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ABSTRACT
Multiagent reinforcement learning has shown its potential for tack-

ling real world problems, like traffic. We consider the toll-based

route choice problem, where self-interested agents repeatedly com-

mute attempting to minimise their travel costs. In this paper, we

introduce Generalised Toll-based Q-learning (GTQ-learning), a mul-

tiagent reinforcement learning algorithm capable of realigning

agents’ heterogeneous preferences over travel time and monetary

expenses to obtain a system-efficient equilibrium. GTQ-learning

also includes a mechanism to enforce agents to truthfully report

their preferences. Our theoretical analysis and empirical results show

that GTQ-learning minimises congestion on realistic road networks.
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1 INTRODUCTION
Multiagent systems (MAS) offer a powerful paradigm for modelling

distributed settings that require robust, scalable, and often decen-

tralised control solutions. Despite its numerous advantages, the

MAS framework also introduces challenges such as the need for

agents coordination, or the issue of reaching an efficient equilibrium

in a decentralised manner.

When multiple rational agents share the same environment, the

result is usually a poor system performance that does not benefit

many of the participating components. From a game theoretic per-

spective, allowing agents to exhibit selfish behaviour usually leads

to the so-called user equilibrium (UE), or Nash equilibrium (NE),

where no agent can improve its utility by unilaterally changing

its strategy. This is in contrast with a desired situation of overall

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
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welfare, called the system optimum (SO). To quantify the system’s

loss in performance between the UE and SO, we can use the price of

anarchy (PoA) [20], defined as the ratio of the total utility under NE

to that of the SO. Ideally, the PoA should be as close as possible to 1.

In this work, we focus on the transportation domain. Addressing

the optimality of traffic networks has become a critical endeavour

[21], as road congestions are faced everyday in most cities in the

world. Traffic networks can be modelled as a MAS, where drivers

are self-interested agents which learn from experience and attempt

to minimise their individual travel costs. Studies on real-world road

networks have shown that drivers waste on average 30% extra time

due to lack of coordination [46]. The approach we consider here

for mitigating the effects of straying from system optimality is

charging tolls [8].

We present a unifying framework that extends the toll-based
route choice problem (TRCP) to consider both heterogeneous driver

preferences, regarding their valuation of travel time and tolls spent,

and toll redistribution, to avoid the known problem of arbitrarily

large tolls [7].

In this paper, we approach the above problem from a multiagent

reinforcement learning (MARL) perspective and design Generalised
Toll-based Q-learning (GTQ-learning) for coping with the new chal-

lenges. We model the taxes using marginal-cost tolling (MCT) [27],

which is known to align the UE to the SO. GTQ-learning considers

the realistic situation that driver agents are autonomous (rather

than routed by a central entity), independent (choose their routes

without coordinating with one another), and learn from their own

experience (testing the cost on different routes to find the best one,

without global knowledge on the costs of unvisited portions of the

road network). The main idea behind GTQ-learning is to model tolls

so as to neutralise agents’ preferences (as reported by them), thus

motivating them to behave in a socially desirable way. Addition-

ally, considering that agents may benefit from misreporting their

preferences, GTQ-learning also includes a mechanism to enforce

truthful reporting.

The contributions of this work can be summarised as follows:

• The introduction of the toll-based route choice problem with

preferences and side payments (TRCP+PP), which considers

TRCP with heterogeneous preferences and tax return in a

unified framework;

• The GTQ-learning algorithm to solve the TRCP+PP;
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• A theoretical analysis of GTQ-learning, showing that it re-

duces the TRCP+PP to the TRCP and converges to the SO,

while achieving approximated budget balance and ensuring

truthful preference reporting;

• An extensive experimental evaluation on realistic road net-

works, whose results support our theoretical findings.

To the best of our knowledge, this is the first toll-based reinforce-

ment learning approach able to neutralise agents’ heterogeneous

preferences, while allowing tax return and ensuring truthful pref-

erence reporting.

2 PRELIMINARIES
2.1 The Toll-Based Route Choice Problem
Route choice models how commuting drivers choose routes to

reach their destinations everyday. We are interested in the case

where drivers act autonomously and have local information, i.e.,

each driver chooses its route from past experience, independently

from one another and without recommendation from a central

entity, with the sole goal of minimising its own perceived travel

costs, composed of travel time and tolls paid. Tolls are a mechanism

to divert drivers from the most congested routes. This notion is

formalised below.

An instance of the toll-based route choice problem (TRCP) is

given by P = (G,D, f , τ ). The road network G = (N , L) is denoted
by a directed graph, with the set of nodes N and links L repre-

senting the roads and intersections, respectively. The demand for

trips is specified by a finite set D = {1, 2, . . . ,d} of drivers, each
having an origin-destination (OD) pair of nodes. Latency function

fl : xl → R
+
specifies the travel time on link l with respect to the

number of vehicles xl on it. Function τl : xl → R
+
specifies the toll

charged on link l . We assume a static traffic assignment model, with

deterministic latencies, and rational drivers [38]. Moreover, follow-

ing the literature [31, 33], we assume that latency functions are

non-negative, differentiable, univariate, homogeneous polynomials.

The cost a driver experiences on link l is given by the sum of time

and monetary components (assuming that drivers’ preferences are

uniform) [2], as in Equation (1). This standard modelling in traffic

engineering can handle additional criteria by their incorporation

in the cost function. For clarity, hereafter we omit the flow from

the cost equations, thus using simply c , f , and τ rather than c(x),
f (x), and τ (x).

cl (xl ) = fl (xl ) + τl (xl ). (1)

A route R is any sequence of links connecting an origin to a

destination. The cost of a route R is the sum of the costs of its links:

CR =
∑
l ∈R cl . (2)

In route choice, drivers are assumed to be rational, self-interested,

and to know their routes a priori. Their decision process then

consists in choosing a route everyday so as to minimise their travel

costs. The solution to this problem can be intuitively described by

the user equilibrium (UE), where no driver benefits from unilaterally

deviating from its route [41]. The UE is a consequence of agents’

selfish behaviour and typically yields poor results. Hence, from the

social perspective, the desired outcome corresponds to the situation

where the average travel time is minimum, which is known as the

system optimum (SO).

