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ABSTRACT
A preferential domain is a collection of sets of preferences which

are linear orders over a set of alternatives. These domains have been

studied extensively in social choice theory due to both its practical

importance and theoretical elegance. Examples of some extensively

studied preferential domains include single peaked, single crossing,

Euclidean, etc. In this paper, we study the sample complexity of

testing whether a given preference profile is close to some specific

domain. We consider two notions of closeness: (a) closeness via

preferences, and (b) closeness via alternatives. We further explore

the effect of assuming that the outlier preferences/alternatives to be
random (instead of arbitrary) on the sample complexity of the test-

ing problem. In most cases, we show that the above testing problem

can be solved with high probability for all commonly used domains

by observing only a small number of samples (independent of the

number of preferences, n, and often the number of alternatives,m).

In the remaining few cases, we prove either impossibility results

or Ω(n) lower bound on the sample complexity. We complement

our theoretical findings with extensive simulations to figure out

the actual constant factors of our asymptotic sample complexity

bounds.
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1 INTRODUCTION
Learning users’ preferences is useful in the contexts of social choice,

recommender systems, product development, and many more appli-

cations. It is often observed that preferences are never completely

arbitrary, rather they possess correlated structures [32]. For ex-

ample, preferences of citizens for a facility location have a single
peaked structure [30, Section 1], i.e., a citizen has highest preference

for the facility at her location and it monotonically decreases with

the distance from her. This kind of preferences are also prevalent in

political opinions based on the voters’ bias to the conservative or

liberal views [36]. Intuitively, in a single peaked preference profile,
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we assume that there exists a societal axis where the alternatives

have been ordered and every preference “respects” that ordering in

the following sense. Every preference has an implicit most preferred

point t on the societal axis and if an alternative x lies between t and
another alternative y, then x is preferred over y. The advantage of
preferences with such structures is that they can efficiently bypass

the classic impossibility results of social choice theory [2, 33, 47].

Similarly, in the design of recommender systems, it has often

been observed that users’ preferences (and hence their recommenda-

tions) have patterns that are (a) demography-based, (b) knowledge-

based, (c) feature-based, or (d) content based [44]. While designing

a product, an enterprise may wish to look for structures in the end

users’ preferences, and design their product such that a collectively

‘efficient’ choice is made to cater a large number of users.

While it is difficult to predict the users’ preferences apriori, data

on the preferences, obtained through users’ purchase and browsing

patterns, or through surveys, are plentiful which are classified into

demography, knowledge, affinity towards a feature or content. It

remains to discover whether the preferences come from a specific

class that we call preferential domains or simply, domains.
A domain is a collection of sets of preferences over a set of

alternatives. A preference profile, i.e., the tuple of preferences of all

the agents/users, is said to belong to a domain if, for some set in

the domain, every preference in the profile belongs to that set.

Example 1.1 (Single peaked domain). Consider three alternatives
a,b, c . The single peaked domain with these alternatives is denoted

by D = {B1, . . . ,B6}, where B1 = {(abc), (bac), (bca), (cba)}
when the societal order over the alternatives is a ≺ b ≺ c , and
similarly, B2, . . . ,B6 are the sets of preferences over the same al-

ternatives for different societal orders of a,b, and c .

Some prominent examples of domains are single peaked, single
crossing, Euclidean, [32] etc. The benefit of the discovery of such

domains (even as a partial population) is that a much refined plan

or protocol can be designed for such domains which satisfy sev-

eral desirable axioms. For example, the median voting rule in the

single peaked domain ensures that no voter can gain by misreport-

ing her preference [43]. Another reason to study various domains

concerns computational considerations. Indeed, some of the most

fundamental problems in computational social choice, for example,

computing winners for many important voting rules such as Ke-

meny, Dodgson, and Young are computationally intractable [9]. It

turns out that most of these problems become efficiently solvable

in many domains, single peaked for example [8].

Our work in this paper contributes to uncovering whether a

given preference profile is “close” to some domain, through sam-

pling a small number of preferences and/or alternatives. The guar-

antees we provide are probabilistic that converges to unity as more
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Input profile

Sample complexity

Possibility 1 Possibility 2

εvn random preferences away

random

O( 1

(1−εv )2
log

1

δ ) [Theorem 3.1]

εvn arbitrary preferences away O( 1

(1−3εv )2
ln

1

δ ) for εv <
1/3⋆ [Theorem 3.4]

εam alternatives away O(log
log1/εa

1/δ

δ log
1/εa

1

δ log log
1/εa

1/δ ) [Theorem 3.10]

εvn arbitrary preferences away

ε ′vn arbitrary

preferences away

O( 1

(ε ′v−εv )2
(2mm2

log
2m + log 1/δ )) [Corollary 3.9]

εam alternatives away ε ′am alternatives away

Ω(n log 1/δ ) even for εa = 0 and

for every 0 < ε ′a ⩽ 1 and 0 < δ < 1/2 [Theorem 3.13]

Table 1: Summary of results for distinguishing profiles in the first column from the profiles in the second column; all the distances are from
the single peaked domain. ⋆ : For any 0 ⩽ εv < 1, we refer to Theorem 3.6. Refer to Section 2.2 for our sampling model.

preferences/alternatives are investigated – the cost of such an in-

vestigation is often proportional to the number of samples drawn,

known as sample complexity. Hence our goal is to minimize the

sample complexity of our algorithms. For example, our algorithms

could be used to predict whether there exist at least, say 95%, of

the preferences in a profile which are single peaked. If we know

the societal order of the single peaked preferences (which consti-

tute at least 95% of the profile), using median voting rule on the

single peaked sub-profile would yield all the desirable properties

of the median voting rule, e.g., truthfulness for those 95% of the

population. These kind of truthfulness of a fraction of voters is

referred to as “approximate truthfulness.” In many applications like

public good provisioning, it is highly beneficial to uncover truthful

opinions from the vast majority of the population.

