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ABSTRACT
In this paper we consider modified fractional hedonic games, that
are coalition formation games defined over an undirected edge-

weighted graphG = (N , E,w), where N is the set of agents and for

any edge {u,v} ∈ E,wu ,v = wv ,u reflects how much agents u and

v benefit from belonging to the same coalition. More specifically,

given a coalition structure, i.e., a partition of the agents into coali-

tions, the utility of an agent u is given by the sum ofwu ,v over all

other agents v belonging to the same coalition of u averaged over

all other members of that coalition, i.e., excluding herself.

We focus on common stability notions: we are interested in

strong Nash stable, Nash stable and core stable outcomes. In [18],

the existence of these natural outcomes for modified fractional

hedonic games is completely characterized; moreover, many tight

or asymptotically tight results on their performance are shown for

the classical utilitarian social welfare function, that is defined as

the sum of all agents’ utilities.

Motivated by the fact that an outcome with an high utilitarian

social welfare could be extremely harsh for some agents, we pro-

vide a comprehensive analysis on the performance of strong Nash

stable, Nash stable and core stable outcomes for modified fractional

hedonic games under the egalitarian social welfare function, that

is defined as the minimum among all agents’ utilities.
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1 INTRODUCTION
Hedonic games, introduced in [13], model the formation of coali-

tions of agents. They are games in which agents have preferences

over the set of all possible agent coalitions, and the utility of an

agent depends on the composition of the coalition she belongs to. A

significant amount of research considered the study of many classes

of hedonic games and characterized various solutions concepts like

strong Nash stability, core stability and Nash stability (see [5] for a

survey on the topic).

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

While the standard model of hedonic games assumes that agents’

preferences over coalitions are ordinal, there are several prominent

classes of hedonic games where agents assign cardinal utilities

to coalitions. Modified fractional hedonic games (MFHG), intro-

duced in [23], constitute a natural and succinctly representable

class of hedonic games (together with additively separable hedo-

nic games [3] and fractional hedonic games [2]). An instance of

MFHG can be modeled by means of a weighted undirected graph

G = (N , E,w), where nodes in N represent the agents, and the

weight wu ,v = wv ,u of an edge {u,v} ∈ E represents how much

agents u and v benefit from belonging to the same coalition. Given

a coalition structure, i.e., a partition of the agents into coalitions,

the utility of an agent u is given by the sum ofwu ,v over all other

agents v belonging to the same coalition ofu averaged over all other

members of that coalition, i.e., excluding herself. MFHGmodel natu-

ral behavioral dynamics in social environments. Even when defined

on undirected unweighted bipartite graphs, they suitably model a

basic economic scenario referred to in [1] as Bakers and Millers,

where each agent can be considered as a buyer or a seller. There

are only edges connecting buyers and sellers and every agent sees

the others of the same type as market competitors. Each agent

prefers to be situated in a group (market) with a small number of

competitors, that is, each buyer wants to be in a group with many

sellers and few other buyers, thus maximizing their ratio, in order

to decrease the price of the good. On the other hand, a seller wants

to be situated in a group maximizing the number of buyers against

the number of sellers, in order to be able to increase the price of

the good and gain a higher profit. Moreover, MFHG can model

other realistic scenarios: for instance, politicians may want to be

in a party that maximizes the fraction of like-minded members, or,

for example, people may want to be with an as large as possible

fraction of people of the same ethnic or social group.

The existence and the performance of natural stable outcomes

like Nash, strong Nash, and core stable outcomes for MFHGs have

been studied in [18]. In particular, they show that the existence of

strong Nash equilibria is guaranteed only for unweighted graphs,

while Nash equilibria and core stable outcomes always exist. More-

over, they show tight or asymptotically tight results on the perfor-

mance of strong Nash stable, Nash stable and core stable outcomes

for the classical utilitarian social welfare, that is defined as the sum

of all agents’ utilities.

Motivated by the fact that an outcome with an high utilitarian

social welfare could be extremely harsh for some agents (see [20]

for a nice discussion about utilitarian and egalitarian social welfare),

we provide a comprehensive analysis on the performance of strong

Nash stable, Nash stable and core stable outcomes for MFHG under
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the egalitarian social welfare, that is defined as the minimum among

all agents’ utilities.

1.1 Our Results
We first provide, in Section 3, some preliminary results. In partic-

ular, we perform tight and asymptotically tight analyses on the

performance of Nash, strong Nash and core outcomes by means

of the widely used notions of price of anarchy (resp. strong price

of anarchy and core price of anarchy), and price of stability (resp.

strong price of stability and core price of stability) for MFHGmainly

defined on weighted graphs.

Our main technical results are then presented in Section 4 where

we show tight results on the strong price of stability (and thus on

the core price of stability and price of stability) for MFHG defined

on undirected unweighted bipartite graphs (we recall that when

MFHG are defined on undirected unweighted bipartite graphs, they

suitably model a basic economic scenario referred to in [1] as Bakers

and Millers). In particular, we first give a nice constructive theorem

which transforms any given coalition structure C with all the coali-

tions isomorphic to star graphs into another coalition structure C

which is strong Nash stable and such that SW(C) ≥ SW(C). We

then show that for MFHG defined on undirected unweighted bipar-

tite graphs there always exists an optimum coalition structure with

coalitions isomorphic to star graphs. Combined with the previous

constructive theorem we obtain that the strong price of stability

(and thus the price of stability and the core price of stability) is 1

for this graph topology. We finally show that the strong price of

stability of undirected unweighted graphs with degree at most 2 is

also 1.

Due to space limitations, some proofs are omitted.

1.2 Related Work
Hedonic games have been introduced by Dréze and Greenberg [13],

and further investigated in [3, 6, 7, 9, 22, 24].