The idea of charging tolls was introduced to minimise the effects

of selfish behaviour. In this work, we model tolls from a marginal-

cost tolling (MCT) perspective [27], where each agent is charged

according to the cost it imposes on others. In particular, the toll

charged on link l is given by the product of the flow xl on it and

the derivative of its travel time function fl with respect to xl , as
in Equation (3). By definition, agents experience (rather than self-

imposing) tolls on every link they traverse.

τl = xl · f
′
l (xl ) (3)

Previous results have shown that, if we apply MCT to an instance

P of the (toll-free) route choice problem — obtaining an instance P ′

of the TRCP — then the UE in P ′ will be equivalent to the SO in P .
In other words, the UE with MCT achieves the same average travel

time as the SO of the original problem [2, 34]. Despite its potential

to minimise congestions, MCT can be easily computed by drivers

by simply observing their real trips’ duration [31, 37].

2.2 Reinforcement Learning
Reinforcement Learning [39] allows agents to learn how to solve a

task through interactions with their environment, using a numerical

reward signal as guidance. To model the environment, we consider

a Markov decision process (MDP)M = (S,A,T ,γ ,R), where S,A are

the state and action spaces, T : S ×A × S → [0, 1] is a probabilistic
transition function, γ is a discount factor determining the impor-

tance of future rewards, and R : S × A × S → R is the immediate

reward function.

In the context of the route choice problem, we have a set of inde-

pendent learning agents, each trying to find the best route between

their desired origin-destination pair. This problem is typically mod-

elled as a stateless MDP.
1
The reward for taking action a ∈ A can

then be denoted as rt (a) = −Ca , where a is the selected route, and

Ca its corresponding cost, according to Equation (2).

In ourmultiagent setting, each independent agent uses Q-learning

[42] as a base learning method. In particular, after taking action a
at time step t and receiving reward rt (a), the stateless Q-learning
algorithm updates the estimate of the expected return Q(a) as:

Qt (a) = (1 − α)Qt−1(a) + αrt (a), (4)

where α ∈ (0, 1] is the learning rate. For exploration we use the

ϵ-greedy strategy. In single-agent, stationary scenarios, Q-learning

is guaranteed to converge to an optimal policy if all state-action

pairs are experienced an infinite number of times [42]. In this work,

we introduce Generalised Toll-based Q-learning (Section 4), which

is guaranteed to converge in the multi-agent route choice scenario

described in the next section.

3 EXTENDING THE TOLL-BASED ROUTE
CHOICE PROBLEM

Heterogeneous drivers preferences and redistribution of collected

tolls among drivers have been studied separately in previous work

(see Section 6). This section presents a unifying framework to the

1
Although this problem could also be formulated as a multi-armed bandit, MDP-based

algorithms have shown to fare better in route choice [10]. Moreover, instantiating

the problem as an MDP allows for a smoother transition to more complex problems

involving sequential decisions (e.g., en-route replanning).
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toll-based route choice problem (TRCP) so as to consider both as-

pects simultaneously. We call this the toll-based route choice problem
with preferences and side payments (TRCP+PP).

When tolls are used to alleviate traffic congestions, considering

drivers’ preferences allows us tomodel how these agents value travel

time and money expenditure. Moreover, as transportation systems

are comprised of driverswith different socio-economic backgrounds,

a realistic model should allow heterogeneous driver preferences,

e.g., some drivers may prefer faster trips regardless of the monetary

costs, whereas others may prefer slower but cheaper trips.

Heterogeneous preferences are usually accounted by reformulat-

ing the perception of travel costs in each link l , from Equation (1),

to consider both travel time fl and the toll τl as:

ci ,l = (1 − ηi )fl + ηiτl , (5)

where ηi ∈ [0, 1] is driver i’s preference of money over time: the

higher ηi is, the more driver i prefers to save money, instead of

travelling faster [7, 17, 40].

On MCT-based congestion minimisation systems, the amount

of collected tolls, and thus the profit of the road network manager,

can be arbitrarily high. Toll redistribution mechanisms can prevent

abusive profiting from the road network manager. This way, drivers

receive side payments [3, 8], incorporated on the cost formulation

as follows:

ci ,l = (1 − ηi )fl + ηiτl − ρψi , (6)

where ρψi represents the tax return to agents that, as agent i , have
a particular aspectψi ∈ Ψ in common (e.g., the same OD pair, as in

Section 4.2). We emphasise that ρ represents side payments [1, 18],

which by definition are not affected by agents’ preferences η. In
practice, side payments could be seen as non-monetary compensa-

tions [18], thus keeping the model general enough to accommodate

a broad class of tax return mechanisms.

Finally, from Equations (2) and (6) we can define the cost of route

R from the perspective of agent i as follows.

Ci ,R = (1 − ηi )fR + ηiτR − ρψi (7)

Again, we emphasise that our formulation generalises that of MCT.
2

In particular, MCT is a special case when ηi = 0.5 for each agent

i ∈ D and ρψ = 0 for allψ ∈ Ψ.
The next section introduces our reinforcement learning method

for the TRCP+PP.

