
Multirobot Coverage of Modular Environments∗

Mirko Salaris
Politecnico di Milano

Milano, Italy
mirko.salaris@mail.polimi.it

Alessandro Riva
Politecnico di Milano

Milano, Italy
alessandro.riva@polimi.it

Francesco Amigoni
Politecnico di Milano

Milano, Italy
francesco.amigoni@polimi.it

ABSTRACT
Multirobot systems for covering environments are increasingly
used in applications like cleaning, industrial inspection, patrolling,
and precision agriculture. The problem of covering a given environ-
ment using multiple robots can be naturally formulated and studied
as a multi-Traveling Salesperson Problem (mTSP). In a mTSP, the
environment is represented as a graph and the goal is to� nd tours
(starting and ending at the same depot) for the robots in order to
visit all the vertices with minimum global cost, which is typically
calculated as the makespan, namely the length of the longest tour.
The mTSP is an NP-hard problem for which several approximation
algorithms have been proposed. These algorithms usually assume
generic environments, but tighter approximation bounds can be
reached focusing on speci�c environments. In this paper, we ad-
dress the case of modular environments, namely of environments
composed of sub-parts, called modules, that can be reached from
each other only through some linking structures. Examples are
multi-�oor buildings, in which the modules are the� oors and the
linking structures are the staircases or the elevators, and� oors of
large hotels or hospitals, in which the modules are the rooms and
the linking structures are the corridors. We focus on linear modular
environments, with the modules organized sequentially, presenting
an e�cient (with polynomial worst-case time complexity) algorithm
that� nds a solution for the mTSP whose cost is within a bounded
distance from the cost of the optimal solution. The main idea of our
algorithm is to allocate disjoint “blocks” of adjacent modules to the
robots, in such a way that each module is covered by only one robot.
We experimentally compare our algorithm against some state-of-
the-art algorithms for solving mTSPs in generic environments and
show that it is able to provide solutions with lower makespan and
spending a computing time several orders of magnitude shorter.

KEYWORDS
multi-traveling salesperson problems; mTSPs; modular environ-
ments; multirobot systems

ACM Reference Format:
Mirko Salaris, Alessandro Riva, and Francesco Amigoni. 2020. Multirobot
Coverage of Modular Environments. In Proc. of the 19th International Confer-
ence on Autonomous Agents andMultiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

∗The� rst two authors have equally contributed. In particular, MS has contributed
mainly to the experimental activities and AR has contributed mainly to the theoretical
analysis.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Several applications of autonomous multirobot systems require to
perform some form of coverage, namely to visit all the locations
of given environments. Examples include cleaning [18], industrial
inspection [10], patrolling [20], and precision agriculture [3]. The
coverage problem has been widely studied in several variants [7, 13].
One of its most common formulations, called multi-Traveling Sales-
person Problem (mTSP) [4], represents the environment with a
graph and requires to� nd tours (starting and ending at a given
vertex, called depot) such that, when the robots follow them, all
the vertices are visited and the global cost, which is typically the
makespan, namely the length of the longest tour, is minimized.
The mTSP is an NP-hard problem for which several approximation
algorithms1 have been proposed [6, 14, 17, 19]. The most known
is arguably that by Frederickson [12], which provides an approx-
imation factor of 5

2 �
1
m , wherem is the number of robots. Such

an approximation algorithm, similarly to several others, works in
generic environments. In principle, tighter approximation bounds
can be reached by adding constraints to the environment or focus-
ing on speci�c classes of environments.