MFHG have been introduced by Olsen [23] who considers un-

weighted undirected graphs and investigates computational issues

concerning the problem of computing a Nash stable outcome dif-

ferent than the trivial one where all the agents are in the same

coalition. The author proves that the problem is NP-hard when we

require that a coalition must contain a given subset of the agents,

and that it is polynomial solvable for any connected graph contain-

ing at least four nodes. Kaklamanis et al. [17] show that the price

of stability is 1 for unweighted graphs under the utilitarian social

welfare. Monaco et al. [18] show that the existence of strong Nash

equilibria is guaranteed only for unweighted graphs, while core

stable outcomes always exist. Moreover, they show tight or asymp-

totically tight results on the performance of strong Nash stable,

Nash stable and core stable outcomes for the classical utilitarian

social welfare. Finally, Elkind et al. [14] study the set of Pareto

optimal outcomes for MFHGs still for the utilitarian social welfare.

Fractional hedonic games, where the utility of an agent u is di-

vided by the size of the coalition she belongs to (including herself),

have been introduced by Aziz et al. [2]. They prove that the core

can be empty for games played on general graphs and that it is

not empty for games played on some classes of undirected and un-

weighted graphs (that is, graphs with degree at most 2, multipartite

complete graphs, bipartite graphs admitting a perfect matching and

regular bipartite graphs). Brandl et al. [10] study the existence of

core and individual stability in fractional hedonic games and the

computational complexity of deciding whether a core and individ-

ual stable partition exists in a given fractional hedonic game. Bilò et

al. [8] initiated the study of Nash stable outcomes for fractional he-

donic games and study their existence, complexity and performance

for general and specific graph topologies for the utilitarian social

welfare. In particolar, they show a lower bound of 1.0025 and an

upper bound of 1.0294 to the price of stability for simple symmetric

fractional hedonic games (where the valuations can be only 0 or

1) played on unweighted bipartite graphs. Other stability concepts

applied to fractional hedonic games are discussed in [10, 25]. Aziz

et al. [4] consider the computational complexity of computing wel-

fare maximizing partitions (not necessarily stable) for fractional

hedonic games, while in [15] the authors consider the online sce-

nario. Finally, strategyproof mechanisms for fractional hedonic

games have been proposed in [16]. We remark that MFHG and

fractional hedonic games are very similar, however, they perform

differently. In fact, the core can be empty even for simple symmetric

fractional hedonic games [10]. Moreover, for unweighted graphs,

even 2-strong Nash stable outcomes are not guaranteed to exist for

fractional hedonic games [8]. For more details about the difference

between MFHG and fractional hedonic games see Section 1.3 of

[18].

To the best of our knowledge, no paper considers MFHG under

the egalitarian social welfare. However, in [4] the authors consider

the computational complexity of computing partitions (not nec-

essarily stable) for fractional hedonic games which maximize the

egalitarian social welfare. We stress that the egalitarian social wel-

fare has been studied in many other settings, like e.g., congestion

games [12], k-cut games [11], and fair division problems [21].

2 MODEL
For an integer n > 0, denote with [n] the set {1, . . . ,n}.

We model a coalition formation game by means of an undirected

edge-weighted graph G = (N , E,w); we denote with n = |N | the
number of its nodes. For the sake of convenience, we adopt the

notation (u,v) and wu ,v to denote the edge {u,v} ∈ E and its

weightw({u,v}), respectively. Say thatG is unweighted ifwu ,v = 1

for every (u,v) ∈ E, and in this case we denote the graph with

G = (N , E). Let δu (G) =
∑
v ∈N :(u ,v)∈E wu ,v be the sum of the

weights of all the edges incident to u. Moreover, let δumax (G) =
maxv ∈N :(u ,v)∈E wu ,v be the maximum edge-weight incident to u.
We will omit to specify (G) when clear from the context. Given a

set of edges X ⊆ E, denote withW (X ) =
∑
(u ,v)∈X wu ,v the total

weight of edges in X . Given a subset of nodes S ⊆ N , GS = (S , ES )
is the subgraph of G induced by the set S , i.e., ES = {(u,v) ∈ E :

u,v ∈ S}.
Given an undirected edge-weighted graphG = (N , E,w), amodi-

fied fractional hedonic game (MFHG) induced byG , denoted as G(G),
is the game in which each node u ∈ N is associated with an agent.

We assume that agents are numbered from 1 to n and, for every

u ∈ [n], each agent chooses to join a certain coalition among n can-

didate ones: the strategy of agent u is an integer j ∈ [n], meaning

that agentu is selecting candidate coalitionCj . A coalition structure
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(also called outcome or partition) is a partition of the set of agents

into n coalitions C = {C1,C2, . . . ,Cn } such that Cj ⊆ N for each

j ∈ [n],
⋃
j ∈[n]Cj = N and Ci ∩Cj = ∅ for any i , j ∈ [n] with i , j .

Notice that, since the number of candidate coalitions is equal to the

number of agents (nodes), some coalition may be empty. If u ∈ Cj ,

we say that agent u is a member of the coalition Cj . We denote

by C(u) the coalition in C of which agent u is a member. We say

that an agent u is isolated in the outcome C when |C(u)| = 1. In a

coalition structure C, the utility of agent u is defined as

µu (C) =
∑

v ∈C(u)

wu ,v

|C(u)| − 1
=

δu (GC(u))

|C(u)| − 1
,

when |C(u)| > 1. Moreover, we define µu (C) = 0 when u is

isolated in C. We notice that, for any outcome C, we have that

µu (C) ≤ δumax .

Each agent chooses the coalition she belongs to with the aim of

maximizing her utility. We denote by (C,u, j), the new coalition

structure obtained from C by moving agent u from C(u) to Cj ;

formally, assuming that C(u) = Ck , C
′ = (C,u, j) is such that

C ′k = Ck \ {u} andC
′
j = Cj ∪ {u}. An agent deviates if she changes

the coalition she belongs to. Given an outcome C, an improving
move (or simply a move) for agent u is a deviation to any coalition

Cj that strictly increases her utility, i.e., µu ((C,u, j)) > µu (C). An
agent is stable if she cannot perform a move. An outcome is (pure)
Nash stable (or a Nash equilibrium) if every agent is stable. An

improving dynamics, or simply a dynamics, is a sequence of moves.