4 GENERALISED TOLL-BASED Q-LEARNING
The Generalised Toll-based Q-learning algorithm (GTQ-learning,

for short) leads independent Q-learning agents with heterogeneous

preferences to a system-efficient equilibrium. The algorithm ac-

counts for preferences by making agents indifferent to time and

money (Section 4.1), and ensures δ -approximated budget balance

using a revenue redistribution mechanism (Section 4.2). Moreover,

it prevents agents frommisreporting their preferences by penalising

the occurrence of such misbehaviour (Section 4.3).

We remark that drivers learn and act independently from one

another, and autonomously (without a traffic manager directing

them). They are self-interested agents such that they will not accept

2
Traditional marginal-cost tolling could also accommodate preferences in a way similar

to [11]. However, budget-balancedness would not be attainable in this case.

Algorithm 1: Generalised Toll-based Q-learning

1 input: D ; ηi andψi (for every driver i ∈ D); A; λ; µ ; δ ; κ ; T

2 Q (ai ) ← 0 ∀i ∈ D , ∀ai ∈ Ai ; // initialise Q-tables

3 H ← {ηi | i ∈ D } ; // obtain preferences

4 for t ∈ T do
5 α ← λt ; ϵ ← µ t ;
6 ati ← select action (route) via ϵ -greedy ∀i ∈ D ;

7 f , τ̊ ← compute travel time and marginal cost of routes;

8 τi ,a ←
τ̊a+fa ·ηi

ηi
, with a = ati ∀i ∈ D ; // i’s toll

9 forψ ∈ Ψ do
10 rψ ←

∑
i∈D :ψi =ψ τi ; // revenue from OD ψ

11 ρψ ←
δ ·rψ
xψ

; // side payment to ψ agents

12 end
13 for i ∈ D do
14 r (ati ) ← (1 − ηi )fati

+ ηiτati
− ρψi ; // i’s reward

15 Q (ati ) ← (1 − α )Q (a
t
i ) + αr (a

t
i ) ; // update Q

16 end
17 if t % κ == 0 then // once every κ episodes

18 check compatibility of agents’ behaviour and reported preferences;

19 penalise agents who are misbehaving;

20 obtain updated preference of penalised agents;

21 end
22 end

to choose SO routes if their individual costs increase. We model the

problem as a stateless MDP and each driver i ∈ D as an agent. The

set of routes of agent i is Ai = {a1, . . . ,aK }. The reward r (a
t
i ) of

agent i for taking route ati at episode t is the negative cost of such
route, given by Equation (7). A driver’s objective is to maximise its

cumulative reward. GTQ-learning is presented in Algorithm 1.

In the basic cycle of GTQ-learning, agents report their prefer-

ences in the beginning. At each episode t ∈ [1,T ], every agent

selects an ϵ-greedy action. Travel times and tolls are computed for

each link of the road network, and side-payments are computed

for each OD pair. Finally, agents’ Q-values are updated using their

travel costs. Learning (α ) and exploration (ϵ) rates are multiplied by

decay rates λ and µ, respectively. This process is repeated for each

episode. Every κ episodes, the preference misreporting mechanism

checks (and penalises) misbehaving agents.

Although other choice models are possible, ϵ-greedy action se-

lection handles the exploration-exploitation trade-off elegantly and

simplifies our theoretical analysis. When exploring during learning,

drivers may discover better routes at the risk of experiencing higher

costs on sub-optimal ones. There is a threshold on howmuch agents

are allowed to explore (ϵ plus a small tolerance); beyond this, we

assume that the agent misreported its true preference and it is thus

cheating (see Section 4.3).

One of the major contributions of this paper is to show that,

by using GTQ-learning, agents are guaranteed to converge to a

system-efficient equilibrium (i.e., a system optimum that no agent

benefits by deviating from). This is shown in the next theorem.

Theorem 4.1. Consider an instance P of the toll-based route choice
problem with preferences and side payments. If GTQ-learning is used
by all agents, then drivers converge to a system-efficient equilibrium
in the limit. Thus, the price of anarchy is 1 in the limit.

Proof. We can prove this theorem by showing that GTQ-learning

reduces the toll-based route choice problem with preferences and
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side payments (TRCP+PP) to the traditional toll-based route choice

problem (TRCP). For the considered class of latency functions and

a static traffic model (see Section 2.1), the TRCP is analogous to

congestion games [32], for which a user equilibrium always exist,

and best response dynamics converge [26]. In our context, since

routes’ costs are used as rewards and learning and exploration rates

are decaying, we have that agents best respond to the perceived

traffic conditions [31].

To show that GTQ-learning reduces TRCP+PP to TRCP, two con-

ditions must be satisfied: (i) preferences and (ii) side payments affect

neither the equilibrium nor the system optimum. By not affecting
the UE and the SO we mean that, as compared to MCT (on the

TRCP), GTQ-learning (on the TRCP+PP) should achieve the same

average travel time and that agents should choose the same routes.

By definition, the system optimum corresponds to the minimum

average travel time of all drivers. Given that GTQ-learning can only

manipulate toll values (not travel times), the system optimum is

not changed at all. Thus, we can say that our algorithm does not
affect the SO. The user equilibrium, on the other hand, needs to be

analysed in particular for each of the above conditions.

In terms of drivers’ preferences, in Section 4.1 we prove that

GTQ-learning makes agents indifferent between time and money.

In other words, tolls are adjusted to compensate drivers’ heteroge-

neous preferences, thus leading such agents to behave as if η = 0.5.

This means that costs resulting from GTQ-learning differ from the

original TRCP ones only by a common factor. Hence, agents’ pref-

erence ordering over the set of routes is preserved, meaning that

the UE is not affected.

Regarding the side payments, in Section 4.2 we prove that the

equilibrium is not affected when the tolls collected on a given OD

pair are redistributed among the agents from that OD pair only. As

for the preferences, this means that the agents’ preference ordering

over the routes is preserved, thus leaving the UE unchanged.

