
A Representation Theorem for Reasoning in
First-Order Multi-Agent Knowledge Bases

Christoph Schwering
The University of New South Wales

Sydney, NSW, Australia
c.schwering@unsw.edu.au

Maurice Pagnucco
The University of New South Wales

Sydney, NSW, Australia
m.pagnucco@unsw.edu.au

ABSTRACT
Levesque’s notion of only-knowing provides a natural formalisation
of a knowledge base: it precisely captures the beliefs and non-beliefs
that follow from the knowledge base, including introspection and de
dicto versus de re distinctions in a first-order setting. Apart from its
attractive properties in terms of specification, a major result about
only-knowing is Levesque’s representation theorem, which shows
how reasoning in (single-agent) knowledge bases can be Turing-
reduced to ordinary first-order logic. While numerous proposals
have been made to lift the logic of only-knowing to the multi-
agent case, generalising the representation theorem has remained
an open problem. In this paper, we develop a Turing reduction
from reasoning in multi-agent knowledge bases to ordinary, non-
epistemic first-order logic and thus obtain a new representation
theorem for the multi-agent case.
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1 INTRODUCTION
Levesque’s notion of only-knowing [12–14] provides a natural for-
malisation of a knowledge base: the knowledge base is not just
known, but all that is known. As a consequence, only-knowing pre-
cisely captures beliefs and non-beliefs in a natural and semantically
perspicuous way. This includes statements involving first-order
quantification, introspection, and even de dicto versus de re distinc-
tions, such as the crucial difference in a card game between “I know
that there is a card which my opponent is holding” versus “there is
a card which I know my opponent is holding.”

Reasoning in such knowledge bases can be cast as a logical en-
tailment problem: given a knowledge base and a query, we want to
prove or disprove that only-knowing the knowledge base entails
the query. One important result about only-knowing is that such
reasoning problems can be reduced to ordinary, non-epistemic first-
order reasoning. Apart from establishing a theoretical link between
only-knowing and ordinary logic, this result, known as Levesque’s
representation theorem, also offers a viable path towards implement-
ing a reasoning service using off-the-shelf theorem provers [12, 14].
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Levesque’s original logic only considers the single-agent case.
A review of the literature shows that generalising only-knowing
to multiple agents turned out to be surprisingly difficult. Earlier
proposals exhibit counter-intuitive properties and/or do not extend
to the first-order case [6, 7, 9] or their semantics is difficult to work
with due to its technical complexity [19]. A more recent approach
by Belle and Lakemeyer [3] overcomes these issues by using a
simpler semantic model that is more closely related to Levesque’s
original semantics than Kripke-model approaches [6, 7, 9, 19].

The search for appropriate semantics and proof theories left the
question of reducing reasoning in multi-agent knowledge bases
to non-epistemic logic with little attention over the years. To our
knowledge, only Belle and Lakemeyer [1] discuss such a reduction
at all. However, since they adopt Levesque’s single-agent repre-
sentation theorem essentially unaltered, their knowledge bases are
subject to severe restrictions that eradicate most of the expressivity
of multi-agent only-knowing. In particular, they assume agents
have complete knowledge about what the other agents know.

In reality, however, agents rarely have firm knowledge about
what other agents know. During a card game, for example, we
usually know only our own cards unequivocally. While we do not
know our opponents’ cards, we do know that they know them. In
fact, there are subtle connections between our (lack of) knowledge
and what we know them to know: for instance, we know that if the
other player has the Ace of Spades, then she knows that she has it.

These subtle relations are de dicto and de re distinctions between
the different agents. Belle and Lakemeyer’s logic of only-knowing
[3] provides us with the expressivity to model such scenarios in a
natural and concise way.

In this paper, we build on Belle and Lakemeyer’s logic to de-
velop a Turing-reduction from reasoning in first-order multi-agent
knowledge bases to ordinary, non-epistemic first-order logic. Thus, we
generalise Levesque’s representation theorem to the multi-agent case.
The class of knowledge bases we consider allows for fine-grained
control of what agents know (not) about other agents’ knowledge,
including de re versus de dicto distinctions. In particular, it subsumes
Belle and Lakemeyer’s knowledge bases from [1] as a special case.

On the theoretical side, this reduction establishes a surprising
relationship between the logic of multi-agent only-knowing and
non-epistemic logic. On the practical side, it opens up ways of
implementingmulti-agent reasoning by leveraging theorem provers
like [8, 15] or extending systems like [17] to multiple agents.

The paper is organised as follows. First, we recapitulate Belle
and Lakemeyer’s multi-agent logic of only-knowing. Section 3 in-
troduces our class of multi-agent knowledge bases. Section 4 shows
how queries can be evaluated in these knowledge bases using only
ordinary, non-epistemic first-order reasoning. Then we conclude.
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2 THE LOGIC
We consider a first-order logic with equality and modal operators
for knowledge. There are two important differences to classical first-
order logic: the concept of standard names, often simply referred to
as names, and the modal operators for knowing and only-knowing.

Standard names are special constant symbols that satisfy the
unique-names assumption (that is, distinct names refer to distinct
objects) and an infinitary version of domain closure (that is, every
object can be referred to by some name). Standard names simplify
the technical treatment because quantification can be handled by
substituting names for variables; we refer to [14] for further details.

There are two modal operators per agent: one to express that a
formula is known, the other to express that a formula is all that is
known. The latter operator is instrumental in capturing the mean-
ing of a knowledge base. To keep the formal machinery simple,
we only consider two agents; it is straightforward to extend the
language as well as our results to more agents.

The foundations of this logic are due to Levesque [12–14]. This
multi-agent extension follows Belle and Lakemeyer [1, 3].

2.1 The Language
Formally, the alphabet of the language consists of countably many
predicate symbols of each arity, countably many variable symbols,
countably many standard name symbols, modal operators “KA”,
“KB”, “OA”, “OB”, and symbols “=”, “¬”, “∨”, “∃”, “(”, “)”, “,”.

The terms of the language are the variables and standard names.
For simplicity, we do not consider functions in this paper.

The formulas are of the form P(t1, . . . , tk ), t1 = t2, ¬α , (α ∨ β),
∃xα , Kaα , Oaα , where P is a k-ary predicate symbol, t1, t2, . . . , tk
are terms, α and β are formulas, x is a variable, and a ∈ {A,B} is
an agent. We read Kaα as “agent a knows α” and Oaα as “all that
agent a knows is α” or “agent a only-knows α”.

We use the following common abbreviations: t1 , t2 for ¬t1 = t2,
(α ∧ β) for ¬(¬α ∨ ¬β), ∀xα for ¬∃x¬α , (α ⊃ β) for (¬α ∨ β),
(α ≡ β) for (α ⊃ β) ∧ (β ⊃ α), ⊤ for ∃x (x = x), and ⊥ for ¬⊤.
We use ®t as a shorthand for t1, . . . , tk , and |®t | for k , and ∃®x for
∃x1 . . . ∃xk . We sometimes omit brackets for ease of readability.

A perspective vector is a vector ®a = ⟨a1, . . . ,ak ⟩ of alternating
agents ai ∈ {A,B}, that is, ai , ai+1 for all 1 ≤ i < k . We abuse no-
tation and identify an agent a with the vector ⟨a⟩. For a perspective
vector ®a = ⟨a1, . . . ,ak ⟩ and an agent a′, we define ®a·a′ as follows:

• if ak , a′: ®a·a′ = ⟨a1, . . . ,ak ,a
′⟩,

• if ak = a′: ®a·a′ = ⟨a1, . . . ,ak ⟩.
For example, A·B·B·A·A = A·B·A = ⟨A,B,A⟩.

The ®a-subformulas Σ ®a (α) of a formula α are defined as follows:
• Σ ⟨⟩(α) = {α },
• Σ ®a ·a′(α) is the least set such that if Ka′ β or Oa′ β occurs
outside of modal operators in some γ ∈ Σ ®a (α) ∪ Σ ®a ·a′(α),
then β ∈ Σ ®a ·a′(α).