To put our work in perspective, we revisit a question that is often

asked in computational social choice for any domain. This is about

the existence of an efficient recognition algorithm: given a profile P,

does there exist a polynomial time algorithm to decide whether P

belongs to the domain? There exist efficient recognition algorithms

for many popular domains, for example, single peaked [6], single

crossing [23], etc. [24, 25, 37, 41]. One notable exception is the

Euclidean domain of dimension two where the recognition problem

is NP-hard [45].

There are two main limitations of the recognition problem. First,

the problem formulation is “exact.” Real world profiles are almost

never perfect and thus they can only be at most “close” to some

domain. More specifically, there may be few preferences or alter-

natives (treated as outliers) whom we need to ignore to obtain

the required structure. Unfortunately, outliers’ consideration often

makes the related recognition problem intractable, (e.g., the voter

deletion for single peaked domain [28]). Second, the recognition

problem needs access to the entire preference profile. In many sit-

uations, e.g., pre-election polls, surveys, etc., we only have access

to samples. In other cases, the number of preferences may be too

large and, depending on the application at hand, a sub-linear time

(possibly approximation) algorithm may be more useful. We ad-

dress both these issues by defining a related testing problem. As a

concrete use case, a social planner could use our testing algorithms

to know whether it is possible to remove, say 5% of the preferences

to obtain a single peaked structure by observing a small number of

samples.

A corresponding computational problem is: can a profile of n
preferences over m alternatives belong to some domain D after

deleting, say at most k preferences (or alternatives), by drawing a

small number of samples? However, any algorithm for this problem

would need to observe Ω(n) samples which defeats the main pur-

pose of testing (except when D is empty or D contains all possible

profiles). To see this, let us consider a specific case ofD to be single

peaked; the set of alternatives be {a,b, c}. Let P be a profile con-

sisting of n/2 (say n is an even integer) copies of a ≻ b ≻ c , (n/2) − 1

copies of a ≻ c ≻ b, and one c ≻ b ≻ a. We observe that P is not

single peaked after observing the last preference c ≻ b ≻ a. How-
ever, deletion of that preference makes it single peaked. Let us now

consider another profile Q consisting of n/2 copies of a ≻ b ≻ c ,
(n/2) − 2 copies of a ≻ c ≻ b, and two copies of c ≻ b ≻ a. Again,
Q is not single peaked, but deletion of the two copies of c ≻ b ≻ a
makes it single peaked.We now observe that the KL-divergence [38]

between the two distributions of samples for P and Q is O(1/n) and

thus distinguishing P from Q (which any testing algorithm has to

do) requires Ω(n) samples to succeed with any constant nonzero

probability [4]. To overcome this lower bound, we introduce (as is

ubiquitous in testing literature [34, 46]) a “gap” in the two possible

inputs. In all our testing problems, we are given a profile as input

which is guaranteed to be one of the two possible types, and we

need to find which one it is. The two possibilities for the input will

cover all the cases except few and thus there is a “gap.”

1.1 Our Contribution
Our specific contribution in this paper are as follows. The error

probability of any algorithm below is at most δ ∈ (0, 1).

(i) We present a sampling based algorithm to distinguish any

profile for which there exists a set R of at most εvn preferences

(or εam alternatives) whose deletion makes the resulting profile

belong to D from any random profile (refer to the first three rows

in Table 1). We observe that the sample complexity depends on

whether we assume R to be arbitrary or random. We remark that,

in the testing literature [1, 35, 48], it is popular to assume the noise

to be random which is equivalent to assuming the preferences in

R to be random in our context.

(ii) For any 0 ⩽ εv < ε ′v ⩽ 1, we present a sampling based algo-

rithm to distinguish any profile for which there exist at most εvn
preferences whose deletion makes the resulting profile belong to
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D from any profile where one has to delete at least ε ′vn preferences

to make it belong to D (refer to the fourth row in Table 1).

(iii) In the case of alternatives, we prove that any algorithm for

distinguishing any profile for which there exist at most εam alter-

natives whose deletion makes the resulting profile belong to D

from any profile where one has to delete at least ε ′am alternatives

to make it belong to D has sample complexity of Ω(n log 1/δ ) for

every 0 ⩽ εa < ε ′a ⩽ 1 even when εa = 0 (refer to the fifth row

in Table 1). This shows that detecting arbitrary outlier alternatives
is much harder than detecting arbitrary outlier preferences from a

sample complexity viewpoint.

We remark that all our results in Table 1 for the single peaked

domain actually extend to any domain as described in Section 3.

From a technical point of view, to tackle preferences which are

outliers, we define and exploit a notion called content of a domain
which, informally, is the maximum number of distinct preferences

that any profile in the domain can contain as a function of the

number of alternatives. On the other hand, we blendwith it the ideas

from the classical coupon collector problem to handle alternatives

which are outliers. To develop an algorithm for the case when

the outliers can be arbitrary, we prove a key structural result (in

Lemma 3.7) for arbitrary domain which may be of independent

interest also.

1.2 Related Work
The computational problem of recognizing whether a given pro-

file belongs to a domain has been studied extensively in computa-

tional social choice. Trick [6] shows that the recognition problem

is polynomial time solvable for single peaked profiles. Escoffier

et al. [29] improve the efficiency of the recognition algorithm

for the single peaked profiles. Elkind et al. [27] present a poly-

nomial time algorithm for recognizing single crossing profiles. Bar-

berà and Moreno [5] discover a property called top monotonicity

which simultaneously generalizes both single peakedness and sin-

gle crossingness. Magiera and Faliszewski [41] present polynomial

time recognition algorithm for top monotonic profiles. Doignon

and Falmagne [23] show that the recognition problem for the

one dimensional Euclidean domain is polynomial time solvable.