Therefore, our algorithm does not affect the UE. Consequently,
as the two initial conditions are satisfied, GTQ-learning converges

to a system-efficient equilibrium. □

The next subsections describe GTQ-learning in detail.

4.1 Tolling to Make Agents Indifferent to η
The tolling mechanism we introduce with GTQ-learning extends

the concept of marginal-cost tolling (MCT) to agents with hetero-

geneous preferences. We remark that the idea behind collecting

marginal-cost tolls is to enforce agents to choose actions that min-

imise the systems’ average travel time. Precisely, MCT is guaran-

teed to align the UE to the SO so that the resulting equilibrium has

minimum average travel time [2]. However, when heterogeneous

preferences are introduced, the story is completely different. The

point is that, for MCT guarantees to hold, the following equality

should be satisfied:

∀l ∈ L,∀η ∈ [0, 1], fl + τ̊l =
(
(1 − η)fl + ητ̊l

)
· σ , (8)

with τ̊l the marginal-cost toll on link l (as in Equation (3)), and

σ = 2 a constant factor accounting for the cost decrease given

that η ∈ [0, 1]. Specifically, the equality requires the cost of a link

under the TRCP to be the same as under the TRCP+PP, regardless

of the agents’ preferences. However, the above equality only holds

if η = 0.5 for all agents or if the f is linear (so that f = τ̊ ), which are
rarely the case [9]. Thus, when preferences are introduced, MCT is

no longer guaranteed to align the UE to the SO.

In this work, we devise a tolling scheme that neutralises agents’
preferences while keeping the MCT equality valid. In particular,

the toll charged from agent i for using link l is:

τi ,l =
τ̊l + fl · ηi

ηi
, (9)

with ηi ∈ ]0, 1] for every agent i ∈ D. Our scheme ensures that the

cost of every link under TRCP will be the same as under TRCP+PP.

As a result, the UE remains aligned to the SO regardless of the

agents’ preferences distribution. This is shown in the next theorem.

Theorem 4.2. GTQ-learning’s tolling scheme neutralises agents’
preferences, thus achieving the same system-efficient equilibrium as
marginal-cost tolling without preferences.

Proof. We can prove this theorem by showing that GTQ-learning

does not invalidate the MCT equality from Equation (8). In partic-

ular, it is sufficient to prove that the cost perceived by any agent,

regardless of its preference, will be the same as if it had no pref-

erences at all (i.e., just like in the original TRCP). Assuming that

σ = 1 (since GTQ-learning neutralises preferences) and using Equa-

tion (9), we can rewrite the right-hand side of the MCT equality as

(1 − ηi )fl + ηiτi ,l = (1 − ηi )fl + ηi
(
τ̊l+flηi
ηi

)
= fl + τ̊l . Thus, our

formulation does not invalidate the MCT equality. □

We highlight that, as a side-effect of heterogeneous preferences,

the tolls charged by GTQ-learning can be higher than those charged

by MCT. Nonetheless, as shown in the next theorem, we can bound

this difference to a reasonable factor between the marginal costs

and the preferences.

Theorem 4.3. For non-negative, differentiable, univariate, homo-
geneous polynomial travel time functions, the toll charged by GTQ-

learning from agent i is atmostO
(

2

ηi

)
worse than that charged byMCT.

Proof. A toll τ charged by GTQ-learning is at most
τ
τ̊ times

higher than a toll τ̊ charged by MCT. We will call this the toll

deterioration ratio.

Recall that τ̊ is based on travel time function f . In this sense,

it is useful to identify the relationship between τ̊ and f . In this

paper, we consider the class of univariate, homogeneous polyno-

mial travel time functions (see Section 2.1). Such functions can be

defined as f = axk +b, whose marginal cost is τ̊ = kaxk . For these

functions, the inequality axk + b ≤ kaxk holds asymptotically for

x ≥ k
√

b
a(k−1)

.

We can then rewrite the toll deterioration ratio using Equation (9)

as
τ
τ̊ = (

τ̊+f ηi
ηi ) · (

1

τ̊ ), which (for the considered class of functions)

simplifies to
2

ηi , thus completing the proof. □

Finally, observe that GTQ-learning relies on the agents’ prefer-

ences to compute the tolls. A problem that might arise here is that

of agents misreporting their preferences in order to pay less tolls.

Nonetheless, in Section 4.3, we present a mechanism to identify

and punish this kind of misbehaviour.
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4.2 Redistributing Collected Tolls
As discussed in Section 3, the idea behind charging tolls is to cover

the costs associated with maintaining the road infrastructure. The

introduction of marginal-cost tolls, nonetheless, can increase the

total revenue far beyond necessary, which may be good for the

network manager, but not for the drivers. In this work, we avoid

this problem by keeping a fraction 1 − δ of the tolls for operational

costs (e.g., maintenance, profit, etc.), and redistributing the excess

revenue δ among drivers as side payments, with δ ∈ [0, 1]. GTQ-
learning is then said to achieve δ -approximated budget balance.

Intuitively, side payments can be seen as a social compensation for

drivers that take socially beneficial routes.

The side payments defined by GTQ-learning are made at the

level of origin-destination (OD) pairs. Specifically, Ψ denotes the

set of all OD-pairs, withψi representing driver i’s OD pair. In this

sense, we can define the total revenue from the tolls collected on

OD pairψ as rψ =
∑
i ∈D :ψi=ψ τi , where τi is the toll paid by agent

i . Based on the total revenue, we can now define the side payment

to agent i as:

ρψ =
δ · rψ

xψ
, (10)

where xψ =
��{i ∈ D | ψi = ψ }�� represents the amount of vehicles

belonging to OD pairψ , and δ denotes the fraction of the revenue

obtained at OD pairψ to be redistributed among the agents of that

OD pair. Tolls and side payments are computed once per episode.