A game has the finite improvement path property if it does not

admit an improvement dynamics of infinite length. Clearly, a game

possessing the finite improvement path property always admits

a Nash stable outcome. We denote with N(G(G)) the set of Nash
stable outcomes of G(G).

An outcome C is a k-strong Nash equilibrium if, for each C′

obtained from C, when a subset of at most k agents K ⊆ N (with

|K | ≤ k) jointly change (or deviate from) their strategies (not nec-

essarily selecting the same candidate coalition), µu (C) ≥ µu (C
′)

for some u belonging to K , that is, after the joint collective devia-
tion, there always exists an agent in the set of deviating ones who

does not improve her utility. We denote with k−SN(G(G)) the set
of k-strong Nash stable outcomes of G(G). We simply say that an

outcome C is a strong Nash equilibrium if C is an n-strong Nash
equilibrium. It is easy to see that, for any graph G and any k ≥ 2,

k−SN(G(G)) ⊆ (k − 1)−SN(G(G)), while the vice versa does not in
general hold. Clearly, 1−SN(G(G)) = N(G(G)).

We say that a coalition T ⊆ N strongly blocks an outcome C, if

each agent u ∈ T strictly prefers T , i.e., strictly improve her utility

with respect to her current coalition C(u). An outcome that does

not admit a strongly blocking coalition is called core stable and is

said to be in the core. We denote with CR(G(G)) the core of G(G).
We notice that for any graph G we have n−SN(G(G)) ⊆ CR(G(G)).

The egalitarian social welfare of a coalition structure C is the

minimum of the agents’ utilities, i.e.,

SW(C) = min

u ∈N
µu (C).

Given a game G(G), an optimum coalition structure C∗(G(G))
is one that maximizes the social welfare of G(G). The price of
anarchy (resp. strong price of anarchy and core price of anarchy)

of a modified fractional hedonic game G(G) is defined as the

worst-case ratio between the social welfare of a social optimum

outcome and that of a Nash equilibrium (resp. core). Formally,

for any k = 1, . . . ,n, PoA(G(G)) = maxC∈N(G(G))
SW(C∗(G(G)))

SW(C)

(resp. k−SPoA(G(G)) = maxC∈k−SN(G(G))
SW(C∗(G(G)))

SW(C) and

CPoA(G(G)) = maxC∈CR(G(G))
SW(C∗(G(G)))

SW(C) ). Analogously, the

price of stability (resp. strong price of stability and core price of sta-
bility) of G(G) is defined as the best-case ratio between the social

welfare of a social optimum outcome and that of a Nash equilib-

rium (resp. strong Nash equilibrium and core). Formally, for any

k = 1, . . . ,n, PoS(G(G)) = minC∈N(G(G))
SW(C∗(G(G)))

SW(C)

(resp. k−SPoS(G(G)) = minC∈k−SN(G(G))
SW(C∗(G(G)))

SW(C) and

CPoS(G(G)) = minC∈CR(G(G))
SW(C∗(G(G)))

SW(C) ). Clearly, for any

game G(G) it holds that 1 ≤ PoS(G(G)) ≤ PoA(G(G)) (resp.
1 ≤ k−SPoS(G(G)) ≤ k−SPoA(G(G)) and 1 ≤ CPoS(G(G)) ≤
CPoA(G(G))).

3 PRELIMINARY RESULTS
In this section we provide preliminary results on the performance

of MFHG. Our main technical results will be provided in Section 4.

3.1 Nash Stable Outcomes
We first provide tight results on the performance of Nash stable

outcomes for MFHG. It is known that (see Theorem 4.1 in [18])

there exists a graphG containing edges with negative weights such

that G(G) admits no Nash stable outcome, therefore we focus on

graphs with positive weights.

3.1.1 Price of Anarchy. We start by analyzing the price of an-

archy of MFHG. On the one hand, it is possible to prove that the

price of anarchy is at least n − 1 even for unweighted paths.

Theorem 3.1. There exists an unweighted path G such that
PoA(G(G)) ≥ n − 1.

On the other hand, it is possible to show that the price of anarchy

is at most n − 1 for any weighted graph, closing in a tight way the

bound provided in Theorem 3.1.

Theorem 3.2. For any weighted graph G, PoA(G(G)) ≤ n − 1.

3.1.2 Price of Stability. In this section we analyze the price of

stability of MFHG. We show that it is at least n − 1 for weighted
trees. It is worth noticing that, since an upper bound to the price of

anarchy is also an upper bound to the price of stability, Theorem

1 2

3
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n − 1
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Figure 1: The tree G used in the proof of Theorem 3.3.
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. . .
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1 3 5
. . .

2k − 1

2k + 1

(c)

2 4 6
. . .

2k

1 3 5
. . .

2k − 1

Figure 2: (a) The graph G used in the proof of Theorem 3.6; (b) Coalition structure C; (c) Coalition structure C′.

3.3 provides a tight lower bound to the upper bound proved in

Theorem 3.2.

Theorem 3.3. For any even number n ≥ 4, there exists a weighted
tree G with n nodes such that PoS(G(G)) ≥ n − 1.

Proof. LetG be the tree graph with an even number of nodes n
depicted in Figure 1, in which the set of edges is E = E1 ∪ E2 ∪ E3,
with E1 = {{1, 2}}, E2 = {{2, i}|i = 3, 5, . . . ,n − 1} and E3 =
{{i , i + 1}|i = 3, 5, . . . ,n − 1}. The weights of edges in E1 and E2
are equal to n, while the weights of edges in E3 are equal to 1.