For example, ifα is the formulaOA∀xP(x) ⊃ KA∃y (P(y)∧KAQ(y)),
then ΣA(α) = {∀xP(x), ∃y (P(y) ∧ KAQ(y)), Q(y)}.

A variable x is free in a formula α iff x occurs outside the scope
of ∃x . We write α t1t2 to replace t1 with t2 in α ; when t1 is a variable,
we only replace its free occurrences. We use (β , ®y) as a shorthand
to say that β has free variables ®y. In particular, we will often use

w♣♦ w♣♥ w♣♠

w♥♦ w♠♦ w♣♦ w♦♥ w♠♥ w♣♥ w♦♠ w♥♠ w♣♠

A A A

B B B B B B B B B

Figure 1: A 2-structure for the card game example, visualised as a
tree, wherewcc ′ is a world in which A and B are holding c and c ′.
A does not know B’s card, but A does know that B knows it.

(β, ®y) ∈ Σ ®a (α) as an abbreviation to say that β ∈ Σ ®a (α) and β has
free variables ®y. Thus in the above example, (Q(y),y) ∈ ΣA(α).

The a1-depth of a formula α is the maximum k such that for some
perspective vector ®a = ⟨a1, . . . ,ak ⟩, Σ ®a (α) , {}. A formula is a-
objective iff its a-depth is 0 and objective if itsA- and B-depths are 0.
The A- and B-depths of the above example are 1 and 0, respectively.

2.2 The Semantics
Formulas are interpreted with respect to worlds and i-structures. In-
tuitively, a world stipulates which facts are true and which are false
at an objective level. An i-structure models an agent’s knowledge
using the possible-worlds approach: an agent, A say, knows the
statements that are true in all the worlds she considers possible. To
also account for whatA knows about B’s knowledge, every possible
world of A is additionally associated with a set of worlds that A
knows B to consider possible. In an i-structure, this arrangement
recurses i times.

We denote the set of worlds byW and the set of i-structures by
Ei . A world w ∈ W is a set of formulas P(®n), where P is a | ®n |-ary
predicate symbol and ®n are names. An i-structure e ∈ Ei is

• if i = 0: the empty set,
• if i ≥ 1: a set of tuples (e,w), wherew ∈ W and e ∈ Ei−1.

For example, consider a card game with only four cards ♦,♥, ♠,♣
(for brevity of presentation), and suppose A knows her own card,
♣ say, but she does not know B’s card. We can model this with
an i-structure eA that contains the worlds where A holds ♣ and
B holds some other card: eA = {(e♦B ,w♣♦), (e

♥
B ,w♣♥), (e

♠
B ,w♣♠)},

wherew♣♦,w♣♥,w♣♠ areworlds whereAholds♣ andB holds ♦,♥, ♠,
respectively, and e♦B , e

♥
B , e

♠
B are arbitrary (i − 1)-structures. To also

model that A knows that B knows his own but not A’s card, we let
e♦B = {({},w♥♦), ({},w♠♦), ({},w♣♦)}, and e♥B , e

♠
B analogously. An

i-structure can also be viewed as a tree as depicted in Figure 1. For
a discussion of i-structures, we refer to [3].

We now define how formulas are interpreted. Let α be a formula
without free variables and of A-depth and B-depth at most i and
j, respectively. Then truth of α with respect to structures eA ∈ Ei
and eB ∈ Ej and a worldw is defined as follows:

• eA, eB ,w |= P(®n) iff P(®n) ∈ w
• eA, eB ,w |= n1 = n2 iff n1 = n2
• eA, eB ,w |= ¬α iff eA, eB ,w ̸ |= α
• eA, eB ,w |= (α ∨ β) iff eA, eB ,w |= α or eA, eB ,w |= β
• eA, eB ,w |= ∃xα iff for some name n, eA, eB ,w |= αxn
• eA, eB ,w |= KAα iff for all e ′B ∈ Ei−1 andw ′ ∈ W,

(e ′B ,w
′) ∈ eA only if eA, e ′B ,w

′ |= α
• eA, eB ,w |= OAα iff for all e ′B ∈ Ei−1 andw ′ ∈ W,

(e ′B ,w
′) ∈ eA iff eA, e

′
B ,w

′ |= α
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The semantics of KBα and OBα is symmetric to the cases for
KAα and OAα . Sometimes we prove statements only for agent A
with the understanding that the result and proof for B are analogous.

A formula α is valid, written |= α , iff for all i and j greater than
or equal to the A-depth and B-depth of α , for all eA ∈ Ei , eB ∈ Ej
andw ∈ W, eA, eB ,w |= α . A formula α is satisfiable iff ̸ |= ¬α .

Note that for objective formulas, truth depends solely onw , not
on eA, eB . Similarly, truth of formulas where no predicate symbols
symbol occur outside of KA or OA depends only on eA, not on eB
or w . We allow ourselves to omit parameters irrelevant to truth;
the naming of the given parameters shall then make it clear which
others are omitted. For example, we may write w |= P ∧ Q for
eA, eB ,w |= P ∧Q and eA |= KA (P ∧Q) for eA, eB ,w |= KA (P ∧Q).

For space reasons, we shall not discuss the properties of the Ka
operator any further apart from mentioning that it has the usual
K45-properties [5]. A detailed analysis can be found in [3].

As for Oa , the following lemma tells us that a only-knowing
an a-objective formula is always satisfiable and, in fact, uniquely
determines the i-structure, modulo i .
Lemma 2.1 Let α be an A-objective formula without free variables
and with A-depth at most i , and let eA ∈ Ei .
Then eA |= OAα iff eA = {(e ′B ,w

′) ∈ Ei−1 | e ′B ,w
′ |= α }.

Proof. eA |= OAα iff eA = {(e ′B ,w
′) ∈ Ei−1 | eA, e

′
B ,w

′ |= α } iff
(since α is A-objective) eA = {(e ′B ,w

′) ∈ Ei−1 | e ′B ,w
′ |= α }. □

A property which will be very helpful later is that agents can
only-know at most one formula, modulo logical equivalence.
Property 2.2 Let α , β be A-objective.
Then |= OAα ⊃ OAβ iff |= α ≡ β .

Proof. Let i be greater than or equal to theA-depth of OAα ⊃ OAβ .
For the only-if direction, suppose |= OAα ⊃ OAβ . Let eA =

{(e ′B ,w
′) ∈ Ei−1 | e ′B ,w

′ |= α }. By Lemma 2.1, eA |= OAα . By
assumption, eA |= OAβ . By Lemma 2.1, eA = {(e ′B ,w

′) ∈ Ei−1 |

e ′B ,w
′ |= β}. Thus e ′B ,w

′ |= α iff e ′B ,w
′ |= β for all e ′B ∈ Ei−1,w ′ ∈

W. If j is the B-depth of α ≡ β , then Ei−1 ⊇ Ej . Hence, |= α ≡ β .
Conversely, suppose |= α ≡ β and eA |= OAα , eA ∈ Ei . By

Lemma 2.1, eA = {(e ′B ,w
′) ∈ Ei−1 | e ′B ,w

′ |= α }. By assumption,
eA = {(e ′B ,w

′) ∈ Ei−1 | e ′B ,w
′ |= β}. Thus eA |= OAβ . □

The following property allows us to implicitly assume in the rest
of the paper that structures match the relevant formulas’ depth.
Property 2.3 (Belle and Lakemeyer [3]) Let α be a formula without
free variables, and i, j be at least the A-depth and B-depth of α .
Then |= α iff for all eA ∈ Ei , eB ∈ Ej ,w ∈ W, eA, eB ,w |= α .