The above modelling implies that the tolls collected at a partic-

ular OD pair are only redistributed among the agents of that pair.

The rationale here is that routes from different OD pairs may be

completely independent from each other, i.e., the routes of an OD

pair may have much higher marginal costs than those from another

OD pair. Hence, if the tolls collected from an OD pair are divided

with others, then some agents may not be properly compensated for

their socially-desirable choices, and may even be rewarded for self-

ish behaviour. Thus, by taking such a limitation into account, our

OD-pair-based approach correctly compensates right the agents.

Another particularly useful property of GTQ-learning’s side

payments is that they do not affect the equilibrium. In particular, our

side payments do not deteriorate the system-efficient equilibrium

obtained by GTQ-learning (without side payments), as shown in

the next theorem.

Theorem 4.4. GTQ-learning’s side payments preserves the system-
efficient equilibrium.

Proof. Recall that we assume a static trafficmodel. This theorem

can then be proved by showing that side payments do not affect

the agents’ preference ordering over the routes. To this end, we

remark that under user equilibrium, all routes from the same OD

pair that are being used have the same cost. Also, recall that all

drivers from the same OD pair receive the same side payment. In

this sense, at any particular episode, a side payment can be seen as

a constant that, when subtracted from the cost of all routes, does

not change the preference ordering over these routes. Therefore,

as such ordering is preserved, the equilibrium is preserved. □

When redistributing collected tolls, one also needs to ensure

that side payments do not lead to a loss to the system, otherwise

the traffic manager would have to pay drivers for congesting the

network. Nonetheless, as discussed in the next proposition, side

payments made by GTQ-learning never exceed what it collects

from agents.

Proposition 4.5. The sum of side paymentsmade byGTQ-learning
never exceeds its total revenue.

Proof. For the sake of contradiction, assume that there exists

an OD pair ψ ∈ Ψ for which rψ <
∑
i ∈D :ψi=ψ ρψi . Since every

agent receives an equal fraction of the tolls to be redistributed (see

Equation (10)), we can rewrite the right-hand side of the inequality

as xψ · ρψi , which simplifies to δ ·rψ . However, given that δ ∈ [0, 1],
we actually have that rψ ≥ δ · rψ , which contradicts the initial

assumption. □

4.3 Enforcing Truthful Preference Reporting
As discussed, our tolling scheme assumes that agents truthfully

report their preferences. However, since agents are self-interested,

they may misreport their preferences if such behaviour brings

them some advantage.
3
In this section, we present a mechanism

to penalise agents that misreport their preferences. We highlight

that the idea here is not to penalise every suboptimal choice (after

all, agents need to explore the available routes). In contrast, the

objective is to only penalise those agents whose behaviour is not

compatible with the reported preference.

In order to prevent preference misreporting, GTQ-learning keeps

track of agents’ choices and punishes those agents whose behaviour

is not compatible with the reported preferences. A similar idea was

used in [35], but assuming that agents know each others’ choices

a priori. Here, agents report their preferences at the beginning

and the learning process takes place as usual. At the same time,

the system keeps track of the agents’ sequence of actions. Every

κ episodes (which we call a κ-interval), the mechanism punishes

all agents whose behaviour is not compatible with the reported

preferences, while accounting for exploration. Such agents can

then report again their preferences. This process is repeated for

subsequent episodes.

The key idea to detect whether an agent misbehaved during the

last κ episodes is to count, for that interval, how many times that
agent has not chosen a least-cost action according to the reported pref-
erence

_
η. Let σi ∈ [0,κ] represent the number of inconsistent choices

made by agent i within the current κ-interval. In order to compute

this number, we first identify the least-cost action for agent i at

each episode t as
∗

Rti = arg minR∈Ai C
_

η
R . An inconsistent choice is

identified whenever the agent selects a route different from

∗

Rti .
Considering that the exploration rate is ϵ , each agent is expected

to select its least-cost action in (1−ϵ)κ out of κ episodes, on average.

Hence, agents that choose their least-cost actions less than that

amount of times can be considered cheaters. We can now define

a threshold ξ = κ(ϵ + c) on the maximum number of inconsistent

choices allowed, where c is a constant to account for exploration
randomness (i.e., so that the actual exploration frequency lies within

3
For the considered class of latency functions (see Section 2.1), by fixing the travel

time and varying the preference in Equation (9), the toll value monotonically decreases

as the preference increases. In other words, if a given agent misreports its preference

as being higher than it actually is, then the toll it has to pay decreases.
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a range from the expected average). Building upon the above thresh-

old, we define a misbehaving agent as follows.

Definition 4.6. Given a κ-interval, agent i is said to misbehave (or

to be cheating) with respect to its reported preference

_

ηi if σi > ξ
after that time interval.

Regarding constant c , it could be defined as the standard devia-

tion of the distribution underlying the exploration mechanism. As

we use ϵ-greedy, this could be seen as a binomial distribution B(n,p),
where n = κ is the number of samples, and p = ϵ is the exploration

probability. Then, we could define c =
√
np(1 − p) =

√
κϵ(1 − ϵ).

Observe that, as c is associated with the exploration rate ϵ , it should
be decreased at the same rate. In particular, c → 0 as t →∞.

Once misbehaviour is detected, cheating agents need to be pun-

ished accordingly. The penalty imposed here is lower-bounded by

the maximum monetary benefit that the cheating agent could accu-

mulate along the current κ-interval. Hence, the agent is better off
truthfully reporting its preference.

Firstly, we establish an upper bound on the maximum monetary

benefit that an agent may obtain due to preference misreporting.

Proposition 4.7. The maximum gain obtained by agent i along
the set of episodes Iκ of a given κ-interval after misreporting its
preference is

∑
t ∈Iκ τ̊Rti

.