In this paper, we focus on modular environments, namely on
environments composed of sub-parts, called modules, that can be
reached from each other only through some linking structures.
Examples of modular environments include multi-�oor buildings,
in which the modules are the� oors and the linking structures are
the staircases or the elevators, and� oors of large hotels or hospitals,
in which the modules are the rooms and the linking structures are
the corridors. In this paper, we consider linear instances of modular
environments in which the modules are orderly aligned along a
single linking structure, like multi-�oor buildings with a single
staircase. We present an e�cient (with polynomial worst-case time
complexity) algorithm that� nds a solution for the mTSP in modular
environments whose cost is guaranteed to be at a bounded distance
from the cost of the optimal solution. The bound depends on the
shape of the modular environment. In particular, in environments
in which covering the modules has a cost that is negligible wrt
the cost of moving between modules, the approximation factor
approaches 3/2, that is the best known factor for the (single-robot)
TSP [8]. The main idea behind our algorithm is to allocate disjoint
“blocks” of adjacent modules to the robots, in such away that a robot
visits and covers all the modules assigned to it (plus the portion
of the linking structure needed to reach the modules) and that a
module is covered only by a robot. We experimentally compare
our algorithm against some state-of-the-art algorithms for solving
mTSPs in generic environments and show that our algorithm is

1An approximation algorithm is an algorithm with polynomial-time complexity that
�nds approximate solutions to an NP-hard problem, providing theoretical guarantees
on the bound of approximation.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1178

able to provide solutions with lower makespan and spending a
computing time several orders of magnitude shorter.

The original contributions of this paper are:

• the introduction of a new class of environments, called mod-
ular environments, that represent several relevant real-world
environments (Section 3),

• the study of the mTSP in modular environments and, in par-
ticular, the analysis of integer solutions that allocate disjoint
“blocks” of adjacent modules to di�erent robots (Section 4.1),

• the de�nition of an e�cient algorithm that calculates integer
solutions for mTSPs in modular environments (Section 4.2),

• the analysis of the approximation factor obtained by using
integer solutions (Section 5),

• the experimental assessment of the proposed algorithm,
which shows that it outperforms state-of-the-art algorithms
for mTSP in generic environments (Section 6).

2 RELATEDWORK
To the best of our knowledge, the problem of covering modular en-
vironments or environments composed of repeated sub-structures
has not been directly addressed in the literature. Here, we survey
some works that have some relation to our problem. We attempt to
use a common terminology independent of the broad range of appli-
cations in which coverage tasks are encountered. In the following,
the term ‘robot’ will be used in place of agent, robot, or salesperson
and the term ‘vertex’ will be used to mean location, vertex, or city
(this terminology is consistent with the rest of the paper, in which
we will consider robots in an environment represented as a graph).

An overview of formulations and solutions for the mTSP is pre-
sented in [4]. The basic de�nition of mTSP is the following: given a
set of vertices andm robots located at an initial vertex, called depot,
the mTSP consists in� nding tours for all them robots, which all
start and end at the depot, such that all the vertices are visited at
least once by any robot and the global cost of visiting all vertices
is minimized. The cost metric can be de�ned as the total traveled
distance or as the time required for completing all the tours. In the
area of multirobot systems, we are usually interested in minimizing
the total time of execution, namely the makespan. A mTSP involves
two main intertwined issues: how to partition the vertices among
the robots and how to compute the optimal paths for the robots. The
two main ways in which the mTSP is approached in the literature
re�ect this double nature of the problem and solve the two above
issues in di�erent orders.

An important theoretical result is that everymTSP can be approx-
imately solved through a corresponding TSP formulation [5, 11, 21],
searching for an optimal path for the TSP and then splitting it in-
ducing a partition of the vertices on the robots. The corresponding
TSP formulation is obtained by creatingm copies of the original
depot, each connected to the vertices adjacent to the original depot.
The TSP solution obtained on this new graph is forced to havem
tours, namely a TSP path is built such that it visits each one of the
m copies of the original depot. If we “cut” the TSP path every time
it visits a copy of the original depot, we obtainm paths, each one
starting from a copy of the depot and ending at a copy of the depot.
Thesem paths constitute the (non-optimal, in general) solution for
the mTSP.

The other family of (generally non-optimal) approaches�rst
group the vertices intom clusters2, so that each cluster represents
a set of vertices that are visited by a single robot whose path can be
later optimized as in a TSP [6, 14, 17, 19]. Clustering vertices has
obvious computational advantages. The size of the search space
for a routing problem over n vertices is �(n!). Decomposing the
problem into k clusters, each one with approximately n/k vertices,
naïvely reduces the size of the search space to a function ofk⇥(n/k)!,
which is much smaller than n! [6].