3 MULTI-AGENT KNOWLEDGE BASES
The modalities for only-knowing and knowing serve two orthog-
onal purposes in Levesque’s logic: Oa asserts a knowledge base,
Ka queries the knowledge base. In this section, we formalise the
concepts of multi-agent knowledge bases and queries.
Definition 3.1 A formula α with free variables ®x is a-determinate
iff |= ∀®x (α ⊃

∨
(β, ®y)∈Σa (α ) ∃®yOa β

)
. A formula κ is a knowledge

base iff it has no free variables, mentions noK, isA- andB-determinate,
and for all ®a and a′ , b ′, every α ∈ Σ ®a ·a′(κ) is a′-objective and
b ′-determinate. A formula λ is a query iff it has no free variables
and mentions no O.

Before we present examples for a knowledge base and queries, a
discussion of A-objectivity and B-determinacy is in order.

Our requirement of α within OAα being A-objective is the nat-
ural generalisation of Levesque’s representation of a single-agent
knowledge base as an objective formula [12, 14]. This restriction
is motivated by two issues with non-A-objective formulas in OAα .
For one thing, nested OA operators are difficult to interpret: for
example, what does OA (P ∧ OAQ) mean intuitively? For another,
they introduce technical challenges because Lemma 2.1 does not ex-
tend to non-A-objective α : OA (P ∧ OAQ) is unsatisfiable, whereas
OA (P ∨ OAQ) is equivalent to OAP .

The B-determinacy constraint requires α within OAα to entail
that B only-knows something. In particular, it allows for many –
even infinitely many – alternatives what B might know. For exam-
ple, in OA

(
(P ∨Q) ∧ (P ⊃ OB P) ∧ (Q ⊃ OBQ)

)
the formula within

OA is B-determinate: it entails OB P ∨ OBQ . Thus our multi-agent
knowledge bases are a significantly more expressive generalisations
of those considered by Belle and Lakemeyer [1], who assume every
agent to have complete knowledge of the other agent’s knowledge.

Lifting B-determinacy and allowing KB operators in the knowl-
edge base would add further expressivity: we could express that
A knows B to know a formula but not necessarily only-know it.
However, it would also add significantly to the complexity of the
reduction because reasoning about B’s knowledge then coincides
with theorem proving for first-order K45. It is an open question,
also in the single-agent case, how this reduction would work.

A technical implication of B-determinacy is that the inner-most
OAα formulas in a knowledge base must be “closed off” by adding
OB⊥ conjunctively to α . Such OB⊥ should not be understood to
genuinely mean that B only-knows ⊥ but rather as a marker that
indicates the maximal modelled nesting depth has been reached.

An equivalent but technically more cumbersome alternative to
Definition 3.1 is to say that queries may only refer to perspectives
for which the knowledge base is determinate.

Example
As a running example, we consider a card game situation where
each player is holding a single card.1 We model the cards held by
agent a with a unary predicate Ha . The following formula, call it Φ,
represents that the agents hold two mutually distinct cards:

∃x∀y (HA(y) ≡ x = y
)
∧

∃x∀y (HB (y) ≡ x = y
)
∧

¬∃x (HA(x) ∧ HB (x)
)

Let us further suppose that agent A knows her own card, which
we refer to by standard name c . AgentA also knows that B is holding
a card but she does not know which one; however, A does know
that B knows which card B is holding. This is a typical example of
a de dicto versus de re distinction, or knowing that versus knowing
which: A knows that B has some card; B knows which one. The
former is represented by quantifying a variable inside the modal
operator, the latter by quantifying the variable outside of the modal

1 This paper is only concerned with modelling the agents’ knowledge in a static
situation. Dynamic extensions of Levesque’s logic have been studied elsewhere [1, 11].
As they are orthogonal to the representation theorem, we do not consider them here.
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operator. We can thus represent what A knows as follows:

OA
(
HA(c) ∧ Φ ∧

∀x (HB (x) ⊃ OB
(
HB (x) ∧ Φ

) ) )
The first line represents A’s objective knowledge about her own
and B’s card: she is holding c and B is holding another card (implied
by Φ). The second line models her knowledge about B’s knowledge:
A knows that whichever card x B is holding, B knows he has x (and,
by Φ, that A is holding some other card).

For this formula to comply with Definition 3.1, we need to ensure
A- and B-determinacy. Since in this example, we are interested only
in what A knows and what A knows B to know, we can make the
formula B-determinate by stipulating OB⊥ and adding OA⊥ to the
nested OB (HB (x) ∧ Φ) and obtain the following knowledge base κ:

κ = OA
(
HA(c) ∧ Φ ∧

∀x (HB (x) ⊃ OB
(
HB (x) ∧ Φ ∧ OA⊥

) ) )
∧

OB⊥

According to Lemma 2.1 and Property 2.3, there is (essentially) one
unique pair of structures eA, eB such that eA, eB |= κ: eB is the
empty set, and eA contains all tuples (e ′B ,w

′) such that
• inw ′, A is holding (only) c and B is holding (only) one arbi-
trary other card c ′, that is, for some name c ′ , c ,HA(n) ∈ w ′

iff n = c , and HB (n) ∈ w ′ iff n = c ′, and
• e ′B contains all tuples ({},w ′′) such that inw ′′, B is holding
(only) c ′ (that same card as in w ′) and A is holding (only)
one arbitrary other card c ′′, that is, for some name c ′′ , c ′,
HB (n) ∈ w ′′ iff n = c ′, and HA(n) ∈ w ′′ iff n = c ′′.

To illustrate how the semantics works, we prove a few queries.
The first two are obvious consequences. The third query is more
refined and involves an interesting de re versus de dicto distinctions.

(1) A knows that B is not holding c:

|= κ ⊃ KA¬HB (c)

It suffices to show eA |= KA¬HB (c) for eA described above.
Indeed, for all (e ′B ,w

′) ∈ eA, HB (c) < w , so the query holds.
(2) For all other cards, A does not know whether B holds them:

|= κ ⊃ ∀x (x , c ⊃ ¬
(
KAHB (x) ∨ KA¬HB (x)

) )
Let n , c be a name. We need to show that eA ̸ |= KAHB (n)
and eA ̸ |= KA¬HB (n). Both are true because there is some
(e ′B ,w

′) ∈ eA with HB (n) ∈ w and some with HB (n) < w .
(3) A knows that B is holding a card whose identity is unknown

to A but known to B:

|= κ ⊃ KA∃x
(
HB (x) ∧ ¬KAHB (x) ∧ KBHB (x)

)
We show eA, e

′
B ,w

′ |= ∃x (HB (x) ∧ ¬KAHB (x) ∧ KBHB (x)
)

for all (e ′B ,w
′) ∈ eA. Let (e ′B ,w

′) ∈ eA. Let c ′ be the unique
name such that HB (c

′) ∈ w ′. It remains to be shown that
eA ̸ |= KAHB (c

′) and e ′B |= KBHB (c
′). The former holds

since there are (e ′′B ,w
′′) ∈ eA such that HB (c

′) < w ′′. The
latter holds since for all (e ′′A ,w

′′) ∈ e ′B , HB (c
′) ∈ w ′′.

Note the distinction between knowing that versus which in the last
example: KA∃xHB (x) means that A knows that B is holding some
card, and ¬KAHB (x) adds A does not know that B is holding the
specific card x (and analogously, KBHB (x) says that B does know).

4 REPRESENTATION THEOREM
In this section we devise a reduction from reasoning in first-order
multi-agent knowledge bases to objective first-order reasoning. In
terms of computability theory, this reduction is a Turing reduction
because it assumes an oracle for objective first-order validity.

Roughly, the reduction works by slicing up the knowledge base
and query at the modal operators and transforming these subfor-
mulas into objective formulas. The main ideas are:

• As far as the reduction of the knowledge base is concerned,
we need to eliminate nested Oa operators. To this end, we
use auxiliary predicates that are subject to additional axioms
to mimic part of the behaviour of only-knowing.

• The query is reduced by evaluating each epistemic subfor-
mula with respect to the knowledge base reduction. The
appropriate auxiliary predicates are then used to encode
which only-knowings would prove the query subformula.