Proof. Let Equations (11) and (12) represent the cost perceived
by agent i after taking route Rti with tolls computed using

_

ηi and
ηi , respectively.

C
_

τ
Rti

= (1 − ηi )fR + ηi
_

τR

= (1 − ηi )fR + ηi
(
τ̊R+fR

_

ηi
_

ηi

)
= fR +

ηi τ̊R
_

ηi

(11)

Cτ
Rti

= (1 − ηi )fR + ηiτR

= (1 − ηi )fR + ηi
(
τ̊R+fRηi

ηi

)
= fR + τ̊R

(12)

The amount agent i saves by misreporting its preference along a

κ-interval can then be formulated as:(∑
t ∈Iκ C

τ
Rti

)
−

(∑
t ∈Iκ C

_

τ
Rti

)
=

∑
t ∈Iκ C

τ
Rti
−C

_

τ
Rti

=
∑
t ∈Iκ

(
τ̊R ·

(
1 −

ηi
_

ηi

))
.

For fixed τ̊ and η, the resulting expression is monotonically increas-

ing. Since the true preference η is unavailable to the mechanism,

we can then assume η = 0 to establish an upper bound on the gain

obtained by the agent. This results in a maximum gain of

∑
t ∈Iκ τ̊R ,

as required. □

From Proposition 4.7, we define the penalty ρκi for agent i misre-

porting its preference during a given κ-interval as ρκi =
∑
t ∈Iκ τ̊Rti

.

Together, the accumulated cost and the penalty make the agent

better off truthfully reporting its preference, as shown next.

Theorem 4.8. GTQ-learning enforces truthful preference reporting
by imposing a penalty of ρκi =

∑
t ∈Iκ τ̊Rti

on agent i for misreporting
its preference during a given κ-interval.

Proof. In order to show that agents are better off truthfully

reporting their preferences, we need to compare the costs an agent

would perceive misreporting and truthfully reporting its preference.

In particular, we need to show that the costs accumulated by a mis-

reporting agent during a κ-interval are higher than those it would

obtain by truthfully reporting its preference. Using Equations (11)

and (12), this idea can be expressed (and simplified) as follows:

ρκi +
∑
t ∈Iκ C

_

τ
Rti

>
∑
t ∈Iκ C

τ
Rti∑

t ∈Iκ τ̊Rti
+
∑
t ∈Iκ

(
fR +

ηi τ̊R
_

ηi

)
>

∑
t ∈Iκ

(
fR + τ̊R

)∑
t ∈Iκ

(
τ̊Rti
+ fR +

ηi τ̊R
_

ηi

)
>

∑
t ∈Iκ

(
fR + τ̊R

)∑
t ∈Iκ

(
ηi τ̊R
_

ηi

)
> 0

ηi
_

ηi
∑
t ∈Iκ τ̊R > 0,

which holds if τ̊ > 0 (which is not a restrictive assumption, since

τ̊ = 0 is equivalent to not having tolls), and since that η and

_

η are
defined within ]0, 1]. Therefore, as compared to truthful reporting,

misreporting increases the accumulated cost, which makes the

agents better off truthfully reporting their preferences. □

Observe that the above theorem might not hold if agents could

misrepresent their OD pairs. Here, we assume that agents cannot

present such a behaviour. Although such situation could be easily

addressed by keeping track of agents’ routes, we leave such aspects

for future work.

5 EXPERIMENTAL EVALUATION
We now present empirical results to support our theoretical find-

ings. The aim here is to show that GTQ-learning: (i) converges

to the system optimum, (ii) is not affected by different preference

distributions, and (iii) outperforms other approaches on average.

5.1 Methodology
We ran simulations using a macroscopic traffic simulator within

a range of realistic traffic scenarios available in the literature.
4
In

particular, we considered the following road networks: B1
, B2

, B3
,

B4
, B5

, B6
, B7

, BB1
, BB3

, BB5
, BB7

, OW, Anaheim (AN), Eastern-

Massachusetts (EM), and Sioux Falls (SF). These networks include

synthetic (B, BB, OW) and real-world (AN, EM, SF) topologies,

ranging from 1,700 (OW) up to 360,600 (SF) independent drivers.

Each run of GTQ-learning corresponds to a simulation of T =
10, 000 episodes (with a particular combination of parameters) on

a single network. Drivers’ preferences are drawn from probabil-

ity distributions, where we tested variations of a normal distri-

bution N(0.5 ± σ ) (bounded to ]0,1], with σ ∈ [0.1, 1.0]) and a

uniform distributionU(0, 1). Revenue redistribution was tested as

δ ∈ {0.1, 0.2, . . . , 1.0}. The misreporting prevention mechanism

was set to run every κ = 100 episodes. Learning and exploration

decay rates were defined as λ, µ ∈ {0.98, . . . , 0.9999} to allow

agents to learn and explore longer. The number of routes was set

as K ∈ {2, . . . , 16}. We selected the best parameters configurations

for further analyses in the next subsection.

We evaluate the performance of each run of GTQ-learning by

measuring how close the obtained average travel time is to that of

4
Road networks available at https://github.com/goramos/transportation_networks.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1103



Table 1: Average performance (and standard deviation) obtained by GTQ-learning and other algorithms for different networks,
preference distributions, and revenue redistribution rates. Lower is better. Best results are highlighted in bold. GTQ-learning
yielded the best average performance, obtaining results closer to the optimum regardless of the preference distributions and
revenue redistribution rates.