The mTSP can be also considered as a relaxation of the VRP
(Vehicle Routing Problem), with the capacity constraints removed
[4]. The VRP asks for the optimal set of paths for a number of
vehicles that have to deliver goods to a set of costumers, assuming
that each vehicle has a limited capacity. The vehicles correspond to
the robots of themTSP and the costumers correspond to the vertices.
Therefore, the equivalence between VRP and mTSP is obtained by
setting the capacity of each vehicle in�nitely large. This implies
that all the solving algorithms for the VRP are also valid for the
mTSP, for example, see [23].

Since the mTSP generalizes the TSP, it is NP-hard. Given that
optimal solutions are likely to be out of reach for instances of
realistic size, a great e�ort has been done for developing approxi-
mated and heuristic algorithms [12, 14, 16, 22]. For example, [16]
provides an algorithm with a constant approximation factor of 2
for the Generalized, Multiple Depot, Multiple Traveling Salesman
Problem (GMTSP), where the objective is to minimize the sum of
the distances traveled by the robots. With the same objective, [14]
approaches the mTSP through clustering and an Ant Colony Opti-
mization algorithm. Di�erently from the above works, in this paper,
we are interested in� nding solutions to a mTSP that minimize the
makespan. For this variant of the mTSP, [22] follows the clustering
approach, with progressive improvement of the clusters and�nal
optimization of the tours of the robots. In 1979, Frederickson [12]
provided a tour-splitting heuristic that yields an approximation
factor of 5

2 �
1
m relying on the classical 3

2 -approximation to the
TSP by Christo�des [8]. In the past 40 years, no better theoretical
approximation factor has been found for the mTSP in which the
objective function is the makespan. Thus research has proceeded
restricting the problem to environments with constraints of practi-
cal interest. For instance, [2] provides a (2�2/(m+1))-approximate
algorithm for the makespan mTSP on trees with multiple depots.
Our contribution follows a similar direction, considering modular
environments.

3 PROBLEM FORMULATION
As already stated, mTSP is anNP-hard problem and cannot be solved
e�ciently under the assumption P,NP. Therefore, we present an
approximated algorithm that runs in polynomial time and provides
tight approximation bounds for solving mTSPs in environments
with a constrained structure, which the algorithm exploits.

We consider modular environments. A modular environment is
an environment constituted by sub-parts, the modules, which can
be repeated multiple times and which are connected to each other
2Clustering divides a set of objects into groups, or clusters, in such a way that objects
belonging to the same cluster are similar to each other (according to somemeasure) and
objects belonging to di�erent clusters are dissimilar (according to the same measure).
Proximity and distance measures can be used as similarity measures [1, 6].

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1179

Gn

G3

G2

G1G1

G2�

G3�

Gn�

Figure 1: A schematic representation of the linear modu-
lar environments we consider. The linking structure (on the
left) connects the doorways di , which are the entry points
for modules G1, . . . ,Gn . d1 is also the depot.

through some linking structures. The modules do not need to be all
equal, but they need to be clearly identi�able and separable from
each other. The idea is that moving from a module to another one
could be done only through the linking structures and, thus, each
module can be covered rather independently of the other modules.

As discussed in Section 1, there are several examples of real-
world environments that are modular in the above way. For in-
stance, a multi-�oor building is a modular environment whose
modules are the� oors and the linking structures are the staircases
(or the elevators). On a smaller scale, consider� oors of large hotels
or hospitals. Each� oor is itself a modular environment in which
modules are the rooms and linking structures are the corridors. On
a larger scale, modular environments can be identi�ed in urban
design and, speci�cally, in townhouses, where the modules are the
houses and the linking structures are the streets.