We claim that the coalition structure in which all the agents

belong to the same coalition is the unique Nash stable outcome.

Indeed, in any Nash equilibrium, all the agents 1, 2 and

3, 5, . . . ,n − 1, which are endpoints of at least an edge of weight n,
want to stay in the coalition where is agent 2, because in this way

their utility is at least
n

n−1 > 1, while it is at most 1 if they are not

with agent 2.

Notice also that, in any Nash equilibrium, agents 4, 6, . . . ,n want

to stay in the same coalition of agents 3, 5, . . . ,n − 1, respectively,
because only in this way they can get a positive utility.

It follows that the unique Nash stable outcome C is the one in

which all agents form a unique coalition. In this case, the social

welfare is SW(C) = 1

n−1 , because µ4(C) = µ6(C) = . . . = µn (C) =
1

n−1 .

Consider outcome C′ in which there is a coalition for every

edge of the perfect matching {{i , i + 1}|i = 1, 3, 5, . . . ,n − 1}. Since
µ1(C

′) = µ2(C
′) = n and µ3(C

′) = µ4(C
′) = . . . = µn (C

′) = 1, it

holds that SW(C′) = 1.

It follows that, for an optimal outcome C∗, SW(C∗) ≥ SW(C′) =
1. Hence, the claim follows. �

3.2 Core Stable Outcomes
We now provide tight results on the performance of core stable

outcomes for MFHG.

3.2.1 Core Price of Anarchy. In this section we analyze the core

price of anarchy of MFHG. In particular, it is possible to show that

the price of anarchy is unbounded even for unweighted paths of 3

nodes.

Theorem 3.4. There exists an unweighted path G such that
CPoA(G(G)) is unbounded.

3.2.2 Core Price of Stability. In this section we analyze the core

price of stability of MFHG. In particular, it is possible to show that

the price of stability is unbounded for weighted paths of 3 nodes.

Theorem 3.5. There exists a weighted path G such that
CPoS(G(G)) is unbounded.

3.3 Strong Nash Stable Outcomes
We now consider strong Nash stable outcomes for MFHG. We know

from [18] that the existence of strong Nash equilibria is guaranteed

only for unweighted graphs. Moreover, there exists a star graph G
containing only non-negative edge-weights such that G(G) admits

no 2-strong Nash stable outcome [18]. Therefore, we only consider

unweighted graphs.

We now show that the strong price of anarchy is at least
n+1
4

.

Theorem 3.6. For any k > 0, there exists an unweighted graph G
with n ≥ k nodes such that n−SPoA(G(G)) ≥ n+1

4
.

Proof. Let us consider the graph G = (N , E) depicted in Fig-

ure 2.a with n = 2k + 1 agents, in which N = N1 ∪N2 ∪N3 and E =
E1∪E2∪E3. In particular,N1 = {1, 3, . . . , 2k−1} is the set containing
the agents in the first upper layer, N2 = {2, 4, . . . , 2k} is the set con-
taining the agents in the second layer andN3 = {2k+1} contains the
unique agent in the third layer; moreover, E1 = {{u,v}|u,v ∈ N1}

induces a clique among all agents in N1, E2 = {{u,u + 1}|u ∈ N1}

contains edges connecting each node in N1 to the corresponding

one in N2 and E3 = {{u, 2k +1}|u ∈ N2} contains edges connecting

each node in N2 to node 2k + 1.
On the one hand, we claim that the outcome C = {N1,N2 ∪

N3, ∅, . . . , ∅}, depicted in Figure 2.b, is a strong Nash equilibrium.

Indeed, any agent belonging to the coalition N1 gets utility 1, which

is the maximum one can get. It implies that agents in N1 do not

have any interest on deviating. Also the single agent 2k + 1 of third
layer of G gets utility 1 in C. Therefore, the only agents that can

have an incentive to move from C are the ones in N2. However, in

order to improve their utility, any agent of N2 should form a new

coalition together with an agent of N1. It follows that C is a strong

Nash equilibrium. Notice that SW(C) = 1

k+1 =
2

n+1 .

On the other hand, the coalition structure C′ =

{{1, 2}, {3, 4}, . . . , {2k − 3, 2k − 2}, {2k − 1, 2k , 2k + 1}, ∅, . . . , ∅},
depicted in Figure 2.c and composed by k non-empty coalitions, has

social welfare SW(C′) = 1

2
, because µ

2k−1(C
′) = µ

2k+1(C
′) = 1

2
,

while the utilities of all other nodes are equal to 1. It implies that the
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optimal coalition structure C∗ is such that SW(C∗) ≥ SW(C′) = 1

2
.

It follows that n−SPoA(G(G)) ≥
1

2

2

n+1
= n+1

4
. �

We notice that an asymptotically matching upper bound is given

in Theorem 3.2 since a strong Nash stable coalition structure is also

Nash stable.

4 MAIN RESULTS
In this section we provide our main technical results, claiming

that optimal performances can be obtained even by strong Nash

outcomes in the case of bipartite unweighted graphs. We first need

the following additional definition.

Definition 4.1. Given a graph G, a star-coalition structure is a

coalition structure C = {C1, . . . ,Cn } in which, for i ∈ [n], every
non-empty Ci is such that G(Ci ) is isomorphic to a star graph, i.e.,

G(Ci ) = (Ci , Ei ) such that there exist (i) a node u ∈ Ci , called
center, with degree |Ci | − 1 and (ii) |Ci | − 1 nodes with degree 1

and connected to node u, called leaves. Finally, let L≥3(C) be the
set containing all leaves belonging to all coalitionsC of C such that

|C | ≥ 3.

We start by showing in Lemma 4.2 that, for MFHG defined on

undirected unweighted graph and given a star–coalition structure

C, it is possible to compute another coalition structure C which

is a strong Nash equilibrium and such that SW(C) ≥ SW(C). This
result will be useful for providing an upper bound to the strong

price of stability.