• Both reductions call the objective validity oracle. To deal
with free variables (which may come from quantifying-in in
the knowledge base or query) we use a mechanism to finitely
represent the instances for which the formula is valid.

For the rest of the section, let κ be a knowledge base and λ a query.
The proofs for this section are provided in Appendix A.

4.1 Known Instances of a Formula
As first component of the reduction, we introduce (a slight variant
of) Levesque’s RESJϕK operator, which takes an objective formula
ϕ, potentially with free variables and returns a new formula that
describes for which, if any, standard names substituted for the free
variables the input formula is valid.

While there are infinitely many standard names, by the following
lemma it suffices to use a single fresh standard name to represent
all the infinitely many names that do not occur in ϕ.
Lemma 4.1 (Levesque [12, 14]) Let ϕ be an objective formula with
one free variable x and letm,n be names that do not occur in ϕ.
Then |= ϕxm iff |= ϕxn.

The proof is straightforward: an induction on |ϕ | shows that a
world satisfies ϕxm iff the world withm,n swapped satisfies ϕxn.

Levesque’s RESJϕK operator employs this lemma to recursively
eliminate free variables and returns a formula that only involves
equalities over the variables and standard names that occur ϕ.
Definition 4.2 (Levesque [12, 14]) Let ϕ be an objective formula.
Then RESJϕK is defined as follows:

• if ϕ contains no free variables:

RESJϕK =

{
⊤ if |= ϕ

⊥ otherwise

• if ϕ contains a free variable x , n1, . . . ,nk are the names in ϕ,
and n′ is an arbitrary fresh name:

RESJϕK =
(
RESJϕxn1K ∧ x = n1

)
∨ . . . ∨(

RESJϕxnkK ∧ x = nk
)
∨(

RESJϕxn′Kn′

x ∧ x , n1 ∧ . . . ∧ x , nk
)

The following lemma shows that the formula RESJϕK precisely
describes the instances for which ϕ is valid.
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Lemma 4.3 (Levesque [12, 14]) Let ϕ be an objective formula with
free variables ®x , and let ®m be names. Then:

|= ϕ ®x
®m iff |= RESJϕK®x

®m

The proof is by induction on the number of free variables in ϕ.
The first k disjuncts of RESJϕK cover the case wheremi occurs in
ϕ. Otherwise, only the last disjunct of RESJϕK can become true and
the equivalence follows by Lemma 4.1.

Example
As an example, consider HA(x) ≡ HA(z), which contains no names
itself but two free variables. Under the RESJ·K operator this formula
evaluates to the following formula:2

RESJHA(x) ≡ HA(z)K

= RESJHA(x) ≡ HA(n
′)Kn′

z

=
(
RESJHA(n

′) ≡ HA(n
′)K ∧ x = n′

)n′

z ∨(
RESJHA(n

′′) ≡ HA(n
′)Kn′′

x ∧ x , n′
)n′

z

=
(
⊤ ∧ x = n′

)n′

z ∨(
⊥n′′

x ∧ x , n′
)n′

z

=
(
⊤ ∧ x = z

)
∨(

⊥ ∧ x , z
)

eq
= x = z

Here, the RESJ·K operator first picks variable z and substitutes the
fresh name n′ for it (the order in which variables and which fresh
names are selected is not specified in Definition 4.2 and can be
chosen arbitrarily). The recursive call to RESJ·K then eliminates x
by trying both n′ as well as another fresh name n′′.

Observe that these freshly introduced names n′,n′′ are substi-
tuted again with the original variables z,x , so that the resulting
formula does not contain any new names.

4.2 Knowledge Base Reduction
One step of our reduction is to slice up the knowledge base and
translate the only-known subformulas to objective formulas. In
order to ensure that the assertional force of the original formula
α is identical to the new objective formula, we will substitute the
subjective subformulas Oa′ β of α with auxiliary predicates.

Additional axioms will impose on these auxiliary predicates the
same constraints that are inherent to only-knowing. In particular,
we need to ensure that Property 2.2 carries over to the auxiliary
predicates: an agent can only-know at most one formula, modulo
logical equivalence.

For the rest of this section, we introduce for every agent a′ and
every (α , ®x) ∈

⋃
®a Σ ®a ·a′(κ) a fresh | ®x |-ary auxiliary predicate Pa′,α .

Moreover, let ∗ be a function that maps the variables in κ, λ to fresh
variables. We write α∗ for the formula α with all with all variables
x replaced with x∗.
Definition 4.4 The knowledge base reduction ⟨⟨®a,α⟩⟩ of an α ∈

Σ ®a (κ) is the conjunction (α ♯ ∧ Ω ®a ), where α ♯ is the formula ob-
tained by replacing every objective occurrence of Oa′ β with free

2To improve readability, we will sometimes simplify formulas (in an equivalence-
preserving way) in the examples; we mark these steps with the eq

=.

variables ®y in α with the auxiliary predicate Pa′,β (®y), and Ω ®a is the
conjunction of formulas

∀®y∀®z∗ (Pa′,β (®y) ⊃ (
Pa′,γ (®z

∗) ≡ RESJ⟨⟨®a·a′, β⟩⟩ ≡ ⟨⟨®a·a′,γ ⟩⟩∗K
) )

over all agents a′ and (β , ®y), (γ , ®z) ∈ Σ ®a ·a′(κ).
Note that by construction, ⟨⟨®a,α⟩⟩ is an objective formula, and

that RESJ·K is only applied to recursively reduced formulas. That
way, the oracle is called for objective formulas only. The base case
for the recursion is when

⋃
a′ Σ ®a ·a′(κ) = {} and thus Ω ®a = ⊤.

Also observe how Ω ®a expresses Property 2.2 for the auxiliary
predicates Pa′,β : when a′ only-knows β (Pa′,β is true), then a′ only-
knows γ (Pa′,γ holds) iff (the reductions of) β and γ are equivalent.

The following lemma states that the original and the reduced
formula are equivalent as far as objective information is concerned.
We letw ≈ ®a w ′ iffw andw ′ agree on all but the auxiliary predicates,
that is, for all P <

⋃
a′{Pa′,α | α ∈ Σ ®a ·a′(κ)}, P(®n) ∈ w iff P(®n) ∈ w ′.

Moreover, we let eA, eB ,w ≈ ®a w ′ iff w ≈ ®a w ′ and the auxiliary
predicates reflect what is only-known, that is, for all agents a′, for
all (α , ®x) ∈ Σ ®a ·a′(κ), eA, eB |= Oa′α ®x

®n iffw ′ |= Pa′,α (®n).

Lemma 4.5 Let (α , ®x), (β , ®y) ∈ Σ ®a (κ).

(i) For all eA, eB ,w with eA, eB ,w |= α ®x
®m, there is somew ′

such thatw ′ |= ⟨⟨®a,α⟩⟩ ®x
®m and eA, eB ,w ≈ ®a w ′.

(ii) For allw withw |= ⟨⟨®a,α⟩⟩ ®x
®m, there is some eA, eB

such that eA, eB ,w |= α ®x
®m and eA, eB ,w ≈ ®a w .

(iii) |= α ®x
®m ≡ β ®y

®n
iff |= ⟨⟨®a,α⟩⟩ ®x

®m ≡ ⟨⟨®a, β⟩⟩ ®y
®n
.