In this paper, we consider modular environments whose linking
structure is linear, i.e., with the modules aligned in an ordered
sequence along a single linking structure connecting one module
to the next one. Examples of such linear modular environments are
multi-�oor buildings with a single staircase,� oors of large hotels
or hospitals whose rooms are connected by a single corridor, and
townhouses that can be accessed by a single street.

We call modular mTSP a mTSP formulated on a linear modu-
lar environment. The environment is thus composed of n disjoint
subgraphs Gi = (Vi , Ei) (with i = 1, . . . ,n), the modules. In each
module Gi , we identify a vertex di that is the “doorway” to access
the linking structure. Because of the linearity of the modular en-
vironment, the modules are orderly aligned and each module Gi
(except the� rst and the last ones) has exactly two adjacent modules,
Gi�1 andGi+1. The linking structure is represented by a set of n� 1
edges (di ,di+1), with i = 1, . . . ,n � 1. An explanatory scheme is
shown in Figure 1.

A metric t , representing the traveling time between locations, is
de�ned over any pair of vertices in Vi ⇥Vi and any pair di ,di+1.

We assume to havem homogeneous robots. All robots start and
eventually reach a depot, which is assumed to be d1. There is no
constraint on the simultaneous presence of more robots at the same
vertex or along the same edge. In applications, con�icts can be
solved by using local collision-avoidance mechanisms.

Given all the above, we de�ne our problem as the following
optimization problem.

P������ 1 (������� �TSP). Given a linear modular environ-
ment, assign to each robot a tour, starting from and ending to the
depot, such that all the vertices of the modules are eventually covered
with the minimum makespan.

Let us here introduce an index to classify linear modular envi-
ronments according to their shape:

� =
maxi ttsp(i)Õ
i t(di ,di+1)

,

where ttsp(i) is the time (calculated with the metric t) needed by a
robot for entirely covering the i-th module Gi when following an
optimal tour. For very “wide” instances, namely when the linking
structure is short with respect to the size of the modules, � ! 1.
Conversely, for very “deep” instances, in which the time for moving
along the linking structure dominates the time for coveringmodules,
� ! 0.

The results we present in this paper hold for all values of � .
However, we note that, in a sense, instances with a deep structure
are more interesting than instances with a wide structure, which
can be easily turned into a generic mTSP.

4 INTEGER COVERAGE OF MODULES
An intuitive way to solve the above problem is to partition the
modules in “blocks” and assign them to the robots, in such a way
that a robot visits and covers all the adjacent modules assigned to
it (plus the portion of the linking structure needed to reach the
modules) and that a module is covered only by a robot. We call
such solutions integer solutions or solutions in integer form (formally
de�ned below). Integer solutions are not guaranteed to be optimal
as, in general, the optimummay require the robots tomove back and
forth among non-adjacent modules and cooperate for the coverage
of each single module. However, we show that there is always an
integer solution whose cost is guaranteed to be within a bound
from the cost of the optimal solution.

4.1 Integer Solutions
In the following, we will leverage solutions in integer form to
develop approximated results to our modular mTSP. As we will see,
integer solutions turn out to be relatively simple to� nd and, under
some conditions, surprisingly good3.

D���������(������� �������� �� �������� �� ������� ����).
A solution is in integer form if for each robot r there exist i, j such
that:

• for any i  h  j, the h-th module is entirely covered by r ,
• r does not take part to the coverage of any other module.

T������4.1. Let OPT be the makespan of an optimal solution
for a given modular mTSP instance. Then, there must exist, for the
same instance, an integer solution whose makespan SOLint satis�es:

1 
SOLint
OPT

 1 +
�

2
.

3Notice that in integer solutions we can always considerm  n even if we do not
have this constraint in input, because the solution is trivial wheneverm > n . For any
modular environment, there are no better integer solutions than the one withm = n,
assigning one robot to each module and vice-versa.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1180

P����. The left-hand inequality clearly holds true, as any solu-
tion cannot be better than an optimal one.