N(0.5 ± 0.1) N(0.5 ± 0.5) U(0, 1)

Net. GTQ R18 S17 GTQ R18 S17 GTQ R18 S17

δ
=

0
.0

B7
1.000 (10

–5
) 1.000 (10

–5
) 1.000 (10

–5
) 1.000 (10–5) 1.008 (10

–3
) 1.008 (10

–3
) 1.000 (10–5) 1.010 (10

–3
) 1.009 (10

–3
)

BB7 1.000 (10–4) 1.001 (10
–4
) 1.001 (10

–4
) 1.000 (10–4) 1.004 (10

–4
) 1.004 (10

–4
) 1.000 (10–5) 1.005 (10

–4
) 1.005 (10

–4
)

OW 1.000 (10
–4
) 1.000 (10

–4
) 1.000 (10

–4
) 1.000 (10–5) 1.002 (10

–4
) 1.002 (10

–4
) 1.000 (10–4) 1.002 (10

–4
) 1.002 (10

–4
)

AN 1.007 (10
–5
) 1.006 (10–5) 1.006 (10–5) 1.007 (10–5) 1.008 (10

–4
) 1.008 (10

–4
) 1.007 (10–5) 1.008 (10

–4
) 1.008 (10

–4
)

EM 1.015 (10
–4
) 1.015 (10

–4
) 1.015 (10

–4
) 1.015 (10–4) 1.021 (10

–4
) 1.021 (10

–4
) 1.015 (10–4) 1.023 (10

–4
) 1.023 (10

–4
)

SF 1.005 (10–4) 1.005 (10–4) 1.006 (10
–4
) 1.005 (10–4) 1.008 (10

–4
) 1.009 (10

–4
) 1.005 (10–4) 1.009 (10

–4
) 1.010 (10

–4
)

Avg. 1.002 (10–4) 1.003 (10
–4
) 1.004 (10

–4
) 1.002 (10–4) 1.017 (10

–3
) 1.018 (10

–3
) 1.002 (10–5) 1.020 (10

–3
) 1.020 (10

–3
)

δ
=

0
.5

B7
1.000 (10

–5
) 1.000 (10

–5
) 1.000 (10

–5
) 1.000 (10–5) 1.008 (10

–3
) 1.008 (10

–3
) 1.003 (10–2) 1.010 (10

–3
) 1.010 (10

–3
)

BB7 1.000 (10–5) 1.001 (10
–4
) 1.001 (10

–4
) 1.000 (10–4) 1.004 (10

–4
) 1.004 (10

–4
) 1.001 (10–3) 1.005 (10

–4
) 1.005 (10

–4
)

OW 1.000 (10
–4
) 1.000 (10

–5
) 1.000 (10

–4
) 1.001 (10–4) 1.002 (10

–4
) 1.002 (10

–4
) 1.001 (10–3) 1.002 (10

–4
) 1.002 (10

–4
)

AN 1.007 (10
–5
) 1.006 (10–5) 1.006 (10–5) 1.007 (10–4) 1.008 (10

–4
) 1.008 (10

–4
) 1.007 (10–4) 1.008 (10

–4
) 1.008 (10

–4
)

EM 1.016 (10
–4
) 1.015 (10–4) 1.015 (10–4) 1.016 (10–4) 1.021 (10

–4
) 1.021 (10

–4
) 1.017 (10–4) 1.023 (10

–4
) 1.023 (10

–4
)

SF 1.005 (10
–4
) 1.005 (10

–4
) 1.005 (10

–4
) 1.007 (10–3) 1.008 (10

–4
) 1.010 (10

–4
) 1.010 (10

–3
) 1.009 (10–4) 1.010 (10

–4
)

Avg. 1.002 (10–4) 1.004 (10
–4
) 1.004 (10

–4
) 1.003 (10–3) 1.017 (10

–3
) 1.018 (10

–3
) 1.004 (10–3) 1.020 (10

–3
) 1.020 (10

–3
)

the SO;
5
the closer this value is to 1.0, the better. To enhance the

statistical relevance of the results, each run was repeated 30 times.

In order to better assess our method, we compared it against

[30, 31] and [37], to which we refer as R18 and S17, respectively.

More information on these methods is presented in Section 6.

5.2 Numerical Results
Table 1 presents the main results of our experiments for different

preference distributions and tax return fractions. Due to space limi-

tations, we omit some network and parameter combinations, thus

concentrating on the most representative results. Additionally, we

plot in Figure 1 the average travel time along episodes as obtained

by the considered algorithms in a representative case (OW network,

withU(0, 1) and δ = 0.0).

As seen in Table 1, GTQ-learning was able to converge to a

system-efficient equilibrium regardless of the preferences distribu-

tion. This is a consequence of the tolling mechanism, which makes

agents indifferent between time and money. By contrast, the perfor-

mance of the other algorithms has deteriorated substantially. The

fact is that the heterogeneous preferences change agents’ percep-

tions about their costs. Consequently, agents end up converging

to an equilibrium that is not completely aligned to the optimum.

This can also be seen in Figure 1, where GTQ-learning’s results

were closer to the optimum. Therefore, these results corroborate

with our theoretical findings, showing that GTQ-learning effec-

tively neutralises the agents’ preferences and, thus, converges to

the system optimum.

We have additionally investigated the effect of having a toll redis-

tribution mechanism, formulated as side payments in our system.

As it can be observed from Table 1, side payments do not deteriorate

the equilibrium in the case of GTQ-learning. The reason is that, as

discussed in Theorem 4.4, the introduction of side payments does

5
System optimal values obtained from the literature [29, 36].
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Figure 1: Average travel time along episodes onOWnetwork,
for each algorithm, withU(0, 1) and δ = 0.0. Lower is better.
GTQ-learning’s results were the closest to the optimum.

not affect the agents’ preference ordering over the available routes.

The other algorithms achieved reasonable results, although they are

still unable to properly align the equilibrium to the system optimum.

Again, these results support our theoretical findings, showing that

our approach is robust and flexible enough to accommodate the

needs of the traffic authority with respect to revenue redistribution.

