
tails related to model per se — is about the mapping onto the web,
building a distributed resource-oriented architecture for MAS envi-
ronments, and its evaluation with real-world application scenario
(i-e., industrial automation).

Distribution is a main feature of MASs and typically MAS plat-
forms support it in terms of services for agent discovery, commu-
nication, and mobility. A main example is JADE [3], implement-
ing the FIPA model and architecture [14]. A FIPA agent platform
can be split onto several hosts, each one acting as a container of
agents, providing a complete runtime environment for agents exe-
cution (lifecycle management, message passing facilities, etc.). At
least one of these containers acting as the main container, respon-
sible to maintain a registry of all other containers in the same
Jade platform through which agents can discover each other. FIPA
model/architecture and related MAS platforms typically do not
support the environment as a first-class design or programming
concept. Besides FIPA, distribution and fault-tolerant techniques
are a main point tackled in models, architectures and platforms
for massive multi-agent systems [20] and for MAS architectures in
general [26]—typically focusing on agents, agent execution, com-
munication, mobility and not considering the issue of distributed
application environments.

In cognitive agent programming platforms (see [5, 6] for sur-
veys), the environment is either centralised or, typical case, dis-
tributed among agents so that each agent has a local view
and sphere of influence on it. That is: there is no middle-
ware/infrastructure support to represent and manage the environ-
ment as a single distributed entity.

The engineering of agent environments for large-scale Multi-
Agent Systems is a main challenge discussed in literature [37, 38].
In particular four requirements have been identified [37]: (i) scal-
able structure — distributing the computation and state of the agent
environment multi-level or hierarchical, multi-stage or dynamic
structures; (ii) access to resources — designing monitoring, trust, and
security aspects so that the cost induced by managing access to
resources does not become a bottleneck; (iii) scalable communica-
tion — providing means for communication between agents that do
not involve any central point of access or control; (iv) interaction
model — providing agents with efficient means for perceptions, ac-
tions, and interactions. Examples of approaches in literature of dis-
tributed agent environments for large-scale MAS include [18, 34].

797

AAMAS 2019, May 13-17, 2019, Montréal, Canada

In the former, the agent environment is decomposed into indepen-
dent interaction spaces, each of which defines explicitly local en-
vironmental rules. In the latter, holonic modeling is applied in the
domain of large-scale traffic simulation, so that the environmental
processes apply only locally.

In agent environment literature, a main related work is the EIS
(Environment Interface Standard) initiative and technology [2].
EIS objective is to define a generic environment interface stan-
dard, providing a support for connecting agents written in differ-
ent agent programming languages and platforms to same shared
environments. EIS does not constrain the type of environments
that can be considered—this could range from being an existing
game environment like Unreal Tournament to a simulation en-
vironment like the ones used in Multi-Agent Programming Con-
test [1]. As far authors’ knowledge, it does not provide any specific
support for distributed environments.

Finally, related work includes approaches using the Web as an
infrastructure for distributed MASs. Early work was influenced
by service-oriented architectures (SOA) based on the WS-* stan-
dards (SOAP, WSDL, UDDI etc.) [16, 23, 24, 35]. However, Web
service design has evolved drastically over the past decade. It is
now well recognized that WS-* services use the Web merely as a
transport layer [32]. Based on similar ideas, FIPA proposed a spec-
ification for using HTTP as a transport protocol for messages ex-
changed among agents [15], which was implemented by several
FIPA-compliant platforms (e.g., [11, 12, 19]). The problem with sys-
tems that use the Web merely for transport is that they are mis-
aligned with the Web architecture (see Section 6.5.3 in [13] for
a detailed discussion). Consequently, such systems make limited
use of the existing Web infrastructure and its future extensions.
More recent approaches for engineering Web-based MASs have
turned to resource-oriented architectures (ROA) based on REST
(e.g., [17, 29]), which use the Web as an application layer and are
better aligned with the Web architecture. These approaches do not
consider the environment as a first-class abstraction in MAS.

8 CONCLUSIONS

In this paper we considered the problem of designing and program-
ming distributed and scalable environments for MAS where the en-
vironment concept is exploited as first-class design and program-
ming abstraction. In particular, we focused on artifact-based envi-
ronments as defined by the A&A model and implemented by plat-
forms like CArtAgO and JaCaMo, and we proposed an extension
for engineering complex distributed environments as hierarchies
of workspaces distributed over the web, making MAS resources
(artifacts, agents) accessible as web resources. In JaCaMo, the or-
ganisation management infrastructure implementing the MOISE
model is based on artifacts; therefore the proposed extension im-
pacts also on the organisation dimension, allowing for deploying
distributed MAS organisations based on a distributed organisation
management infrastructure.

We consider the contribution of this paper as the first enabling
step for moving towards a full-fledge REST-ful architecture for
artifact-based environments, exploiting the hypermedia and se-
mantic web layer to fully achieve openness at the MAS environ-
ment level, toward a hypermedia MAS perspective [9].