To prove the right-hand inequality, let us explicit the solutions
as sequences of robot tours, i.e., OPT = (s⇤1, . . . , s

⇤
m) and SOLint =

(s1, . . . , sm). Let � (s) be the highest module index covered (partially
or not) in a tour s . Without loss of generality, we assume that
robots are ordered and, for any r < r 0, it holds � (sr)  � (sr 0) and
� (s⇤r)  � (s⇤r 0).

LetT (s, i) be the time spent in tour s for covering (partially or not)
the i-th module. We construct SOLint from OPT as follows. De�ne
s1 as the tour of robot 1 that, starting from d1, covers in a sequence
all the modules (spending ttsp(·) for each module, i.e., the least time
for a single-robot module coverage) until either the traveling time
within modules reaches

Õ
i T (s

⇤
1, i) or module � (s⇤1) is covered. In

order to preserve the integer form, the robot entirely covers the
last-reached module (if any) before coming back to d1. Accordingly,
we de�ne sr , with r > 1, resuming the covering process from
module � (sr�1) + 1. Leaving aside the time for moving between
modules, the tour of a robot r lasts

Õ
i T (s

⇤
r , i) plus the time needed

to complete the coverage of the last module, or less if the module
� (s⇤r) is reached (and covered) ahead of time.

We now give evidence that the so-obtained sequence of tours
SOLint = (s1, . . . , sm) covers all the modules, i.e., � (sm) = n. Let
r̄ < m be the highest value such that � (sr̄) = � (s⇤r̄). By construction,
in SOLint all the modules up to the � (sr̄)-th one have been covered
and no robot r > r̄ stops its covering ahead of time. Also, by
construction of SOLint and by de�nition of � (·), no robot r > r̄
covers modules below the � (r̄)-th one, and thus:’

r>r̄
i>� (sr̄)

T (sr , i) �
’
r>r̄
any i

T (s⇤r , i).

Since the global time (i.e., the sum of all the robots’ traveling times)
needed to cover each module cannot be lower than ttsp(i) for any i ,
we have: ’

r>r̄
any i

T (s⇤r , i) �
’

i>� (sr̄)
ttsp(i).

Finally, given that in any integer solution robots cover entire
distinct modules, and in SOLint the coverage of each module takes
ttsp(i), all the modules i > � (sr̄) must be covered as well.

In the solution outlined above, for any r it holds � (sr)  � (s⇤r),
that is, the time spent in sr for moving along the linking structure is
not larger than the corresponding time spent in s⇤r . Furthermore, the
time spent coveringmodules in any sr is not larger than

Õ
i T (s

⇤
r , i)+

maxi ttsp(i). Consequently:

SOLint  OPT+ max
1in

ttsp(i). (1)

Since any solution has to necessarily reach the last module and
come back, we have a lower bound to the value of the optimum,
namely OPT � 2

Õ
i t(di ,di+1). Making use of this last inequality

in (1), the claim of the theorem follows. ⇤

Not only Theorem 4.1 highlights the existence of a relation be-
tween integer solutions and optimal ones, but it also quanti�es
this relation in terms of � , namely in terms of shape of the linear
modular environment of the problem instance. In particular, for

environments that are deep rather than wide, the ratio between
the cost of the optimal solution and that of its integer counterpart
converges to 1.

4.2 Optimal Algorithm for Integer Solutions
In this section, we prove the following theorem.

T������4.2. If the optimal time ttsp(i) for covering each module
is given, then there exists an algorithm for� nding a best integer
solution in O(n2 logn logm), i.e., in polynomial time with respect to
the input problem size.

Before going through the proof we need some preliminary results.
First of all, let us de�ne f (i, j,k) as the makespan of an optimal inte-
ger solution for k robots that cover modules from i to j � i , starting
from d1. The computation of such a time is particularly simple in
some special cases. In particular, we highlight the following two
cases.

P�������1. If only one module i has to be covered, regardless the
number of robots k employed, it holds:

f (i, i,k) = ttsp(i) + 2
i�1’
h=1

t(dh,dh+1).

P�������2. For any interval of modules to be covered [i, j], if
only one robot is employed, it holds:

f (i, j, 1) =
j’

h=i
ttsp(h) + 2

j�1’
h=1

t(dh,dh+1).