Knoblauch [37] and Elkind and Faliszewski [24] present alternative

algorithms for recognizing one dimensional Euclidean profiles. Pe-

ters [45] shows that recognizing Euclidean profiles of dimension at

least two is NP-hard.
Lackner [39] shows that the computational problem of finding if

it is possible to extend a given incomplete profile to a single peaked

profile is NP-complete. However, if we restrict ourselves to only

weak orders, then the computational problem of recognizing incom-

plete single peaked profiles is polynomial time solvable [31]. The

above problem is polynomial time solvable for single crossing pro-

files too [25]. Erdélyi [28] studies complexity of the computational

problem of deciding whether a given profile can be “made” single

peaked by deleting few preferences or alternatives; Bredereck et

al. [11] study complexity of this problem for single peaked, single-

caved, single-crossing, etc. profiles. Ballester and Haeringer [3]

present characterization of single peaked profiles through succinct

forbidden configurations. Bredereck et al. [10] show forbidden con-

figurations for the single crossing profiles. Elkind et al. [26] present

forbidden configurations for profiles which are simultaneously sin-

gle peaked and single crossing. A related literature studies the

likelihood of a random profile being single peaked [12, 13, 40].

There is an active line of work in computational social choice

which aims at sub-linear algorithms [7, 14–18, 20, 22] and our work

also falls in this category.

2 PRELIMINARIES AND PROBLEM
FORMULATION

For any two positive integers k and ℓ with k ⩽ ℓ, we denote the
set {j ∈ N : 1 ⩽ j ⩽ k} by [k] and the set {j ∈ N : k ⩽ j ⩽ ℓ} by
[k, ℓ]. For a set X, we denote its power set by 2

X
. Let A be a finite

set of alternatives of cardinalitym. Preferences are linear orders

overA. We denote the set of all linear orders overA by L(A). For

any positive integer n, a tuple (≻i )i ∈[n] of n preferences is called a

profile. If not mentioned otherwise, we usem,n, and A to denote

the number of alternatives, the number of preferences in a profile,

and the set of alternatives, respectively. For a subset X ⊆ A and a

preference ≻ ∈ L(A), we denote the restriction of ≻ toX by ≻ (X).

A preferential domain or simply domain is a collection of subsets

of ∪ |A |>0L(A). We call a domain D nontrivial if D , ∅ and

D , ∪ |A |>02
L(A)

. Given a domain D and a profile P = (≻i )i ∈[n]
over A, we say (with slight abuse of notation) that P ∈ D if

there exists a B ∈ D such that P ∈ Bn
. We call a domain D

neutral if whenever (≻i )i ∈[n] ∈ D, we have (σ (≻i ))i ∈[n] ∈ D

for every permutation σ of [m]; if ≻i is defined as a1 ≻ a2 ≻

· · · ≻ am , then σ (≻i ) is defined as aσ (1) ≻ aσ (2) ≻ · · · ≻ aσ (m).

We call a domain D normal if whenever (≻i )i ∈[n] ∈ D, we have

(≻i (X))i ∈[n] ∈ D for every X ⊆ A. In this work, we consider

only neutral and normal domains. We remark that many popular

domains including single peaked, single caved, single crossing, top

restricted, bottom restricted, etc. satisfy these two properties (the

only notable exception is the domain of top monotonic [5] profiles).

Let D be any domain and P = (≻i )i ∈[n] ∈ L(A)n be a profile.

If it satisfies the following conditions:

(i) there exists a subset J ⊂ [n] such that |J | = ℓ and (≻i )i ∈J ∈

D, and

(ii) for every subsetK ⊂ [n] such that |K | > ℓ, we have (≻i )i ∈K <
D,

then we say that the preference-distance of P from D is (n − ℓ),

and we call the preferences which need to be deleted to bring the

profile back to D to be preference outliers. Similarly, we can define

the notion of alternative-distance (where only alternatives need to

be deleted) and alternative outliers.

Our first problem is to distinguish a profile which is, informally

speaking, εam alternatives and random εvn preferences away from

some domain D vs a random profile. We call this problem (εv , εa ,
δ , D) – Random Outliers vs Random Profile Test which is

formally defined as follows.

Problem 1 ((εv , εa , δ , D) – Random Outliers vs Ran-

dom Profile Test). Let (≻i )i ∈[n] be a profile over a set A
of alternatives which is either one of the following kind:

(i) There exists W ⊆ [n] and X ⊆ A with |W| ⩾
(1 − εv )n and |X| ⩾ (1 − εa )m such that the profile
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(≻i (X))i ∈W belongs to the domain D and ≻j (X) is
distributed uniformly in L(X) for every j ∈ [n] \W.

(ii) The preference ≻i is distributed uniformly randomly
in L(A) for every i ∈ [n].

Output 1 if the input profile is of the first kind and 0 if it is
of the second kind; the probability of error can be at most δ .

Problem 1 assumes that the preference outliers are distributed

uniformly randomly which can be a strong assumption depending

on the application at hand. The (εv , εa , δ , D) – Arbitrary Out-

liers vs Random Profile Test problem in Problem 2 removes this

assumption.