Lemma 4.2. Given a graph G = (N , E) and a star-coalition
structure C for G(G), it is possible to compute an outcome C ∈
n−SN(G(G)) such that SW(C) ≥ SW(C).

Proof. Given that any coalition composed by only one agent

has utility zero, without loss of generality we assume that for any

C ∈ C, |C | ≥ 2.

Consider Algorithm 1 described below.

Algorithm 1 It takes as input a star-coalition structure C and

returns a strong Nash equilibrium.

1: C0 ← C

2: i ← 0

3: while there exist x ,y ∈ L≥3(Ci ) such that {x ,y} ∈ E or Ci is
not Nash stable do

4: i ← i + 1 ◃ Beginning of step i
5: if there exist x ,y ∈ L≥3(Ci−1) such that {x ,y} ∈ E then
6: Ci ← Ci−1\{Ci−1(x), Ci−1(y)}∪{{x ,y}}∪{Ci−1(x)\
{x}} ∪ {Ci−1(y) \ {y}}

7: else ◃ Ci−1 is not Nash stable

8: Let u be an agent with an improving move to Ci−1j
9: Ci ← (Ci−1,u, j)
10: end if
11: end while
12: return Ci

Let C be the coalition structure returned by Algorithm 1. We

first show that Algorithm 1 is guaranteed to terminate. Moreover,

for any i ≥ 0, let ®x i be the vector obtained by listing µu (C
i ) (for all

u ∈ N ) in non-decreasing order. Notice that the first component of

®x i is x i
1
= minu ∈N µu (C

i ) and therefore it holds that x i
1
= SW(Ci ).

As usual, given two n-dimensional vectors ®y and ®y′, we say that

the first one is greater than the second one for the lexicographical

order (and we write ®y ≻ ®y′) if yj > y′j for the first component j for

which yj and y
′
j differ.

Since the set of possible vectors is finite, in order to guarantee

the termination of Algorithm 1 it suffices to prove that, for any

i ≥ 1, ®x i ≻ ®x i−1, i.e., vectors ®x i always lexicographically increase

after each step of the algorithm.

In order to prove this property for any i ≥ 1, we consider two

disjoint cases, depending on the if condition at line 5 of Algorithm

1:

• If there exist x ,y ∈ L≥3(Ci−1) such that {x ,y} ∈ E, then the

algorithm obtains a new coalition structure Ci by removing

leaves x and y from their coalitions in Ci−1 and by putting

them together in a new coalition. Since x ,y ∈ L≥3(Ci−1),
for all agents u ∈ Ci−1(x) ∪ Ci−1(y) \ {x ,y} it holds

that µu (C
i−1) ≤ µu (C

i ). Moreover, it clearly holds that

µx (C
i−1) < µx (C

i ) and µy (C
i−1) < µy (C

i ). Therefore, for

any agent u ∈ N it holds that µu (C
i−1) ≤ µu (C

i ) and at

least for an agent, say x , µx (C
i−1) < µx (C

i ): it follows that

®x i ≻ ®x i−1.
• Otherwise, it holds that (i) there exists no couple x ,y ∈
L≥3(Ci−1) such that {x ,y} ∈ E and (ii) Ci−1 is not Nash

stable, i.e., there exists an agent u with an improving move

towards a coalition Ci−1j .

First of all, notice that, in outcome Ci−1, the centers of the

stars and both nodes belonging to coalitions of cardinality

2 do not deviate from their strategy, because their utility in

Ci−1 is equal to 1, that is the best they can obtain. Therefore,

it holds that u ∈ L≥3(Ci−1).
Moreover, since there exists no couple x ,y ∈ L≥3(Ci−1) such
that {x ,y} ∈ E, in EC i

j
no edge betweenu and v ∈ L≥3(Ci−1)

can exist, i.e., node u only has an edge towards the center of

Cij (notice that, if |C
i
j | = 3, then u can have an edge towards

any, but not both, nodes in Ci−1j , say node w ∈ Ci−1j : node

w becomes in this way the center of coalition Cij ).

We have to consider all agents v ∈ N such that µv (C
i ) ,

µv (C
i−1): clearly, these agents belong either to coalition

Ci−1(u) or to coalition Ci−1j . Let x be any agent in coalition

Ci−1(u) such that x , u and x , w , where w is the center

of coalition Ci−1(u). Since |Ci−1(x)| = 1 + |Ci (x)| , it holds
that µx (C

i ) > µx (C
i−1); moreover, µw (C

i ) = µw (C
i−1) = 1

for the center w and µu (C
i ) > µu (C

i−1) because agent u
performs a Nash improving move.

It remains to deal with any agent v ∈ Ci−1j . Again, it holds

that µw (C
i ) = µw (C

i−1) = 1 for the center w of coalition

Cij . Consider now any other node v ∈ Ci−1j \ {w}. Since

|Ci−1j | < |C
i
j |, node v is lowering her utility, i.e., µv (C

i ) <

µv (C
i−1). Given that u performs a Nash improving move,

it holds that µx (C
i−1) = µu (C

i−1) < µu (C
i ) = µv (C

i ), i.e.,

µx (C
i−1) < µv (C

i ); moreover, since agent x is improving
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her utility as an effect of the fact that |Ci−1(x)| = 1+ |Ci (x)|
and both utilities of agentsx andv are of the form 1

α−1 (where

α is the cardinality of the coalition they belong to), it follows

that, when considering µx (C
i ) instead of µx (C

i−1), strict

inequality in µx (C
i−1) < µv (C

i ) can become non-strict, but

cannot be reversed: it holds that µx (C
i ) ≤ µv (C

i ). This

means that the nodes for which the utility decreases have a

utility at least equal, in ®x i to the one of another node with
increased utility, and therefore it still holds that ®x i ≻ ®x i−1.