Computing generic values of function f (i, j,k) requires some
more e�ort. Such values play a central role in the development of
our polynomial algorithm, so we show a way to compute them
quite quickly.

To this aim, we introduce the concept of split point as the module
at which a team of robots splits into two halves. Intuitively, if, in
the best integer solution, k robots have to cover modules from i
to j, there must exist a value i  h  j such that about half of
the robots cover modules below the h-th one and about half of the
robots cover modules above the h-th one.

D���������(����� �����). Given k robots and an (integer) in-
terval [i, j] of modules to cover, a split point h 2 N is a solution
of:

f (i, j,k) = min
ihj

max

(
f (i,h, bk/2c)
f (h + 1, j, dk/2e)

.

Notice that if, for any i  h  j, the values f (i,h, bk/2c) and
f (h, j, dk/2e) are known, a split point for k robots covering modules
from i to j can be found in O(j � i) by means of a linear inspection.

Once the split point is obtained, the value of f (i, j,k) follows.
With this in mind, consider the algorithm sketched below.

A��������1. Given a modular mTSP instance and the value of
ttsp(i) for each module i of the instance:

(a) Compute f (i, j,k) for the cases i = j and k = 1.
(b) Set k = 2 robots.
(c) For any 1  i  j  n compute f (i, j,k) and store the corre-

sponding split points.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1181

(d) Increment k and repeat from (c) while k  dm/2e.
(e) Compute the split point form robots visiting modules from 1

to n.
(f) For each of the resulting halves, list recursively all the split

points.

A straightforward complexity of Algorithm 1 is O(mn3). In par-
ticular, the values of the function considered in (a) can be� lled
as discussed at the beginning of this section in O(mn + n2). Each
iteration of the loop (b)-(d) has complexity linear in the number
of robots and quadratic in the number of modules. Also, since at
a given iteration k all the values of f (i 0, j 0,k 0), with k 0 < k and
i  i 0  j 0  j , are known, the value of f (i, j,k) and the correspond-
ing split point can be computed in O(n). The resulting complexity
for (b)-(d) is O(mn3). In (e) the split point computation is O(n) as
above. Finally, in (f), each recursive step takes a constant amount
of time, since all the split points have been previously stored. The
number of recursive steps is O(2log2m) = O(m) and the stated
O(mn3) complexity follows.

This computing time is slightly worse than that claimed by Theo-
rem 4.2. However, we can start noticing there is no need for evaluat-
ing f (i, j,k) in any i, j,k , as in the split point de�nition the number
of robots is always divided by 2. One can therefore pre-compute
the set of needed values by means of a recursive procedure. The
whole recursive width-expansion is bounded by 2, as it holds:�

dk/2e
2

⌫
=

⇠
bk/2c
2

⇡
.

Since the depth of the recursion is bounded by O(logm) (versus the
O(m) complexity of the (d) looping) the complexity of the algorithm
can be lowered to O(n3 logm).

The computation of the values f (i, j,k) and the corresponding
split points can be sped up, as well. To this purpose, we need to
point out that the two arguments of the max operator in the split
point equation are, respectively, a monotonically non-decreasing
and a monotonically non-increasing function of h. Consequently,
their maximum value is minimized when the two functions are
relatively close to each other. Before formalizing this concept, let
us introduce a notation shortcut to ease the presentation:

lki , j (h) = f (i,h, bk/2c),

uki , j (h) = f (h + 1, j, dk/2e).

We can now formulate a su�cient condition that allows us to restrict
the region of interest when searching for a split point.

L����4.3. If lki , j (ĥ)  uki , j (ĥ) and l
k
i , j (ĥ + 1) � uki , j (ĥ + 1), then

at least one between ĥ and ĥ + 1 is a split point.

P����. The statement follows immediately from the fact that
lki , j (·) (u

k
i , j (·)) is a monotonically non-decreasing (non-increasing)

function. Indeed, for any h0  ĥ it holds uki , j (h
0
) � uki , j (ĥ) � lki , j (ĥ).