Problem 2 ((εv , εa , δ ,D) – Arbitrary Outliers vs Ran-

dom Profile Test). Let (≻i )i ∈[n] be a profile over a set A
of alternatives which is either one of the following:

(i) There exists W ⊆ [n] and X ⊆ A with |W| ⩾
(1 − εv )n and |X| ⩾ (1 − εa )m such that the profile
(≻i (X))i ∈W belongs to the domain D.

(ii) The preference ≻i is distributed uniformly randomly
in L(A) for every i ∈ [n].

Output 1 if the input profile is of the first kind and 0 if it is
of the second kind; the probability of error can be at most δ .

Problem 2 still retains the assumption from Problem 1 that the

second possibility for the input profile is random. The (εv , εa , ε
′
v ,

ε ′a , δ , D) – Arbitrary Outliers vs Arbitrary Profile Test

problem in Problem 3 is the most general problem in our paper

which removes all these structural assumptions from Problems 1

and 2.

Problem 3 ((εv , εa , ε ′v , ε ′a , δ , D) – Arbitrary Outliers

vs Arbitrary Profile Test). Let (≻i )i ∈[n] be a profile over
a set A of alternatives which is either one of the following
kind where 0 ⩽ εv < ε ′v ⩽ 1 and 0 ⩽ εa < ε ′a ⩽ 1:

(i) There exists W ⊆ [n] and X ⊆ A with |W| ⩾
(1 − εv )n and |X| ⩾ (1 − εa )m such that the profile
(≻i (X))i ∈W belongs to the domain D.

(ii) For everyW ⊆ [n] andX ⊆ A with |W| > (1−ε ′v )n
and |X| > (1 − ε ′a )m, the profile (≻i (X))i ∈W does
not belong to the domain D.

Output 1 if the input profile is of the first kind and 0 if it is
of the second kind; the probability of error can be at most δ .

In Problems 1 to 3, the error probability is taken over the random-

ness used in generating the instances in (ii) and the randomness

used by the algorithm.

2.1 Content and Residue of Domain
We now define the content and residue of any domain which will

make the many of our results simpler to state. LetD be any domain.

We define the content of D as a function conD : N −→ [0, 1]

such that any profile with m ∈ N alternatives in D can have at

most conD (m)m! distinct preferences; we call the function resD :

N −→ [0, 1] defined as resD (m) = 1 − conD (m) the residue of a
domain. For example, con

single peaked
(2) = 1, con

single peaked
(3) =

2/3, con
single crossing

(m) = ((m
2
)+1)/m! [19]. For technical reason, let

us assume that conD (1) = 1 for every D. We observe that, for

normal domains, the function conD (·) is non-increasing (and thus

resD (·) is a non-decreasing function). Whenever the domain D is

immediate from the context, we omit D from subscript of con and

res.

2.2 Sampling Model and Sample Complexity
In our model, there is an oracle which, when queried, returns an

agent v picked uniformly randomly with replacement from the set

of all agents. Now the algorithm can ask the agent v an arbitrary

number of comparison queries – in a comparison query, two alter-

natives x andy are presented to the agentv and it replies whether it

prefers x over y or y over x . The sample complexity of an algorithm

is defined to be the total number of comparison queries it makes

during its execution. We remark that defining sample complexity

(instead of the number of agents sampled) as the number of com-

parison queries enables us to perform more fine grained analysis

of the complexity of our problems.

2.3 Chernoff Bound
We repeatedly use the following concentration inequality:

Theorem 2.1. Let X1, . . . ,Xℓ be a sequence of ℓ independent ran-
dom variables in [0, 1] (not necessarily identical). Let S =

∑
i Xi and

let µ = E [S]. Then, for any 0 ⩽ δ ⩽ 1:

Pr[|S − µ | ⩾ δℓ] < 2 exp(−2ℓδ2), (1)

and
Pr[|S − µ | ⩾ δµ] < 2 exp(−δ2µ/3). (2)

Equations (1) and (2) are called additive and multiplicative versions
of the bound respectively.

3 RESULTS
We now present our main results. Our general approach would be

to explain our algorithms for the special case of the single peaked

domain first and then generalize to arbitrary domain; we make

an exception for few cases where presenting the general case di-

rectly better reveals the key idea. In the interest of space, we omit

some of our proofs, which can be found in the full version [21].

For ease of exposition and interest of space, we have deferred our

more involved algorithms for the cases when both preferences and

alternatives could simultaneously be outliers to the supplemental

material.

3.1 Only Preferences as Outliers
In this subsection, we focus on the case when only preferences are

considered as outliers. We begin with presenting our (εv , 0, δ , D)

– Random Outliers vs Random Profile Tester for the single

peaked domain. Our algorithm first fixes any three alternatives, say

a,b, and c . Then it samples few preferences restricted to these three

alternatives only. If all the six possible permutations of a,b, and c
appear nearly same number of times, then the algorithm predicts

the profile to be a random profile; otherwise it predicts it to be
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close to single peaked. We now formally present our algorithm in

Theorem 3.1.

Algorithm 1 (εv , 0, δ , single peak) – Random Outliers vs Ran-

dom Profile Tester

Input: Oracle access to a profile P

Output: 1 if there exists εvn preferences whose deletion makes the

resulting profile single peaked and 0 if P has been generated

randomly

1: Let a,b, c ∈ A be any 3 arbitrary alternatives

2: Sample ℓ = 72

(1−εv )2
ln

6

δ preferences restricted to {a,b, c} uni-

formly at random from the input profile with replacement. Let

B ∈ L({a,b, c})ℓ be the profile of sampled preferences

3: Let t be the minimum number of times any preference in

L({a,b, c}) appear in B

4: if t < ℓ
12
(1 + εv ) then

5: return 1

6: else
7: return 0

8: end if

Theorem 3.1. For at least 3 alternatives, there exists a (εv , 0,
δ , single peak) – Random Outliers vs Random Profile Tester

with sample complexity O( 1

(1−εv )2
log

1

δ ) for every 0 ⩽ εv < 1 and
0 < δ < 1/2. If there are only 2 alternatives, then there does not exist
any such tester.