Session 3C: Engineering Multiagent Systems 1

REFERENCES

(1]

[2

=

[3

[10]

(11

[13]

[14

[15]

[16

=
=

[18]

[19

Tobias Ahlbrecht, Jirgen Dix, and Niklas Fiekas. 2018. Multi-agent program-
ming contest 2017 - The twelfth edition of the MAPC. Ann. Math. Artif. Intell.
84, 1-2 (2018), 1-16.

Tristan M. Behrens, Koen V. Hindriks, Rafael H. Bordini, Lars Braubach, Mehdi
Dastani, Jirgen Dix, Jomi Fred Hiibner, and Alexander Pokahr. 2012. An Inter-
face for Agent-Environment Interaction. In Programming Multi-Agent Systems -
8th International Workshop, ProMAS 2010, Toronto, ON, Canada, May 11, 2010. Re-
vised Selected Papers (Lecture Notes in Computer Science), Rem W. Collier, Jirgen
Dix, and Peter Novék (Eds.), Vol. 6599. Springer, 139-158.

Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. 2008.
JADE: A software framework for developing multi-agent applications. Lessons
learned. Information & Software Technology 50, 1-2 (2008), 10-21.

Olivier Boissier, Rafael H. Bordini, Jomi Fred Hiibner, Alessandro Ricci, and An-
drea Santi. 2013. Multi-agent oriented programming with JaCaMo. Sci. Comput.
Program. 78, 6 (2013), 747-761.

Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah-Seghrouchni
(Eds.). 2005. Multi-Agent Programming: Languages, Platforms and Applications.
Multiagent Systems, Artificial Societies, and Simulated Organizations, Vol. 15.
Springer.

Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah-Seghrouchni
(Eds.). 2009. Multi-Agent Programming, Languages, Tools and Applications.
Springer.

Rafael H. Bordini, Jomi Fred Hiibner, and Michael Wooldrige. 2007. Program-
ming Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons.
https://doi.org/10.1002/9780470061848

Andrei Ciortea, Olivier Boissier Boissier, and Alessandro Ricci. 2018. Engineer-
ing World-Wide Multi-Agent Systems with Hypermedia. In 6th International
Workshop on Engineering Multi-Agent Systems (EMAS 2018).

Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessandro Ricci,
and Antoine Zimmermann. 2019. A Decade in Hindsight: The Missing Bridge
BetweenMulti-Agent Systems and the World Wide Web. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2019, Montreal, Canada, May 13-17, 2019. International Foundation for
Autonomous Agents and Multiagent Systems.

Andrei Ciortea, Simon Mayer, and Florian Michaelles. 2018. Repurposing Man-
ufacturing Lines on the Fly with Multi-agent Systems for the Web of Things. In
Proceedings of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS ’18). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 813-822.

Oguz Dikenelli. 2008. Seagent MAS platform development environment. In Pro-
ceedings of the 7th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems: demo papers. International Foundation for Autonomous Agents
and Multiagent Systems, 1671-1672.

Jose Exposito, Joan Ametller, and Sergi Robles. 2010. Configuring the JADE
HTTP MTP. http://jade.tilab.com/documentation/tutorials-guides/configuring-
the-jade-http-mtp/. (2010). Accessed: 15.11.2016.

Roy Thomas Fielding. 2000. Architectural styles and the design of network-based
software architectures. Ph.D. Dissertation. University of California, Irvine.
Foundation for Intelligent Physical Agents. 2002. FIPA Abstract Architecture
Specification. http://www.fipa.org/specs/fipa00001. (2002). Document number:
SCO00001L.

Foundation for Intelligent Physical Agents. 2002. FIPA Agent Message
Transport Protocol for HTTP Specification. http://www.fipa.org/specs/
fipa00084/SC00084F.html. (2002). Document number: SC00084F.

Nicholas Gibbins, Stephen Harris, and Nigel Shadbolt. 2004. Agent-based seman-
tic web services. Web Semantics: Science, Services and Agents on the World Wide
Web 1, 2 (2004), 141-154.

Abdelkader Gouaich and Michael Bergeret. 2010. REST-A: An agent virtual ma-
chine based on REST framework. In Advances in Practical Applications of Agents
and Multiagent Systems. Springer, 103-112.

Abdelkader Gouaich, Fabien Michel, and Yves Guiraud. 2005. MIC*: A De-
ployment Environment for Autonomous Agents. In Environments for Multi-
Agent Systems, Danny Weyns, H. Van Dyke Parunak, and Fabien Michel (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 109-126.

Miguel Escriva Gregori, Javier Palanca Camara, and Gustavo Aranda Bada. 2006.
A jabber-based multi-agent system platform. In Proceedings of the fifth interna-
tional joint conference on Autonomous agents and multiagent systems. ACM, 1282
1284.

798

[20]

[21]

[22

~
&

[24]

[25

[26

[27

[29

[30

(31

@
&,

[33

[34

[35

[37

[38

[39

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Zahia Guessoum, Jean-Pierre Briot, and Nora Faci. 2005. Towards Fault-Tolerant
Massively Multiagent Systems. In Massively Multi-Agent Systems I, Toru Ishida,
Les Gasser, and Hideyuki Nakashima (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 55-69.