Similarly, for any h00 � ĥ + 1 we have lki , j (h
00
) � lki , j (ĥ + 1) �

uki , j (ĥ + 1). Thus, in ĥ and ĥ + 1, the maximum between lki , j (·)

and uki , j (·) is lower than or equal to their maximum computed
everywhere else. ⇤

This result allows us to reduce the search for an optimal split
point to the search of a particular condition, namely, either when
lki , j (·) and u

k
i , j (·) are equal or when the latter exceeds the former.

Thanks to the monotonicity of the two functions, a binary search
can be employed over the interval [i, j] of integer values, improv-
ing the complexity of searching for a split point from O(j � i) to
O(log2(j � i)).

P���� ��T ������4.2. Since the intervals of modules that each
robot has to cover can be easily computed while descending in the
split point recursion of Algorithm 1, an optimal integer solution to
Problem 1 can be computed in O(n2 logn logm). ⇤

5 APPROXIMATION
The results of the previous section hold when the optimal times
ttsp(i) for covering each module are known. If the time needed for
covering a module is computed by means of a suboptimal algorithm,
the values calculated in Properties 1 and 2 of Section 4.2 could be
much worse, harming the optimality of the integer solution calcu-
lated by Algorithm 1. However, if the TSP algorithm employed to
calculate the tours covering each module has a bounded approxima-
tion factor, the approximation factor of an integer solution found
by our approach is bounded as well.

T������5.1. If there exists an � -approximation algorithm for the
TSP, then there exists a polynomial-time algorithm for the modular
mTSP, whose approximation factor is �

⇣
1 + �

2

⌘
.

P����. Let SOL⇤int and SOL be the solutions found by Algo-
rithm 1 leveraging, respectively, an optimal and an�-approximation
TSP algorithm when calculating the times for covering each mod-
ule. Since, in the latter case, the computation of the split points
makes use of suboptimal times, the resulting tours are up to � times
worse than in the former case. Indeed, once the tour traveling times
have been computed during step (a) of Algorithm 1, no other ap-
proximated information is introduced, and the� nal outcome is not
worsened anymore. By making use of the relation SOL  � SOL⇤int
in Theorem 4.1, we achieve the claimed approximation factor. ⇤

From the Christo�des’ algorithm [8] for the TSP, we have the
following direct consequence.

C��������5.2. There exists a 3
2

⇣
1 + �

2

⌘
-approximation algo-

rithm for the modular mTSP.

It is interesting to compare this bound with that of Frederickson
[12], which is 5

2 �
1
m and holds for mTSPs in any environment.

For any instance of the modular mTSP in which � < 1 � 1/m,
the bound of Corollary 5.2 is lower than that of Frederickson. In
particular, when � ! 0, our bound approaches 3

2 that represents
the best-known approximation factor for the (single-robot) TSP.

6 EXPERIMENTAL ACTIVITIES
We compare our algorithm against two state-of-the-art mTSP al-
gorithms: Frederickson [12] and AHP-mTSP [22]. These two algo-
rithms are suboptimal and work for generic environments (see also
Section 2). Frederickson works by computing a TSP over the whole
environment and then splitting it intom (the number of robots)

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1182

Module A Module B Module C

Figure 2: The� oor plans of the three base modules used in experiments. Module A has a circular topology, the graph has 40
vertices, and the approximated solution of the corresponding TSP is 198 m long. Module B has a star topology, the graph has
47 vertices, and the approximated solution of the corresponding TSP is 347m long. Module C has a linear topology, the graph
has 80 vertices, and the approximated solution of the corresponding TSP is 438m long.

Figure 3: The� oor plan ofmoduleA overlaid with the graph
extracted from it. Vertices are in red and edges in blue.

tours. AHP-mTSP starts from a random partition of the vertices of
the graph of the environment inm groups, each one assigned to
a robot. It then applies a sequence of local operations (transfers,
swaps, and improvements) on these groups, in order to balance the
workload of the robots. To the best of our knowledge, as we dis-
cussed in Section 2, no algorithm speci�cally designed for modular
environments is available in the literature.