Proof. Form = 2, the result follows from the observation that a

profile where every preference is distributed uniformly in the set of

all possible preferences is single peaked and thus the two cases are

statistically indistinguishable. So let us assumem ⩾ 3 and a,b, and
c be any three alternatives. We pick ℓ = 72

(1−εv )2
ln

6

δ preferences

uniformly at random with replacement and query oracle to know

how a,b, and c are ordered in these preferences. Let pi , i ∈ [6], be

all possible permutations of {a,b, c} and Xi be the random variable

denoting the number of sampled preferences where the permutation

pi appears for i ∈ [6]. We output 1 if mini ∈[6] Xi <
ℓ
12
(1 + εv ) and

output 0 otherwise. We observe that the sample complexity of our

algorithm is 6ℓ = O( 1

(1−εv )2
ln

1

δ ). We now turn to the correctness

of our algorithm. For that we show that irrespective of the input

profile, the probability of making an error is at most δ .

▷Case I - the input profile is single peaked after deleting at
most εvn preferences which are distributed uniformly: Let P
be the input profile and Q be a sub-profile of P which is single

peaked and contains at least (1 − εv )n preferences. Hence, there

exists an η ∈ [6] such that the preference pη does not appear in

Q. Since the preferences in P \ Q is uniformly distributed and

|P \ Q| ⩽ εvn/6, we have E[Xη ] ⩽ εv ℓ/6. Using Chernoff bound

(additive form), we now have the following:

Pr[error] ⩽ Pr[X j ⩾ ℓ
12
(1 + εv )] ⩽ exp{−

ℓ(1−εv )2
72

} ⩽ δ

▷Case II - the input profile is distributed uniformly: Since
every preference in profile P is uniformly distributed, for every

i ∈ [6], we have E[Xi ] = ℓ/6. Using Chernoff bound (multiplicative

form) followed by union bound, we have the following:

Pr[error] = Pr[∃i ∈ [6],Xi ⩽ ℓ
12
(1 + εv )]

⩽ 6 exp{−(1−εv )2ℓ/48} ⩽ δ □

The main idea in Theorem 3.1 can be easily extended to arbitrary

domains.

Corollary 3.2. Let D be any normal and neutral domain and
m0 = min{m : conD (m) < 1}. For at least m0 alternatives, there
exists a (εv , 0, δ , D) – Random Outliers vs Random Profile

Testerwith sample complexityO( 1

(1−εv )2
ln

1

δ ) for every 0 ⩽ εv < 1

and 0 < δ < 1/2. If the number of alternatives is at mostm0 − 1, then
there does not exist any such tester.

We now turn our attention to the (εv , 0, δ , D) – Arbitrary

Outliers vs Random Profile Test problem; that is when the

outliers can be arbitrary (need not be randomly generated). We

begin with presenting a general impossibility result in this case.

Its proof follows from the observation that, in this case, one can

carefully construct the set of outliers so that the distribution of

samples in both the possibilities are statistically indistinguishable.

Proposition 3.3. For every domain D, there does not exist any
(εv , 0, δ , D) – Arbitrary Outliers vs Random Profile Tester

for any εv ⩾ resD (m) wherem is the number of alternatives in the
input profile.

We now present our (εv , 0, δ , single peak) – Arbitrary Out-

liers vs Random Profile Tester for εv < 1/3 in Theorem 3.4. We

defer our general (εv , 0, δ , D) – Arbitrary Outliers vs Random

Profile Tester till Theorem 3.6 which not only handles every

εv < 1 but also takes care of arbitrary domain (but the sample

complexity will be worse than that of Theorem 3.4). The main idea

of the algorithm in Theorem 3.4 is exactly the same as the algorithm

in Theorem 3.1 – it samples some preferences restricted to any 3

alternatives and outputs that the profile is random if all the 6 possi-

ble permutations appear nearly equal number of times; otherwise

it says that the profile is close to single peaked.

Theorem 3.4. There exists a (εv , 0, δ , single peak) – Arbitrary

Outliers vs Random Profile Tester with sample complexity
O( 1

(1−3εv )2
ln

1

δ ) for every 0 ⩽ εv < 1/3.

Proof. As in Theorem 3.1, we choose any 3 alternatives a,b,
and c , pick ℓ = 72

(1−3εv )2
ln

6

δ preferences uniformly at random with

replacement, and query oracle to know how a,b, and c are ordered

in these preferences. We output 1 if mini ∈[6] Xi <
ℓ
12
(1 + 3εv )

and output 0 otherwise (with notation as defined in the proof of

Theorem 3.1). The proof of correctness and the analysis of the

sample complexity of our algorithm is similar to Theorem 3.1 using

the observation that, when the input profile can be made single

peaked by deleting at most εvn preferences, there exists an η ∈ [6]

such that Xη ⩽ εv ℓ/2 since res
single peak

(3) = 1/3. □

From the proof of Theorem 3.4, the following generalization to

arbitrary domain is immediate.

Corollary 3.5. Letm0 = min{m ∈ N : resD (m) < 1} and the
number of alternatives is at leastm0. Then there exists a (εv , 0, δ , D)
– Arbitrary Outliers vs Random Profile Tester with sample
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complexity O( 1

(1−(εv/resD(m
0
)))2

ln
1

δ ) for every εv with 0 ⩽ εv <

resD (m0) (the O notation in the sample complexity hides constant
which depends onm0).