The proof is by backward induction on | ®a | and can be found in
Appendix A. An easy consequence is that testing A-determinacy
can be decided using non-modal reasoning.
Corollary 4.6 Let (α , ®x) ∈ Σ ®a (κ). Then:

α is a′-determinate iff |= ∀®x (⟨⟨®a,α⟩⟩ ⊃ ∨
(β, ®y)∈Σa′ (α ) ∃®yPa′,β (®y)

)
Example
Beforewe proceedwith the query reduction, we illustrate the knowl-
edge base reduction with our running example knowledge base κ:

OA
(
HA(c) ∧ Φ ∧ ∀x (HB (x) ⊃ OB

(
HB (x) ∧ Φ ∧ OA⊥

) ) )
∧ OB⊥

We begin with the reduction of κ itself. Let µ denote the formula
within the outer OA, that is, HA(c) ∧Φ∧∀x (HB (x) ⊃ OB

(
HB (x) ∧

Φ ∧ OA⊥
) )
. Applying Definition 4.4 to κ replaces OAµ with PA,µ

and OB⊥ with PB,⊥ and adds the axioms Ω ⟨⟩ :

⟨⟨⟨⟩,κ⟩⟩ =
(
PA,µ ∧ PB,⊥ ∧(
PA,µ ⊃

(
PA,µ ≡ RESJ⟨⟨A, µ⟩⟩ ≡ ⟨⟨A, µ⟩⟩K

) )
∧(

PB,⊥ ⊃
(
PB,⊥ ≡ RESJ⟨⟨B,⊥⟩⟩ ≡ ⟨⟨B,⊥⟩⟩K

) ) )
eq
= PA,µ ∧ PB,⊥ (since both RESJ·K evaluate to ⊤)

Next, we reduce what A only-knows, that is, µ. Let η denote the
formula within OB in µ, that is, HB (x) ∧ Φ ∧ OA⊥. Notice the free
variable x in η. OBη will be replaced with PB,η (x) and ΩA will be
non-trivial. Let z be x∗. Then applying Definition 4.4 obtains:

⟨⟨A, µ⟩⟩ =
(
HA(c) ∧ Φ ∧ ∀x (HB (x) ⊃ PB,η (x)

)
∧

∀x∀z (PB,η (x) ⊃(
PB,η (z) ≡ RESJ⟨⟨A·B,η⟩⟩ ≡ ⟨⟨A·B,η⟩⟩xz K

) ) )
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To evaluate the RESJ·K expression, we first need to reduce η:

⟨⟨A·B,η⟩⟩ =
(
HB (x) ∧ Φ ∧ PA,⊥ ∧(
PA,⊥ ⊃

(
PA,⊥ ≡ RESJ⟨⟨A·B·B,⊥⟩⟩ ≡ ⟨⟨A·B·B,⊥⟩⟩K

) ) )
eq
= HB (x) ∧ Φ ∧ PA,⊥ (since RESJ·K evaluates to ⊤)

The RESJ·K expression in ⟨⟨A, µ⟩⟩ then evaluates similarly to the
example from Section 4.1:

RESJ⟨⟨A·B,η⟩⟩ ≡ ⟨⟨A·B,η⟩⟩xz K

= RESJHB (x) ∧ Φ ∧ PA,⊥ ≡ HB (z) ∧ Φ ∧ PA,⊥K
= (x = z ∧ ⊤) ∨ (x , z ∧ ⊥)
eq
= x = z

Now we can finally fully evaluate the reduction of µ:

⟨⟨A, µ⟩⟩ =
(
HA(c) ∧ Φ ∧ ∀x (HB (x) ⊃ PB,η (x)

)
∧

∀x∀z (PB,η (x) ⊃ (
PB,η (z) ≡ x = z

) ) )
4.3 Query Reduction
The other step of our reduction is to unwind the modal operators in
the query and recursively replace the nested subformulas with their
known instances. The known instances are determined relative to
the reductions of the relevant subformulas Oa′γ in the knowledge
base and conditioned on Pa′,γ (®z), that is, on the fact that a′ only-
knows γ .
Definition 4.7 The query reduction ∥ ®a,α ∥ of an α ∈ Σ ®a (λ) is the
formula obtained by replacing every objective occurrence of Ka′ β
in α with the disjunction of formulas

∃®z∗ (Pa′,γ (®z∗) ∧ RESJ(Pa′,γ (®z∗) ∧ ⟨⟨®a·a′,γ ⟩⟩∗) ⊃ ∥ ®a·a′, β ∥K
)

over all (γ , ®z) ∈ Σ ®a ·a′(κ).
It is immediate that since allKa′ β inα are replacedwith objective

formulas, the end result ∥ ®a,α ∥ is an objective formula, too. Notice
that ∥ ®a,α ∥ recursively evaluates ∥ ®a, β ∥ before applying RESJ·K to
ensure that our oracle is only applied to objective formulas. The
base case of this recursion is when α does not contain any formula.

The next lemma establishes an equivalence between modal and
non-modal reasoning by way of our reductions.
Lemma 4.8 Let (α , ®x) ∈ Σ ®a ·a′(κ) and (β , ®y) ∈ Σ ®a ·a′(λ). Then:

|= Oa′α ®x
®m ⊃ Ka′ β ®y

®n
iff |= Pa′,α ( ®m) ∧ ⟨⟨®a·a′,α⟩⟩ ®x

®m ⊃ ∥®a·a′, β ∥ ®y
®n

The proof is by induction on the depth of β and can be found in
Appendix A.

With Lemma 4.8 in hand, it is not surprising that the reductions
can also be applied to the entire knowledge base κ and query λ
to eliminate the modal aspect in deciding the validity κ ⊃ λ. Our
representation theorem states exactly this.
Theorem 4.9 (Representation theorem)

|= κ ⊃ λ iff |= ⟨⟨⟨⟩,κ⟩⟩ ⊃ ∥⟨⟩, λ∥

The proof is essentially a simpler variant of the proof of Lemma 4.8
and can be found in Appendix A.

Example
To illustrate how this reduction works, let us consider the third
sample query from Section 3:

KA∃x
(
HB (x) ∧ ¬KAHB (x) ∧ KBHB (x)

)
Let us call the query λ, and let δ denote the formula within the
outer KA, that is, ∃x

(
HB (x) ∧ ¬KAHB (x) ∧ KBHB (x)

)
, and let µ

and η be as in the example above. Applying Definition 4.7 yields:

∥⟨⟩, λ∥ =
(
PA,µ ∧ RESJPA,µ ∧ ⟨⟨A, µ⟩⟩ ⊃ ∥A,δ ∥K

)
To evaluate this further, we first determine the reduction of δ and
then evaluate the RESJ·K expression. By Definition 4.7 we obtain:

∥A,δ ∥ = ∃x (HB (x) ∧

¬
(
PA,µ ∧ RESJPA,µ ∧ ⟨⟨A, µ⟩⟩ ⊃ ∥A,HB (x)∥K

)
∧

∃z (PB,η (z) ∧
RESJPB,η (z) ∧ ⟨⟨A·B,η⟩⟩xz ⊃ ∥A·B,HB (x)∥K

) )
The reductions ∥A,HB (x)∥ and ∥A·B,HB (x)∥ are HB (x). The first
RESJ·K expression in ∥A,δ ∥ evaluates to ⊥ since there is no n such
that PA,µ ∧ ⟨⟨A, µ⟩⟩ ⊃ HB (n) is valid. The second one evaluates to:

RESJPB,η (z) ∧ ⟨⟨A·B,η⟩⟩xz ⊃ ∥A·B,HB (x)∥K

= RESJPB,η (z) ∧ HB (z) ∧ Φ ∧ PA,⊥ ⊃ HB (x)K
= (x = z ∧ ⊤) ∨ (x , z ∧ ⊥)
eq
= x = z

Now we can continue evaluating ∥A,δ ∥ as follows:

∥A,δ ∥ = ∃x (HB (x) ∧ ¬
(
PA,µ ∧ ⊥

)
∧ ∃z (PB,η (z) ∧ x = z

) )
eq
= ∃x (HB (x) ∧ PB,η (x)

)
Now that we have ⟨⟨A, µ⟩⟩ and ∥A,δ ∥, we are ready to evaluate the
RESJ·K expression in ∥⟨⟩, λ∥:

RESJPA,µ ∧ ⟨⟨A, µ⟩⟩ ⊃ ∥A,δ ∥K

= RESJ
(
PA,µ ∧ HA(c) ∧ Φ ∧ ∀x (HB (x) ⊃ PB,η (x)

)
∧

∀x∀z (PB,η (x) ⊃ (
PB,η (z) ≡ x = z

) )
⊃

∃x (HB (x) ∧ PB,η (x)
)
K

= ⊤ (since Φ implies ∃xHB (x))

Thus we have finally fully determined ⟨⟨⟨⟩,κ⟩⟩ and ∥⟨⟩, λ∥. The
formula κ ⊃ λ therefore eventually reduced to:(

⟨⟨⟨⟩,κ⟩⟩ ⊃ ∥⟨⟩, λ∥
)
=

( (
PA,µ ∧ PB,⊥

)
⊃

(
PA,µ ∧ ⊤

) )
This formula is obviously valid. Therefore, by Theorem 4.9, |= κ ⊃ λ.