Therefore, at the end of this process, we obtain another star-

coalition structure C being a Nash equilibrium; moreover, since, for

any i ≥ 0, x i
1
= SW(Ci ), and, for any i ≥ 1, ®x i ≻ ®x i−1, it directly

follows that SW(C) ≥ SW(C).
In order to prove the Lemma, it remains to show that outcome

C is also a strong Nash equilibrium.

Assume, by way of contradiction, that C is not a strong Nash

equilibrium, and assume that K ⊆ N is one of the smallest (i.e., of

minimum cardinality) set of agents with a profitable joint deviation.

For any u ∈ K , let ju be the index of the coalition u selects in the

joint deviation leading to outcome C′.

Notice that, for everyC ∈ C, the center of coalitionC (if |C | ≥ 3),

and both nodes of the coalition (if |C | = 2) are such that their utility

is equal to 1, that is the best possible these agents can achieve.

Moreover, by Algorithm 1, in coalition structure C there exists no

couple x ,y ∈ L≥3(C) such that {x ,y} ∈ E. It follows that the set
K of agents can only contain agents in L≥3(C) and each of these

agents u ∈ K only has an edge towards a node of her candidate

coalition ju : In fact, if |Cju | = 2, agent u cannot have two edges

because a bipartite graph does not contain any cycle of 3 nodes,

and, if |Cju | ≥ 3, u has an edge only towards the center of star Cju .

Let us consider the directed weighted graph F = (C, EF ,wF ) in

which the nodes are the coalitions in C and there is a directed arc

(Ci , Cj ) of weight x between two coalitions if, in the considered

deviation of agents in K , x agents move from star coalition Ci to

star coalition Cj .

Notice that F is a directed acyclic graph. In fact, until a cycle

of weight at least 1 exists, it is possible to obtain a set K ′ ⊂ K in

which we remove, starting from setK , an agent for each component

involved in the cycle. As it can be easily verified, since the final

cardinality of each involved coalition is unchanged, if K is a set

of agents possessing a joint deviation, also all agents in K ′ have a
joint deviation, consisting in the same selection of coalitions as in

the original deviation. Since |K ′ | < |K | we obtain a contradiction to

the fact that K is one of the smallest set of agents with a profitable

joint deviation.

Therefore, there is in F a coalition Cℓ without outgoing arcs.

Consider now any agent u ∈ K such that ju = ℓ. Since agent

u benefits from the joint deviation, it hods that µu (C) < µu (C
′).

Consider now coalition structure C′′ = (C,u, ℓ). SinceCℓ can have

only ingoing arcs in F , it holds that |C ′
ℓ
| ≥ |C ′′

ℓ
| and therefore

µu (C
′) ≤ µu (C

′′). Hence, we obtain µu (C) < µu (C
′′), i.e., agent

u also posses a (Nash) improving move in coalition structure C: a

contradiction to the fact that C is a Nash equilibrium. �

We now show that, if the input graph is bipartite, then there

always exists a star-coalition structure being also optimal.

Lemma 4.3. For any unweighted bipartite graphG = (N , E), there
exists a star-coalition structure C for G(G) such that, for any u ∈ N ,
it holds that µu (C) ≥

δu (G)
|N |−1 .

Proof. Let G = (A ∪ B, E), with E such that for every edge

{u, x} ∈ E it holds that u ∈ A and x ∈ B. We also refer to nodes in

A (respectively, in B) as nodes in the left (respectively, right) hand

side of G.
Consider Algorithm 2, that is composed by three phases: phase

1 is the while loop of lines 3–6, phase 2 the while loop of lines 7–13

and phase 3 the while loop of lines 14–17. For any k = 1, 2, 3, let ik
be the value of variable i at the end of phase k .

Algorithm 2 It takes as input a bipartite graphG = (A∪ B, E) and
returns a star-coalition structure.

1: C0 ← {{1}, {2}, . . . , {n}}
2: i ← 0

3: while there exists x ∈ B with a Nash improving move selecting

coalition Cij = C
i (u), with u ∈ A do

4: i ← i + 1 ◃ Beginning of step i , phase 1
5: Ci ← (Ci−1, x , j)
6: end while
7: while there exist u,v1, . . . ,vℓ ,w ∈ A and y, z1, . . . , zℓ+1 ∈ B

such that |Ci (u)| = 1

and for any t ∈ [ℓ], {vt , zt } ∈ C
i

and {zℓ+1,w ,y} ∈ Ci

and for any t ∈ [ℓ], {vt , zt+1} ∈ E
and {u, z} ∈ E
do

8: i ← i + 1 ◃ Beginning of step i , phase 2
9: Ci ← Ci−1 \ {{w , zℓ+1,y}} ∪ {{u, z1}, {w ,y}}
10: for t = 1 to ℓ do
11: Ci ← Ci \ {{vt , zt }} ∪ {{vt , zt+1}}
12: end for
13: end while
14: while there existsu ∈ Awith a Nash improving move selecting

coalition Cij = C
i (x), with x ∈ B do

15: i ← i + 1 ◃ Beginning of step i , phase 3
16: Ci ← (Ci−1,u, j)
17: end while
18: return Ci

In the first phase of Algorithm 2, agents in B move according to

a Nash dynamics in which they can select all coalitions containing

an agent u ∈ A. We now show that the while loop at lines 3–6

terminates.

Indeed, we notice that the game played by agents belonging to

B is equivalent to a singleton congestion game with identical latency
functions (CGI) in which we also have a set of resources, i.e., a Nash

equilibrium (respectively, an improving move) in this new game

is also a Nash equilibrium (respectively, an improving move) in

our game and vice versa. In a CGI, agent’s strategy consists of a

resource. The delay of a resource is given by the number of agents

choosing it, and the cost that each agent aims at minimizing is the

delay of her selected resource. In particular, the set of agents is

B and the set of resources is A. In fact, in our game every agent
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aims at minimizing the cardinality of the star coalition (centered

in a node of A) she belongs to. It is well known [19] that CGI are

potential games and that any dynamics in a potential game leads

to a Nash equilibrium.