We now present our (εv , 0, δ , D) – Arbitrary Outliers vs

Random Profile Tester for any εv < 1 generalizing Theorem 3.4.

Of course we need the number of alternatives to be at leastm(εv )
wherem(εv ) = min{m ∈ N : resD (m) > εv } due to Proposition 3.3.

Theorem 3.6. Given a domain D, any εv with 0 ⩽ εv < 1

with resD (m) > εv , there exists a (εv , 0, δ , D) – Arbitrary

Outliers vs Random Profile Tester with sample complexity

O(
m(εv )!m(εv )2 log2m(εv )

(1−(εv/resD(m(εv ))))2
ln

1

δ ) where m(εv ) = min{ℓ ∈ N :

resD (ℓ) > εv }.

Proof. Let A ′ ⊆ A be any subset of alternatives with |A ′ | =

m(εv ). We pick ℓ =
16m(εv )!m(εv ) logm(εv )

(1−(εv/resD(m(εv ))))2
ln

1

δ preferences uni-

formly at random and elicit these preferences restricted to A ′
. For

≻ ∈ L(A ′), let X≻ be the random variable denoting the num-

ber of sampled preferences which are the same as ≻. We out-

put 1 if min≻∈L(A′) X≻ <
ℓ

2m(εv )!
(1 + (εv/resD (m(εv )))) and out-

put 0 otherwise. The sample complexity complexity of the algo-

rithm is O(
m(εv )!m(εv )2 log2m(εv )

(1−(εv/resD(m(εv ))))2
ln

1

δ ). The proof of correctness

of our algorithm is similar to that of Theorem 3.1 using the ob-

servation that, when the input profile can be made single peaked

by deleting at most εvn preferences, there exists an ≻ ∈ L(A ′)

such that X≻ ⩽ εv ℓ
resD (m(εv ))m(εv )!

(follows from the definition of

resD (m(εv ))). □

We now present our result for the (εv , 0, ε
′
v , 0, δ ,D) – Arbitrary

Outliers vs Arbitrary Profile Test problem. The following

structural result provides the key building block of our algorithm.

Intuitively the lemma proves that, given a profile P, if we sample

preferences from P uniformly at random with replacement to con-

struct another profile Q (of certain size), then the “relative” distance

of Q from any domain D is approximately same as the relative

distance of P from D.

Lemma 3.7. Let D be any normal and neutral domain and (≻i
)i ∈[n] ∈ L(A)n be a profile with preference-distance being εvn from
D. Let 0 < ∆ < min{εv , 1−εv }, ℓ = 4

∆2
(conD (m)m!m lnm+ ln 1/δ ),

and ≻′= (≻′
i )i ∈[ℓ] be a profile where ≻

′
i has been picked uniformly

at random with replacement from the n preferences of ≻. Then the
preference-distance of ≻′ from D is at least (εv − ∆)ℓ and at most
(εv + ∆)ℓ with probability at least 1 − δ for every 0 < δ < 1.

We now present our (εv , 0, ε
′
v , 0, δ , D) – Arbitrary Outliers

vs Arbitrary Profile Tester. The high level idea is to sample

some number ℓ of preferences, compute the distance ε ′′ℓ of the
resulting profile from the single peaked domain, and output the

distance of the original profile to be εn if and only if ε ′′ is closer to
ε than ε ′.

Theorem 3.8. For every domain D, there exists a (εv , 0, ε ′v , 0, δ ,
D) – Arbitrary Outliers vs Arbitrary Profile Tester with
sample complexity O( 1

(ε ′v−εv )2
(conD (m)m!m2

log
2m + log 1/δ )) for

every 0 ⩽ εv < ε ′v < 1 and 0 < δ < 1/2.

Algorithm 2 (εv , 0, ε
′
v , 0, δ , single peak) – Arbitrary Outliers

vs Arbitrary Profile Tester

Input: Oracle access to a profile P

Output: 1 if there exists εvn preferences whose deletion makes

the resulting profile single peaked and 0 if deleting any ε ′vn
preferences from P does not make the resulting profile single

peaked

1: Sample ℓ = 64

(ε ′v−εv )2
(2mm lnm + ln 1/δ ) preferences uniformly

at random from the input profile with replacement. Let B ∈

L(A)ℓ be the profile of sampled preferences

2: Let t be the minimum number of times any preference in

L({a,b, c}) appear in B

3: if B can be made single peaked by deleting at most (εv+ε ′v )ℓ/2

preferences then
4: return 1

5: else
6: return 0

7: end if

We observe that con
single peaked

(m) = 2
m−1/m! [29, Lemma 2]

and con
single crossing

(m) = ((m
2
)+1)/m!. Hence, from Theorem 3.8, we

obtain the following result for the single peaked and single crossing

domains.

Corollary 3.9. There exists a (εv , 0, ε ′v , 0, δ , D) – Arbitrary

Outliers vs Arbitrary Profile Tester with sample complexity
O( 1

(ε ′v−εv )2
(2mm2

log
2m + log 1/δ )) for the single peaked domain

and with sample complexity O( 1

(ε ′v−εv )2
(m4

log
2m+ log 1/δ )) for the

single crossing domain for every 0 ⩽ εv < ε ′v < 1 and 0 < δ < 1/2.