5 CONCLUSION AND DISCUSSION
We showed within Levesque’s framework of only-knowing how
reasoning in first-order multi-agent knowledge bases can be Turing-
reduced to non-epistemic reasoning with an oracle for objective
first-order validity.

The reduction proceeds by slicing up the knowledge base at the
modal operators and introducing auxiliary predicates to objectively
represent the nested modalities. In the query, epistemic subformulas
are replaced with the appropriate auxiliary predicates to express
which fragments of the knowledge base can entail the query. It is
remarkable that by leveraging Levesque’s RESJ·K operator as an
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interface to the objective first-order validity oracle, the auxiliary-
predicates approach suffices to handle variables quantified into a
modal context both in the knowledge base and in the query.

An important feature of our knowledge bases is that agents may
have incomplete knowledge about what the other agents only-know.
We only require that an agent can enumerate all – perhaps infinitely
many – alternatives about what the other agent’s may know. In
particular, this allows for powerful de dicto versus de re distinctions.

On the other hand, our knowledge bases do not allow us to
combine only-knowing with plain knowing to say, for example,
that A only-knows that B knows but not necessarily only-knows a
formula. While this restriction is not particular to the multi-agent
case and applies to Levesque’s representation theorem too, we plan
to study if and how this restriction can be lifted. This would also
mean the representation theorem would extend to non-monotonic
reasoning [10]. Another interesting open question is how common
knowledge [2] affects the representation theorem and whether the
multi-agent representation theorem also combines well with other
variants of the original representation theorem [16–18].

In this paper we only considered two agents. Interestingly, it is
easy to generalise the logic as well as our representation theorem
to (up to) infinitely many agents, represented as first-order objects
that can be quantified over. This will be useful in practical use-cases.

Also on the practical side of future work, we plan to study how
the representation carries over to limited-belief logic and integrate
it into the Limbo reasoning system [17], which trades completeness
for computational tractability [4]. The main challenge here is to
first find an appropriate limited-belief version of multi-agent only-
knowing which may or may not be compatible with this paper’s
results. Another path towards implementation is via off-the-shelf
provers like [8] where built-in integer sorts could be leveraged to
simulate standard names. This option seems attractive for off-line
reasoning as in verification tasks.

A PROOF OF THEOREM 4.9
Here we prove the results from Section 4. Let κ be a knowledge
base and λ be a query.
Lemma A.1 Let α be a-objective.
Then Oaα ∧ Ka β is satisfiable iff |= Oaα ⊃ Ka β .

Proof. For the only-if direction, suppose Oaα ∧ Ka β is satisfiable
and ea |= Oaα . By Lemma 2.1 and assumption, ea |= Ka β . Con-
versely, suppose |= Oaα ⊃ Ka β and let ea be as in Lemma 2.1. By
Lemma 2.1, ea |= Oaα and by assumption, ea |= Ka β . □

Lemma 4.5 Let (α , ®x), (β , ®y) ∈ Σ ®a (κ).

(i) For all eA, eB ,w with eA, eB ,w |= α ®x
®m, there is somew ′

such thatw ′ |= ⟨⟨®a,α⟩⟩ ®x
®m and eA, eB ,w ≈ ®a w ′.

(ii) For allw withw |= ⟨⟨®a,α⟩⟩ ®x
®m, there is some eA, eB

such that eA, eB ,w |= α ®x
®m and eA, eB ,w ≈ ®a w .

(iii) |= α ®x
®m ≡ β ®y

®n
iff |= ⟨⟨®a,α⟩⟩ ®x

®m ≡ ⟨⟨®a, β⟩⟩ ®y
®n
.

Proof. The proof is by backward induction on | ®a |. For the base case,
suppose that Σ ®a ·a′(κ) = {} for all a′. Thus α , β are objective and
⟨⟨®a,α⟩⟩ = α and ⟨⟨®a, β⟩⟩ = β . Thus (i), (ii), (iii) hold immediately.

For the induction step, suppose the lemma holds ®a·a′ for all
a′ ∈ {A,B} and consider ®a.

For (i), let eA, eB ,w |= α ®x
®m. Letw ′ be such thatw ≈ ®a w ′ and for

every (γ , ®z) ∈ Σ ®a ·a′(κ), Pa′,γ (®o) ∈ w ′ iff eA, eB |= Oa′γ ®z
®o. A simple

subinduction on |α | shows that eA, eB ,w |= α ®x
®m iff w ′ |= α ♯ ®x

®m,
where α ♯ is as in Definition 4.4. Moreover, for all (γ , ®z), (γ ′, ®z′) ∈
Σ ®a ·a′(κ), if eA, eB |= Oa′γ ®z

®o, then eA, eB |= Oa′γ
′ ®z′
®o′ iff |= Oa′γ ®z

®o ≡

Oa′γ
′ ®z′
®o′ iff (by Property 2.2) |= γ ®z

®o ≡ γ ′ ®z
′

®o′ iff (by induction for (iii))
|= ⟨⟨®a·a′,γ ⟩⟩®z

®o ≡ ⟨⟨®a·a′,γ ′⟩⟩®z
′

®o′ iff |= RESJ⟨⟨®a·a′,γ ⟩⟩ ≡ ⟨⟨®a·a′,γ ′⟩⟩∗K®z
®o
®z′∗
®o′ .

Thus and by construction of ⟨⟨®a,α⟩⟩,w ′ |= ⟨⟨®a,α⟩⟩ ®x
®m and e,w ≈ ®a w ′.

For (ii), let w |= ⟨⟨®a,α⟩⟩ ®x
®m. If PA,γ (®o) ∈ w for some (γ , ®z) ∈

Σ ®a ·A(κ) and some ®o, let eA = {(e ′B ,w
′) | (γ , ®z) ∈ Σ ®a ·A(κ), PA,γ (®o) ∈

w, e ′B ,w
′ |= γ ®z

®o}, and otherwise, let eA be such that eA , {(e ′B ,w
′) |

e ′B ,w
′ |= γ ®z

®o} for all (γ , ®z) ∈ Σ ®a ·A(κ) and ®o, which exists since there
are unrepresentable states [14] (choose eB analogously).

First we show for all (γ , ®z) ∈ Σ ®a ·A(κ) and all names ®o that
PA,γ (®o) ∈ w iff eA = {(e ′B ,w

′) | e ′B ,w
′ |= γ ®z

®o} (the argument
for B is symmetric) (*).

For the only-if direction of (*), suppose PA,γ (®o) ∈ w . The ⊇ direc-
tion holds by construction. For the ⊆ direction, suppose (e ′B ,w

′) ∈

eA. Then e ′B ,w
′ |= γ ′ ®z

′

®o′ for some (γ ′, ®z′) ∈ Σ ®a ·A(κ)with PA,γ ′(®o′) ∈

w . By construction of ⟨⟨®a,α⟩⟩, |= RESJ⟨⟨®a·A,γ ⟩⟩ ≡ ⟨⟨®a·A,γ ′⟩⟩∗K®z
®o
®z′∗
®o′ .

By Lemma 4.3, |= ⟨⟨®a·A,γ ⟩⟩®z
®o ≡ ⟨⟨®a·A,γ ′⟩⟩®z

′

®o′. By induction for (iii),
|= γ ®z

®o ≡ γ ′ ®z
′

®o′. Thus e
′
B ,w

′ |= γ ®z
®o.