Jomi F. Hiibner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. 2010. In-
strumenting multi-agent organisations with organisational artifacts and agents.

Autonomous Agents and Multi-Agent Systems 20, 3 (01 May 2010), 369-400.
Jomi Fred Hiibner, Jaime Simao Sichman, and Olivier Boissier. 2007. Developing

organised multiagent systems using the MOISE. IJAOSE 1, 3/4 (2007), 370-395.
Michael N Huhns. 2002. Agents as Web services. IEEE Internet computing 6, 4
(2002), 93.

Michael N Huhns and Munindar P Singh. 2005. Service-oriented computing: Key
concepts and principles. IEEE Internet computing 9, 1 (2005), 75-81.

Roland Kuhn, Brian Hanafee, and Jamie Allen. 2017. Reactive Design Patterns
(1st ed.). Manning Publications Co., Greenwich, CT, USA.

Sanjeev Kumar and Philip R. Cohen. 2000. Towards a Fault-tolerant Multi-agent
System Architecture. In Proceedings of the Fourth International Conference on Au-
tonomous Agents (AGENTS "00). ACM, New York, NY, USA, 459-466.

Xavier Limén, Alejandro Guerra-Hernandez, and Alessandro Ricci. 2018. Dis-
tributed Transparency in Endogenous Environments: The JaCaMo Case. In En-
gineering Multi-Agent Systems, Amal El Fallah-Seghrouchni, Alessandro Ricci,
and Tran Cao Son (Eds.). Springer International Publishing, Cham, 109-124.
Simon Mayer, Dominic Plangger, Florian Michahelles, and Simon Rothfuss.
2016. UberManufacturing: A Goal-Driven Collaborative Industrial Manufactur-
ing Marketplace. In Proceedings of the 6th International Conference on the Internet
of Things (IoT). 111-119.

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢. 2014.
Radigost: Interoperable web-based multi-agent platform. Journal of Systems and
Software 90 (2014), 167-178.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli. 2008. Artifacts in the A&A
meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Sys-
tems 17, 3 (Dec. 2008), 432-456.

H. Van Dyke Parunak, Sven Brueckner, and John A. Sauter. 2005. Digital
Pheromones for Coordination of Unmanned Vehicles. In Environments for Multi-
Agent Systems, First International Workshop, E4MAS 2004, New York, NY, USA,
July 19, 2004, Revised Selected Papers (Lecture Notes in Computer Science), Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel (Eds.), Vol. 3374. Springer, 246~
263.

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. 2008. Restful Web
Services vs. "Big" Web Services: Making the Right Architectural Decision. In
Proceedings of the 17th International Conference on World Wide Web (WWW 08).
ACM, New York, NY, USA, 805-814.

Alessandro Ricci, Michele Piunti, and Mirko Viroli. 2011. Environment program-
ming in multi-agent systems: an artifact-based perspective. Autonomous Agents
and Multi-Agent Systems 23, 2 (Sept. 2011), 158-192.

Sebastian Rodriguez, Vincent Hilaire, and Abder Koukam. 2006. Holonic Model-
ing of Environments for Situated Multi-agent Systems. In Proceedings of the 2nd
International Conference on Environments for Multi-Agent Systems (E4MAS’05).
Springer-Verlag, Berlin, Heidelberg, 18-31.

Munindar P Singh and Michael N Huhns. 2006. Service-oriented computing: se-
mantics, processes, agents. John Wiley & Sons.

Danny Weyns and Tom Holvoet. 2007. A Reference Architecture for Situated
Multiagent Systems. In Environments for Multi-Agent Systems III, Third Interna-
tional Workshop, E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected Revised and
Invited Papers (Lecture Notes in Computer Science), Danny Weyns, H. Van Dyke
Parunak, and Fabien Michel (Eds.), Vol. 4389. Springer, 1-40.

Danny Weyns and Fabien Michel. 2015. Agent Environments for Multi-agent
Systems — A Research Roadmap. In Revised Selected and Invited Papers of the
4th International Workshop on Agent Environments for Multi-Agent Systems IV -
Volume 9068. Springer-Verlag New York, Inc., New York, NY, USA, 3-21.

Danny Weyns, Andrea Omicini, and James J. Odell. 2007. Environment as a First-
class Abstraction in Multi-Agent Systems. Autonomous Agents and Multi-Agent
Systems 14, 1 (Feb. 2007), 5-30.

Alexandra-Madalina Zarafin, Antoine Zimmermann, and Olivier Boissier. 2012.
Integrating Semantic Web Technologies and Multi-Agent Systems: A Semantic
Description of Multi-Agent Organizations. In Proceedings of the First Interna-
tional Conference on Agreement Technologies, AT 2012, Dubrovnik, Croatia, Octo-
ber 15-16, 2012 (CEUR Workshop Proceedings), Sascha Ossowski, Francesca Toni,
and George A. Vouros (Eds.), Vol. 918. CEUR-WS.org, 296-297.