3.2 Only Alternatives as Outliers
In this subsection, we now focus on the case when only alternatives

are considered as outliers. We observe that when only alternatives

act as outliers, the (0, εa , δ , D) – Random Outliers vs Random

Profile Test and (0, εa , δ , D) – Arbitrary Outliers vs Random

Profile Test are the same problem. We begin with presenting our

(0, εa , δ , single peak) – Random Outliers vs Random Profile

Tester in Theorem 3.10 below. On a high level, our algorithm in

Theorem 3.10 samples some number t of preferences restricted to

some number ℓ of alternatives. If for every 3 alternatives among

those ℓ alternatives, all the 6 possible permutations appear in the

sampled preferences, then the algorithm outputs the profile to be

random, otherwise it says that the profile is close to being single

peaked.

Theorem 3.10. There exists a (0, εa , δ , single peak) – Random

Outliers vs Random Profile Tester with sample complexity

O(log
log1/εa

1/δ

δ log
1/εa

1

δ log log
1/εa

1/δ ). Hence, there also exists a
(0, εa , δ , single peak) – Arbitrary Outliers vs Random Profile

Tester with the same sample complexity for every 0 < εa < 1 and
0 < δ < 1/2 such that consingle peak((1 − εa )m) < 1.

Proof. We sample ℓ = min{(1− εa )m, 2 log1/εa 1/δ } alternatives

uniformly at random without replacement. Let B be the set of

sampled alternatives. We now sample t = 18 ln

2 log1/εa
1/δ

δ prefer-

ences uniformly at random with replacement restricted to B. Let
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Algorithm3 (0, εa , δ , single peak) – RandomOutliers vs Random

Profile Tester

Input: Oracle access to a profile P

Output: 1 if there exists εam alternatives whose deletion makes

the resulting profile single peaked and 0 ifP has been generated

randomly

1: Sample ℓ = min{(1− εa )m, 2 log1/εa 1/δ } alternatives uniformly

at random from A without replacement. Let B be the set of

sampled alternatives.

2: Sample t = 18 ln

2 log1/εa
1/δ

δ uniformly random preferences

restricted to B. Let the sampled profile be Q ∈ L(B)t

3: for Every distinct a,b, c ∈ B do
4: if at least one permutation in L({a,b, c}) is not present in

Q then
5: return 1

6: end if
7: end for
8: return 0

Q be the set of sampled preferences. We output 1 if there exist

3 alternatives a,b, c ∈ B such that at least one permutation in

L({a,b, c}) is not present in Q and output 0 otherwise. We ob-

serve that the sample complexity of our algorithm is O(tℓ log ℓ) =

O(log
log1/εa

1/δ

δ log
1/εa

1

δ log log
1/εa

1/δ ). We now turn to the cor-

rectness of our algorithm. For that we show that irrespective of the

input profile, the probability of making an error is at most δ .

▷Case I - the input profile is single peaked after deleting
at most εam alternatives: Let A be the set of alternatives and

W ⊂ A with |W| ⩽ εam such that the input profile restricted

to (A \W) is single peaked. Then we have the following for the

chosen value of ℓ:

Pr[error] ⩽ Pr[|B ∩W| ⩾ ℓ − 2]

= εℓa +

(
ℓ

1

)
(1 − εa )ε

ℓ−1
a +

(
ℓ

2

)
(1 − εa )

2εℓ−2a

⩽ εℓa + ℓε
ℓ−1
a + ℓ2εℓ−2a ⩽ δ

▷Case II - the input profile has been generated uniformly
at random: For any 3 alternatives a,b, c ∈ A, we define a random

variableX {a,b,c } to be 1 if all 6 possible permutations inL({a,b, c})
are present inQ({a,b, c}) and 0 otherwise. Using folklore tail bound
for the coupon collector problem (for example, see [42, Chap 3.6]),

we obtain the following for the chosen value of t .

Pr[X {a,b,c } = 0] ⩽ 6
−t/3 ln 6 ⩽ e−

t/6

Now using union bound, we obtain the following for the chosen

values of ℓ and t .

Pr[error] ⩽ Pr[∃{a,b, c} ⊂ B,X {a,b,c } = 0] ⩽

(
ℓ

3

)
e−

t
6 ⩽ δ □

From the proof of Theorem 3.10, Corollary 3.11 follows.

Corollary 3.11. For every domain D, there exists a (0, εa , δ , D)
– Arbitrary Outliers vs Random Profile Tester with sample

complexity O(log
log1/εa

1/δ

δ log
1/εa

1

δ log log
1/εa

1/δ ) for every 0 <

εa < 1 and 0 < δ < 1/2 such that conD ((1 − εa )m) < 1.

We show below that the condition conD ((1− εa )m) < 1 in Theo-

rem 3.10 and Corollary 3.11 is necessary. We prove Proposition 3.12

by carefully constructing a set of outliers such the the sample dis-

tribution in both the possibilities are statistically indistinguishable.

Proposition 3.12. For every domain D, there does not exist any
(0, εa , δ , D) – Arbitrary Outliers vs Random Profile Tester if
conD ((1 − εa )m) = 1.

We now turn to the (0, 0, 0, ε ′a , δ , single peak) – Arbitrary Out-

liers vs Arbitrary Profile Test problem. The following results

show that the sample complexity of this problem is Ω(n log 1/δ )

even for the single peaked and single crossing domains.

Theorem 3.13. Any (0, 0, 0, ε ′a , δ , single peak) – Arbitrary

Outliers vs Arbitrary Profile Tester has sample complexity
Ω(n log 1/δ ) for every 0 < ε ′a ⩽ 1 and 0 < δ < 1/2 such that
consingle peak((1 − ε ′a )m) < 1.

Theorem 3.14. Any (0, 0, 0, ε ′a , δ , D) – Arbitrary Outliers vs

Arbitrary Profile Tester has sample complexity Ω(n log 1/δ ) for
single crossing domain for every 0 < ε ′a ⩽ 1 and 0 < δ < 1/2 such
that consingle crossing((1 − ε ′a )m) < 1.