For the if direction of (*), suppose eA = {(e ′B ,w
′) | e ′B ,w

′ |= γ ®z
®o}.

By construction of eA, PA,γ ′(®o′) ∈ w for some (γ ′, ®z′) ∈ Σ ®a ·A(κ) and
some ®o′. By the only-if direction of (*), eA = {(e ′B ,w

′) | e ′B ,w
′ |=

γ ′ ®z
′

®o′}. Thus |= γ ′ ®z
′

®o′ ≡ γ ®z
®o. By induction for (iii), |= ⟨⟨®a·A,γ ′⟩⟩®z

®o ≡

⟨⟨®a·A,γ ⟩⟩®z
′

®o′. By Lemma 4.3, |= RESJ⟨⟨®a·A,γ ′⟩⟩ ≡ ⟨⟨®a·A,γ ⟩⟩∗K®z
®o
®z′∗
®o′ . By

construction of ⟨⟨®a,α⟩⟩, PA,γ (®o) ∈ w .
Finally, we now prove by subinduction on |α | thatw |= ⟨⟨®a,α⟩⟩ ®x

®m
iff eA, eB ,w |= α ®x

®m. The only non-trivial case is for the case Oa′γ ®z
®o,

which holds by (*) and by Lemma 2.1. Thus eA, eB ,w |= α ®x
®m.

For the only-if direction of (iii), suppose |= α ®x
®m ≡ β ®y

®n
and w |=

⟨⟨®a,α⟩⟩ ®x
®m (the case for ⟨⟨®a, β⟩⟩ ®y

®n
is analogous). By (ii), there is an

eA, eB ,w with eA, eB ,w |= α ®x
®m and eA, eB ,w ≈ ®a w . By assumption,

eA, eB ,w |= β ®y
®n
. A simple subinduction on |β | showsw |= β♯ ®y

®n
. Thus

and by assumption,w |= ⟨⟨®a, β⟩⟩ ®y
®n
.

For the if direction of (iii), suppose |= ⟨⟨®a,α⟩⟩ ®x
®m ≡ ⟨⟨®a, β⟩⟩ ®y

®n
and

eA, eB ,w |= α ®x
®m (the case for β ®y

®n
is analogous). By (i), there is aw ′

such thatw ′ |= ⟨⟨®a,α⟩⟩ ®x
®m and eA, eB ,w ≈ ®a w ′. By assumption,w ′ |=

⟨⟨®a, β⟩⟩ ®y
®n
. A simple subinduction on |β | shows eA, eB ,w |= β ®y

®n
. □

Corollary 4.6 Let (α , ®x) ∈ Σ ®a (κ). Then:

α is a′-determinate iff |= ∀®x (⟨⟨®a,α⟩⟩ ⊃ ∨
(β, ®y)∈Σa′ (α ) ∃®yPa′,β (®y)

)
Proof. For the only-if direction, suppose the left-hand side holds and
w |= ⟨⟨®a,α⟩⟩ ®x

®m. By Lemma 4.5, eA, eB ,w |= α ®x
®m and eA, eB ,w ≈ ®a w

for some eA, eB . By assumption, for some (β, ®y) ∈ Σa′(α) ⊆ Σ ®a ·a′(κ)

and names ®n, ea′ |= Oa′ β
®y
®n
. Thusw |= Pa′,β (®n).

Conversely, suppose the right-hand side holds and eA, eB ,w |=

α ®x
®m. By Lemma 4.5, there is somew ′ such thatw ′ |= ⟨⟨®a,α⟩⟩ ®x

®m and
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eA, eB ,w ≈ ®a w ′. By assumption, w ′ |= Pa′,β (®n) for some (β, ®y) ∈
Σa′(α) ⊆ Σ ®a ·a′(κ) and some names ®n. Thus ea′ |= Oa′ β

®y
®n
. □

Lemma A.2 Let (α , ®x) ∈ Σ ®a ·a′(κ) and (β , ®y) ∈ Σ ®a ·a′(λ). Then:

|= Pa′,α ( ®m)∧⟨⟨®a·a′,α⟩⟩ ®x
®m ⊃ ∥®a·a′, β ∥ ®y

®n
iff |= Pa′,α ( ®m) ⊃ ∥ ®a,Ka′ β ∥ ®y

®n

Proof. |= Pa′,α ( ®m) ∧ ⟨⟨®a·a′,α⟩⟩ ®x
®m ⊃ ∥®a·a′, β ∥ ®y

®n
iff (by Lemma 4.3)

|= RESJPa′,α (®x∗) ∧ ⟨⟨®a·a′,α⟩⟩ ⊃ ∥ ®a·a′, β ∥K®x ∗

®m
®y
®n
iff (since RESJ·K does

not mention Pa′,α ) |= Pa′,α ( ®m) ⊃ ∃®x∗ (Pa′,α (®x∗)∧RESJPa′,α (®x∗)∧
⟨⟨®a·a′,α⟩⟩ ⊃ ∥ ®a·a′, β ∥K®y

®n
) iff |= Pa′,α ( ®m) ⊃ ∥ ®a,Ka′ β ∥ ®y

®n
. □

Lemma 4.8 Let (α , ®x) ∈ Σ ®a ·a′(κ) and (β , ®y) ∈ Σ ®a ·a′(λ). Then:

|= Oa′α ®x
®m ⊃ Ka′ β ®y

®n
iff |= Pa′,α ( ®m) ∧ ⟨⟨®a·a′,α⟩⟩ ®x

®m ⊃ ∥®a·a′, β ∥ ®y
®n

Proof. The proof is by induction on the nesting depth of modal
operators in of β . For the base case, suppose there are no modal
operators β is 0.

For the only-if direction, suppose the left-hand side holds and
w |= Pa′,α ( ®m) ∧ ⟨⟨®a·a′,α⟩⟩ ®x

®m. By Lemma 4.5, there is an eA, eB such
that eA, eB ,w |= α ®x

®m and eA, eB ,w ≈ ®a ·a′ w . By Lemma 2.1 and
assumption, eA, eB ,w |= β ®y

®n
. Since β is objective,w |= ∥ ®a·a′, β ∥ ®y

®n
.

For the if direction, suppose the right-hand side holds and ea′ |=
Oa′α ®x

®m. We need to show ea′ |= Ka′ β ®y
®n
, which is equivalent to

eA, eB ,w |= β ®y
®n
for all (e ′b′ ,w) ∈ ea′ . Let (eb′ ,w) ∈ ea′ . By as-

sumption, eA, eB ,w |= α ®x
®m. By Lemma 4.5, there is a w ′ with

w ′ |= ⟨⟨®a·a′,α⟩⟩ ®x
®m and eA, eB ,w ≈ ®a ·a′ w

′. Since α is a′-objective,
⟨⟨®a·a′,α⟩⟩ does not mention Pa′,α , so without loss of generality, we
can assume that Pa′,α ( ®m) ∈ w ′. By assumption, w ′ |= ∥ ®a·a′, β ∥ ®y

®n
.

Since β is objective, eA, eB ,w |= β ®y
®n
.

For the induction step, suppose the the lemma holds for all for-
mulas with nesting depth of modal operators less than that of β .

For the only-if direction, suppose the left-hand side holds and
suppose w |= Pa′,α ( ®m) ∧ ⟨⟨®a·a′,α⟩⟩ ®x

®m. We need to show that w |=

∥ ®a·a′, β ∥ ®y
®n
. Since α is a′-objective, ⟨⟨®a·a′,α⟩⟩ does not mention Pa′,γ

for any γ ∈ Σ ®a ·a′(κ), so we can assume without loss of gener-
ality for all (γ , ®z) ∈ Σ ®a ·a′(κ) and names ®o, that Pa′,γ (®o) ∈ w iff
|= Oa′α ®x

®m ≡ Oa′γ ®z
®o. By Lemmas 2.1 and 4.5, there is an eA, eB such

that eA, eB |= Oa′α ®x
®m and eA, eB ,w |= α ®x

®m and eA, eB ,w ≈ ®a ·a′ w
and, by construction of w , also eA, eB ,w ≈ ®a w . By assumption,
eA, eB ,w |= β ®y

®n
. We show by subinduction on |β | that eA, eB ,w |=

β ®y
®n
iffw |= ∥ ®a·a′, β ∥ ®y

®n
.