Clearly, outcome Ci1 is a star-coalition structure by the way it

is constructed. Let us analyze the utility of the agents at the end of

Phase 1.

For any u ∈ A such that |Ci1 (u)| > 1, since each node in B
choosing the same coalition of u in an improving move possesses

an edge towards u, it holds that µu (C
i1 ) = 1 ≥

δu (G)
n−1 .

For any x ∈ B, consider the set of nodes Ax ⊆ A such that, for

any u ∈ Ax , {u, x} ∈ E; clearly, |Ax | = δx (G). Notice that x can

choose as strategy one of the δx (G) coalitions containing nodes in

Ax ; moreover, there must exist at least a node in v ∈ Ax such that

|Ci1 (v)\{x}| ≤ 1+
|B |−1
|Ax |

≤ 1+
n−|Ax |−1
|Ax |

= 1+
n−δ x (G)−1

δ x (G) = n−1
δ x (G) ,

because otherwise we would obtain

∑
u ∈Ax |C

i1 (u) \ {x}| > n−1: a

contradiction because

∑
u ∈Ax |C

i1 (u)\{x}| ≤ n−1 given that (i) Ci1

is a partition ofN , (ii) for anyu,v ∈ Ax it holds that Ci1 (u) , Ci1 (v)
and (iii)

⋃
u ∈Ax

(
Ci1 (u) \ {x}

)
⊆ N \ {x}. Since x does not have an

improving move selecting a coalition containing any agent in A, it
follows that her utility at the end of phase 1 has to be at least the

one she would experience in coalition Ci1 (v):

µx (C
i1 ) ≥

1

1 +
n−δ x (G)−1

δ x (G) + 1 − 1
=

δx (G)

n − 1
.

It remains to deal with any u ∈ A such that |Ci1 (u)| = 1: in fact,

it holds that µu (C
i1 ) = 0. To this aim, we perform phases 2 and 3

of Algorithm 2.

The following property will be useful in the remainder of the

proof.

Property 4.1. At the end of phase 1, all nodes u ∈ A belonging
to a coalition of size k cannot have edges towards coalitions of Ci1 of
size greater than k + 1.

In fact, otherwise, if an edge {u,v} between node u and a node

v such that |Ci1 (v)| ≥ k + 2 exists, then agent v would have an

improving move in Ci1 towards coalition Ci1 (u): a contradiction
to the fact that phase 1 is terminated. This concludes the proof of

Property 4.1.

For any i ≥ i1, let N
i
1
⊂ A be the set containing all agents u that

are isolated in Ci , i.e., such that |Ci (u)| = 1.

Before considering the phase 2 of Algorithm 2 we give the fol-

lowing definitions.

Definition 4.4. An augmenting path in a coalition structure Ci ,

for any i ≥ i1, is a path of G that starts from an isolated agent

u ∈ N i
1
and where the last but one node is a left hand side agent

v ∈ A such that µv (C
i ) = 1 and |Ci (v)| ≥ 3.

Definition 4.5. A semi-augmenting path in a coalition structure

Ci , for any i ≥ i1, is a path of G that starts from an isolated agent

u ∈ N i
1
and terminates to a left hand side agents v ∈ A of a coalition

of size 2, i.e., such that |Ci (v)| = 2.

Roughly speaking, phase 2 normalizes outcome Ci1 so that all

augmenting paths in G are removed by decreasing the number of

isolated agents (see Figure 3).
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Figure 3: An example of augmenting path with ℓ = 1 and
the corresponding transformation made in phase 2 of Algo-
rithm 2.

Notice that at each step i > i1 of phase 2, |N
i
1
| < |N i−1

1
|, because

a node in N i−1
1

becomes part of a coalition of size 2: it directly

follows that the while loop of lines 7–13 terminates.

Moreover, for any i > i1, let N
i
2
be the set containing all nodes

involved in step i of the second phase. It holds that, for any u ∈ N i
2
,

µu (C
i ) = 1 ≥

δu (G)
n−1 , given that they are all included in coalitions of

size 2 in Ci , and the utility of the other nodes remains unchanged

with respect to outcome Ci1 .

Overall, at the end of phase 2, Ci2 is a star-coalition structure

in which, for every u ∈ N \ N i2
1
, it holds that µu (C

i2 ) ≥
δu (G)
n−1 .

Moreover, notice that the following property, derived from Property

4.1, holds, given that in phase 2 we can only decrease the size of

the coalitions containing agents in B.

Property 4.2. At the end of phase 2, all nodes u ∈ A belonging
to a coalition of size k cannot have edges towards coalitions of Ci2 of
size greater than k + 1.

In the third phase of Algorithm 2, agents in Amove according to

a Nash dynamics in which they can select all coalitions containing

an agent x ∈ B. By exploiting the same arguments about congestion

games used for the first phase, with the difference that the set of

agents is A and the set of resources is B, we get that the dynamics

of this phase leads to a Nash equilibrium, and therefore we are

guaranteed that the while loop at lines 14–17 terminates.

We now show by induction on i that, for any i ≥ i2, i.e., during

the dynamics of the third phase, only agents in N i2
1

and the left

hand side agents of coalitions of size 2 being the final node of a

semi-augmenting path can perform an improving move. Let N3 be

the set containing all these nodes.

The base of the induction is trivially verified for i = i2 (actually,

in this case only agents in N i2
1

can perform an improving move).