4 EMPIRICAL EVALUATION
The algorithms presented in Section 3 provide upper bounds on the

sample complexities of the problems of outlier detection. These al-

gorithms distinguish between two possibilities of profile generation

with a probability of correctness of at least (1 − δ ). It is interesting
to find out the optimal multiplying factors of the sampling com-

plexities inside O(·) in these algorithms. This is why an empirical

evaluation is called for.

In this section, we empirically find the factors for the results of

Theorems 3.1, 3.4 and 3.10, which provide constant time algorithms

for the testing problem. The other two cases as shown in Table 1

either consider an exponential time (Corollary 3.9) algorithm or

provide a lower bound (Theorem 3.13), which are unsuitable for an

empirical study.

4.1 Approach for Theorems 3.1 and 3.4:
We generate n = 10, 000 preferences withm alternatives uniformly

at random to form a preference profile. The sampling algorithm of

Theorem 3.1 (given by Algorithm 1) picks an ℓ for a given εv . In
this experiment, we choose a sampling size l that is smaller than

ℓ, and apply the same algorithm using l preferences sampled with

replacement from the population of n. We generate the preference

profile 100 times and for every profile, sample l preferences 100
times. We consider the fraction of correct classifications given by

this modified sampling algorithm and plot it with increasing l . We

fix δ = 0.001 for these evaluations. We show the plot of the fraction

of correct classification (denoted by ρ) for Theorem 3.1 withm = 3

in Figure 1.

The plot shows the growth of the empirical probability of correct-

ness (and therefore does not need any errorbar). The x-axis shows

the normalized sample size (that is l/ℓ). Notice that the growth of

the curves almost overlaps for different εv s, and reaches (1 − δ )
nearly at 0.5. This empirically shows that when other parameters

are held fixed at the chosen values, the hidden constant in the upper
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Figure 1: Fraction of correct classification (ρ) of the adaptation of
Algorithm 1 when l (⩽ ℓ) preferences have been sampled uniformly
at random from a random preference profile of size n = 10, 000, δ =
0.001 (x-axis shows the normalized value, l/ℓ).

bound of the sample complexity in the context of random outliers

can be reduced by almost 50%, and is independent of εv .
We perform a similar exercise with different sampling sizes for

the algorithm in the proof of Theorem 3.4 (given by Algorithm 2)

with m = 5 in Figure 2. Here too, the proportionality factor is

independent of the εv s, and the hidden constant factor in this case

can be reduced by 60%.
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Figure 2: Fraction of correct classification (ρ) of the adaptation of
Algorithm 2 when l (⩽ ℓ) preferences have been sampled uniformly
at random from a random preference profile of size n = 10, 000, δ =
0.001 (x-axis shows the normalized value, l/ℓ).

Why the error with a random/arbitrary outliers profile being

classified as a random profile is not considered? We argue that

such an error is not very likely in the algorithms of these theorems,

which is also manifested in our simulations. Therefore we omit

them presenting here. For Theorem 3.1, since the focus is only on

the three alternatives a,b, and c , the number of random outliers

will be close to εvn/6 for large enough n. If l preferences are drawn
uniformly at random with replacement from this profile, it is very

likely that mini Xi will be at most close to εv l/6 for reasonably sized

l . The algorithm classifies the profile as random outlier profile if

mini Xi ⩽ l (1+εv )/12 and since εv l/6 ⩽ l (1+εv )/12, it is unlikely that

a random outlier profile will be classified as random profile under

this algorithm. Similar observation is true for Theorem 3.4.

4.2 Approach for Theorem 3.10:
Here we consider the alternatives as outliers. The algorithm in the

proof of this theorem (given by Algorithm 3) samples ℓ alternatives

uniformly at random and samples t preferences restricted to the

sampled alternatives uniformly at random. In this case, we pick the

values of δ and n as before. We fixm = 9, and pick ℓ = min{(1 −

εa )m, 2 log1/εa 1/δ } as given in the proof of Theorem 3.10, and vary

the value of τ (⩽ t), which is the sampling size of the preferences

restricted to the chosen ℓ alternatives. The alternatives of size ℓ

are sampled 100 times. Figure 3 shows the plot of the fraction of

correct classification (ρ) under this setting. It empirically shows

that when other parameters are held fixed at the chosen values, the

hidden constant of the upper bound of the probability in the case

of random alternative outliers can be reduced by almost 75%, and

is independent of εa .
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Figure 3: Fraction of correct classification (ρ) of the adaptation of
Algorithm 3when τ (⩽ t ) preferences have been sampled uniformly
at random from a random preference profile of size n = 10, 000with
ℓ = min{(1 − εa )m, 2 log

1/εa
1/δ } as given in the proof, m = 10, δ =

0.001 (x-axis shows the normalized value, τ/t ).

In a way similar to the previous paragraph we can argue that this

algorithm also has a bias towards classifying a profile as random

alternative outlier, which also is empirically manifested. Hence, we

omit presenting them here.

5 DISCUSSION
In this paper, we have developed sampling based algorithms for

testing if a profile is close to some specific domain. These testing

problem can be quite accurately solved by observing a small num-

ber of samples for most of the cases, and the numbers are often

independent to the number of preferences or alternatives. In other

cases, we have proved impossibility results. Our extensive empirical

study further improve the constants of the asymptotic theoretical

upper bounds on the sample complexity by 50% to 75% depending

on the problem. As a future work, there exist more sophisticated

notion of distances, namely swap distance, footrule distance, max-

imum displacement distance, etc. where it will be interesting to

extend our results to those fine grained measures of distance.
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