The only non-trivial case is to show for subformulas (β ′, ®y′) ∈
Σ ®a ·a′ ·a′′(κ) that eA, eB |= Ka′′ β ′ ®y

′

®n′ iff w |= ∥ ®a·a′,Ka′′ β ′∥ ®y
′

®n′. Note
that since either a′ = a′′ or α is a′′-determinate, there is a (α ′, ®x ′) ∈
Σ ®a ·a′ ·a′′(κ) and names ®m′ with eA, eB |= Oa′′α

′ ®x ′

®m′ (*). Moreover,
note that if w |= ∥ ®a·a′,Ka′′ β ′∥ ®y

′

®n′, then w |= Pa′′,α ′′( ®m′′) for some
(α ′′, ®x ′′) ∈ Σ ®a ·a′ ·a′′(κ), which by eA, eB ,w ≈ ®a w and eA, eB ,w ≈ ®a ·a′

w implies that eA, eB |= Oa′′α
′′ ®x ′′

®m′′, so by Property 2.2, eA, eB |=

Oa′′α
′′ ®x ′′

®m′′, and again by eA, eB ,w ≈ ®a w and eA, eB ,w ≈ ®a ·a′ w ,
w |= Pa′′,α ′( ®m) (**). Then eA, eB |= Ka′′ β ′ ®y

′

®n′ iff (by Lemma A.1 and

(*)) |= Oa′′α
′ ®x ′

®m′ ⊃ Ka′′ β ′ ®y
′

®n′ iff (by main induction) |= Pa′′,α ′( ®m′) ∧

⟨⟨®a·a′·a′′,α ′⟩⟩ ®x
′

®m′ ⊃ ∥®a·a′·a′′, β ′∥ ®y
′

®n′ iff (by LemmaA.2) |= Pa′′,α ′( ®m′) ⊃

∥ ®a·a′,Ka′′ β ′∥ ®y
′

®n′ iff (by (**))w |= ∥ ®a·a′,Ka′′ β ′∥ ®y
′

®n′.
For the if direction, suppose the right-hand side holds and ea′ |=

Oa′α ®x
®m. We need to show ea′ |= Ka′ β ®y

®n
, which is equivalent to

eA, eB ,w |= β ®y
®n
for all (e ′b′ ,w) ∈ ea′ . Let (eb′ ,w) ∈ ea′ . By as-

sumption, eA, eB ,w |= α ®x
®m ∧ Oa′α ®x

®m. By Lemma 4.5, there is a w ′

such that w ′ |= ⟨⟨®a·a′,α⟩⟩ ®x
®m and eA, eB ,w ≈ ®a ·a′ w

′. Since α is a′-
objective, ⟨⟨®a·a′,α⟩⟩ does not mention Pa′,γ for any γ ∈ Σ ®a ·a′(κ),
so we can assume without loss of generality for all (γ , ®z) ∈ Σ ®a ·a′(κ)

and names ®o, that Pa′,γ (®o) ∈ w ′ iff eA, eB |= Oa′γ ®z
®o. In particu-

lar, this implies Pa′,α ( ®m) ∈ w ′ and eA, eB ,w ≈ ®a w ′. Then by as-
sumption, w ′ |= ∥ ®a·a′, β ∥ ®y

®n
. We show by subinduction on |β | that

w ′ |= ∥ ®a·a′, β ∥ ®y
®n
iff eA, eB |= Ka′ β ®y

®n
.

The only non-trivial case is to show for subformulas (β ′, ®y′) ∈
Σ ®a ·a′ ·a′′(κ) that w ′ |= ∥ ®a·a′,Ka′′ β ′∥ ®y

′

®n′ iff eA, eB |= Ka′′ β ′ ®y
′

®n′. Note
that since either a′ = a′′ or α is a′′-determinate, there is a (α ′, ®x ′) ∈
Σ ®a ·a′ ·a′′(κ) and names ®m′ such that eA, eB |= Oa′′α

′ ®x ′

®m′ (*). Then
w ′ |= ∥ ®a·a′,Ka′′ β ′∥ ®y

′

®n′ iff (by Lemma 4.3) for some (α ′, ®x ′) ∈ Σ ®a ·a′ ·a′′(κ)

and names ®m′, Pa′′,α ′( ®m′) ∈ w ′ and |= Pa′′,α ′( ®m′)∧⟨⟨®a·a′·a′′,α ′⟩⟩ ®x
′

®m′ ⊃

∥®a·a′·a′′, β ′∥ ®y
′

®n′ iff (since eA, eB ,w ≈ ®a ·a′ w
′ and eA, eB ,w ≈ ®a w ′

and by main induction) for some (α ′, ®x ′) ∈ Σ ®a ·a′ ·a′′(κ) and names
®m′, eA, eB |= Oa′′α

′ ®x ′

®m′ and |= Oa′′α
′ ®x ′

®m′ ⊃ Ka′′ β ®y′

®n′ iff (by LemmaA.1

and (*)) eA, eB |= Ka′′ β ′ ®y
′

®n′. □

Theorem 4.9 (Representation theorem)

|= κ ⊃ λ iff |= ⟨⟨⟨⟩,κ⟩⟩ ⊃ ∥⟨⟩, λ∥

Proof. For the only-if direction, suppose the left-hand side holds
and w |= ⟨⟨⟨⟩,κ⟩⟩. By Lemma 4.5, there is an eA, eB such that
eA, eB ,w |= κ and eA, eB ,w ≈⟨⟩ w . We now show by induction
on |λ | that eA, eB ,w |= λ iffw |= ∥⟨⟩, λ∥. The base case for atomic
formulas follows from eA, eB ,w ≈⟨⟩ w . The only non-trivial in-
duction step modal subformulas Ka′ β . Let (β, ®y) ∈ Σa′(λ). Then
ea′ |= Ka′ β ®y

®n
iff (since κ is a′-determinate) for some (α , ®x) ∈ Σa′(κ),

ea′ |= Oa′α ®x
®m and ea′ |= Ka′ β ®y

®n
iff (by Lemma A.1) for some (α , ®x) ∈

Σa′(κ), |= Oa′α ®x
®m ⊃ Ka′ β ®y

®n
iff (by Lemmas A.2 and 4.8) for some

(α , ®x) ∈ Σa′(κ), |= Pa′,α ( ®m) ⊃ ∥⟨⟩,Ka′ β ∥ ®y
®n
iff (by construction of

∥⟨⟩,Ka′ β ∥) for some (α , ®x) ∈ Σa′(κ), w |= Pa′,α ( ®m) ∧ ∥⟨⟩,Ka′ β ∥ ®y
®n

iff for some (α , ®x) ∈ Σa′(κ), w |= Pa′,α ( ®m) ∧ ∥⟨⟩,Ka′ β ∥ ®y
®n
iff (since

κ is a′-determinate and eA, eB ,w ≈⟨⟩ w)w |= ∥⟨⟩,Ka′ β ∥ ®y
®n
.

Conversely, suppose the right-hand side holds and eA, eB ,w |=

κ. By Lemma 4.5, there is an w ′ such that w ′ |= ⟨⟨⟨⟩,κ⟩⟩ and
eA, eB ,w ≈⟨⟩ w ′. We now show by induction on |λ | that w ′ |=

∥⟨⟩, λ∥ iff eA, eB ,w |= λ. The base case for atomic formulas follows
from eA, eB ,w ≈⟨⟩ w

′. The only non-trivial induction step modal
subformulas Ka′ β , which works by the same argument as for the
only-if direction. □
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