Finally, we ran additional experiments to test the effectiveness of

the misreporting prevention mechanism. As a proof of concept, we

investigatedwhat happenswhen agents start tomisreport their pref-

erences and then, as penalties are applied, how they progressively

change their reports towards their true preferences. These results

are presented in Table 2. On average, the deterioration observed

due to misreporting was lower than 1%. Nonetheless, as expected,
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Table 2: Average impact ofmisreporting on the performance
of GTQ-learning. Lower is better. We consider three sce-
narios: agents truthfully report their preferences (S1); and
agents misreport their preferences while the prevention
mechanism is inactive (S2) or active (S3). As seen, our mech-
anism was able to neutralise misbehaviour.

Scenario N(0.5 ± 0.1) N(0.5 ± 0.5) U(0, 1)

δ
=

0
.0 S1 1.005 (10

–5
) 1.005 (10

–4
) 1.005 (10

–5
)

S2 1.007 (10
–4
) 1.009 (10

–4
) 1.009 (10

–4
)

S3 1.005 (10
–4
) 1.005 (10

–4
) 1.005 (10

–4
)

δ
=

0
.5 S1 1.005 (10

–4
) 1.007 (10

–3
) 1.006 (10

–3
)

S2 1.007 (10
–4
) 1.009 (10

–4
) 1.009 (10

–4
)

S3 1.005 (10
–4
) 1.006 (10

–3
) 1.005 (10

–4
)

when our prevention mechanismwas used, agents’ misreporting be-

haviour was neutralised, thus restoring system’s optimality. Again,

these results corroborate with our theoretical findings.

In summary, our results support our theoretical findings, show-

ing that GTQ-learning converges to the system optimum regardless

of the preferences distribution, side payments, and misbehaviour.

We highlight that although R18 and S17 obtained similar results,

ours were obtained under more realistic assumptions. In particular,

R18 does not tackle heterogeneous preferences, and S17 does not

work in a decentralised way. Additionally, both R18 and S17 ignore

preference misreporting and do not conceive tax return.

6 RELATEDWORK
The use of tolls to enforce system-efficient behaviour has been

widely explored in the literature, though typically assuming that

agents have uniform preferences [2, 4, 24, 31, 45]. The more realistic

case of heterogeneous preferences has also been investigated. Cole

et al. [7] have shown the necessary conditions on drivers prefer-

ences such that tolling generates a system optimum in terms of

travel time. Linear programming was used to model heterogeneous

valuations of the monetary component in [13, 19], however without

including this criteria in the utility calculation.

Subsequent work has advanced the theoretical understanding

of marginal-cost tolling under heterogeneous preferences [3, 14,

15, 17, 23, 25, 36, 37], and experimentally showed the benefits of

different tolling schemes. A particularly relevant approach here

was that of Sharon et al. [37], which we used as a baseline in our

experiments. However, these works typically assume the existence

of a central authority with full knowledge about drivers’ choices,

which is responsible for assigning routes to drivers. In other words,

congestions are minimised in a centralised way. Some of these

works indeed assume that agents take their decisions indepen-

dently, though assuming that drivers behave truthfully according

to their reported preferences, i.e., no driver attempts to profit by

misreporting its preference. In contrast, we consider the more chal-

lenging and realistic case where drivers learn concurrently (with

limited knowledge) and can misreport their preferences so as to

reduce their costs.

Learning approaches have also been proposed in the literature.

Chen et al. [5] devised a policy gradient reinforcement learning

algorithm to define optimal tolls. However, their approach does

not consider marginal-cost tolls and the learning procedure is cen-

tralised. Similarly to our work, Ramos et al. [30, 31] proposed a

reinforcement learning algorithm based on marginal-cost tolling.

Nonetheless, agents are assumed to truthfully report their prefer-

ences and toll return was not considered.

Similarly to charging tolls, some works considered the benefits

of altruistic behaviour [6, 16, 22]. However, this kind of behaviour

cannot be assumed mandatory [12]. The idea of difference rewards
[28, 43, 44] also relates to our approach. However, such rewards

can only be computed upon strong, full observability assumptions.

Moreover, as we are explicitly considering here the TRCP in the

context of heterogeneous preferences, then we cannot make a direct

comparison between our method and difference rewards.

7 CONCLUSIONS
In this work, we considered the toll-based route choice problemwith

heterogeneous agent preferences regarding travel time and money

expenses. We then introduced the Toll-based Q-learning algorithm

(GTQ-learning), which tackles this problem by neutralising agents’

preferences. GTQ-learning also includes mechanisms for tax return

(that achieves δ -approximated budget balance) and for preference

misreporting prevention. We provided theoretical results, showing

that GTQ-learning converges to a system-efficient equilibrium,

which is not affected by tax return and by preference misreporting.

Our theoretical findings are supported by a series of experimental

results on a range of realistic road networks.

We remark that GTQ-learning is the first toll-based algorithm

able to neutralise agents’ heterogeneous preferences, with conver-

gence guarantees, while providing tax return and ensuring truthful

preference reporting. Our approach also differs from previous ones

by achieving such results in a decentralised, relying mostly on local

knowledge, which is particularly useful in traffic scenarios.

As future work, we would like to further investigate the effects

of different misreporting strategies on the system performance. De-

viations from the MCT value have shown to deteriorate the system

performance. Our tolling scheme deals with this issue by neutralis-

ing agents preferences and punishing preference misreporting. As

a next step, we would like to formally investigate the relation of our

scheme and the MCT error factors [36]. Another important aspect

to consider refers to the agents’ ability to misreport not only their

preferences, but also other information, such as their OD pairs. Our

misreporting prevention mechanism could be extended to further

consider this aspect. Finally, we look forward to extend our tolling

approach to other multiagent congestion problems where the Price

of Anarchy is high, such as smart electricity grids and logistics.
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