Let us assume that the inductive claim holds for any j =
i2, . . . , i−1: we have to prove that it also holds for i . We distinguish

among three disjoint cases:

• Any agent u ∈ A with |Ci (u)| ≥ 4 is such that µu (C
i ) = 1

because, by Property 4.2, the agents that can move in steps

i2, . . . , i − 1 can not join their coalition (in fact, these agents

belong, by the induction hypothesis, to coalitions of size at
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most 2). It follows that they can not perform an improving

move at step i .
• Any agent u ∈ A with |Ci (u)| = 3 is such that µu (C

i ) = 1,

because at any step j = i2, . . . , i − 1, the only agents that can
move according to the induction hypothesis are:

- isolated nodes. By Property 4.2, isolated nodes that can

move in steps i2, . . . , i − 1 can not join coalition C j (u).
- left hand side agents of coalitions of size 2 being the final

node of a semi-augmenting path. They can not join coali-

tion C j (u) because otherwise a augmenting path would

exist: a contradiction to the fact that at the end of phase

2 no augmenting path exists, given that no augmenting

path can be introduced during the dynamics of phase 3.

In fact, notice that, in order to introduce a new augmenting

path, either a new coalition of size 2 or a new coalition of

size 3 with 2 nodes in B should be added to Ci2 ; since at

lines 14–17 of Algorithm 2 only coalitions with at least 3

nodes having only one node in B can be created, it follows

that no augmenting path can be introduced during the

dynamics of phase 3.

It follows that they can not perform an improving move at

step i .
• Finally, consider any agent u ∈ A with |Ci (u)| = 2 and such

that u does not belong to any semi-augmenting path. Also

in this case, it holds that they can not perform an improving

move at step i because µu (C
i ) = 1. In fact, if we assume

by way of contradiction that µu (C
i ) < 1, it follows that

some agent v ∈ A has joint coalition C j (u) at some step

j = i2, . . . , i − 1. By the induction hypothesis, v at step j can
be either an isolated node or a left hand side agents of coali-

tions of size 2 being the final node of a semi-augmenting

path. If v was an isolated node, then there exists a semi-

augmenting path starting from v and ending in u: a contra-
diction. Otherwise, v is a left hand side agent of coalitions

of size 2 being the final node of a semi-augmenting path. A

longer semi-augmenting path can be obtained by adding the

nodes belonging to C j (u): a contradiction.

Hence, the induction step follows.

Now, we prove that, for every node u ∈ N3, all edges {u, x} ∈ E
are such that x is a right hand side agent of a coalition of size 2 in

Ci2 . We distinguish between two cases:

• If u ∈ N i2
1
, by Property 4.2 she cannot have edges towards

coalitions of size greater than 2 in Ci2 .

• Otherwise, u is a left hand side agent of a coalition of size 2

being the final node of a semi-augmenting path. In this case,

by Property 4.2 she cannot have edges towards coalitions of

size greater than 3 in Ci2 . Moreover, ifu had an edge towards

a coalition of size 3 in Ci2 , then an augmenting path would

exist at the end of phase 2: a contradiction.

It follows that each agent moving in the dynamics of phase 3 has,

as possible strategies, coalitions being (also after their deviation)

isomorphic to star graph, and therefore Algorithm 2 returns a star-

coalition structure.

Moreover, by exploiting the same arguments used in the analysis

of phase 1, it holds that at the Nash equilibrium reached at the end

of phase 3, for any u ∈ N3, µu (C
i3 ) ≥

δu (G)
n−1 .

Notice that, among the agents not belonging to N3, only those

in B′ ⊆ B selected as strategies by at least one agent in N3 (during

the dynamics of phase 3) can change their utility with respect to

the one they have at the end of phase 2. However, for any x ∈ B′,
it holds that

µx (C
i3 ) = 1 ≥

δx (G)

n − 1

because each node in A choosing the same coalition of x in an

improving move possesses an edge towards x . �

By combining lemmata 4.2 and 4.3, it is possible to prove the

following theorem.

Theorem 4.6. For any unweighted bipartite graph G,
n−SPoS(G(G)) = 1.

Proof. Consider an optimum coalition structure C∗ for G(G).
Since G is an unweighted bipartite graph, clearly, for any C∗i ∈ C

∗
,

also GC∗i is an unweighted bipartite graph. We recall that, for any

u ∈ N , µu (C
∗) =

δu (GC∗(u))

|C∗(u) |−1 . Therefore, by applying Lemma 4.3

to each coalition C∗i ∈ C
∗
, we obtain a star-coalition structure C

for G(G) with equal egalitarian social welfare as C∗. Finally, by

applying Lemma 4.2 to C we get the claim. �

We conclude this section by showing that the strong price of

stability is 1 also for graphs with maximum degree at most two,

i.e., in which each node has degree at most two. Notice that such

graphs can admit cycles of odd length, and therefore may not be

bipartite.

Theorem 4.7. For any unweighted graphG with maximum degree
at most 2, n−SPoS(G(G)) = 1.

Given that a strong Nash stable is also Nash and core stable, the

following result directly follows from theorems 4.6 and 4.7.

Corollary 4.8. Let G be an unweighted graph either being
bipartite or having maximum degree at most two; it holds that
PoS(G(G)) = 1 and CPoS(G(G)) = 1.

5 CONCLUSIONS
In this paper we provided a comprehensive analysis on the perfor-

mance of strong Nash stable, Nash stable and core stable outcomes

for MFHG under the egalitarian social welfare function.

The main left open problem is that of determining the strong

price of stability, and also the price of stability and the core price of

stability, for unweighted graphs which are neither bipartite nor of

maximum degree at most two. To this respect, an interesting start

point could be that of considering unweighted undirected triangle

free graphs.

Another research direction could be that of designing truthful

mechanisms for MFHG that perform well under the egalitarian

social welfare function. More generally, it is worth to evaluate,

under the egalitarian social welfare function, the performance of

natural stable outcomes for any hedonic game in which agents

assign cardinal utilities to coalitions.
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