Our algorithm and the Frederickson algorithm are implemented
in Python4. For AHP-mTSP we use the original code, kindly pro-
vided by the authors of [22], also written in Python and using
the external Concorde solver [9]. For both Frederickson and our
algorithm, we use the Christo�des algorithm [8] to compute ap-
proximated solutions to TSPs. All computations are performed on
an AWS EC2 t2.large (2.3 GHz, 8 GB memory) instance with Ubuntu
16.04 AMI.

We consider environments built from a dataset of real envi-
ronments, representing� oors of schools5. Speci�cally, we build

4Code available at https://github.com/mirkosalaris/CoverageModularEnvironments.
5The dataset is obtained from a collection of blueprints and has been used in [15]. The
authors of [15] kindly provided the dataset.

modular environments by repeating some base modules that rep-
resent three� oors of real environments with di�erent topologies
and sizes (Figure 2). The graphs representing the base modules are
built by manually extracting two types of vertices from the� oor
plans of the three real environments: centroids, that correspond
to the geometrical centroids of individual rooms, and portals, that
correspond to doors and passages connecting rooms. The centroid
and the portals relative to the same room are connected by edges
using Euclidean distance as metric t . Portals relative to the same
room are connected to each other by edges using the L1 norm as
metric t . In this way, the graphs that represent the base modules
re�ect the structure and the shape of real environments, also in the
case of non-convex rooms. The scale of the base modules, when not
explicitly indicated, is estimated from the� oor plans considering
that doors are 80 cm wide. The metric t is thus calculated assuming
that robots move at constant speed (since it represents a time). Fig-
ure 3 displays the graph extracted from module A overlapped to the
�oor plan of the real environment. For each module i , the doorway
di is selected randomly among the centroids of the module.

Before analyzing our algorithm and comparing it with the two
state-of-the-art algorithms on complex modular environments, we
consider a simple environment where all modules are identical.

6.1 Environments with Identical Modules
In this section, we consider modular environments composed of
identical modules, like a tall building with identical� oors. The
repeated base module is module B, but results are similar for other
base modules of Figure 2. We report the makespan of the solutions
found by our algorithm, the number of modules allocated to each
robot, and the computing time, according to the number of modules
n, the number of robots m, and the distance between doorways
of di�erent modules t(di ,di+1). When not varying, we consider
n = 30 (or n = 40),m = 10, and t(di ,di+1) = 20 for any i . Results
are shown in Figure 4.

The computing times behave as expected wrt the number of
modules n (Figure 4a) and the number of robotsm (Figure 4b), and,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1183

(a) (b) (c)

Figure 4: Makespan (top row), robots-modules allocation (middle row), and computing time (bottom row) wrt varying the
number of modules n (a), the number of robotsm (b), and of the distance between doorways t(di ,di+1) (c). The makespan plots
show the makespan (max length), the average length of tours over the robots, and the corresponding standard deviation. The
robots-modules allocation plots have one color for each robot and show which modules are covered by which robots. The
computing time plots show the average computing time (in s), calculated over 50 samples, and its standard deviation.

as our algorithm abstracts from the values of the distances, they are
rather independent of the distances between doorways (Figure 4c).
From the makespan plots, the standard deviation of the tour lengths
over the robots is small for all the cases (notice that the scale of
the standard deviation is much smaller than the scale of the tour
length), showing that our algorithm performs a balanced division
of e�ort over all the robots. This is con�rmed by observing that the
makespan (max length) and the average length of tours are very
close to each other, as expected when minimizing the makespan.

Figure 4b shows that the advantage of using one further robot
decreases when the total number of robots is already large. In this
speci�c example with n = 30, when m > 18, only 18 robots are
actually used because using more robots would not yield a better
makespan. Indeed, in any environment, the minimum makespan
achievable is given by the time it takes for one robot to reach the last
module, cover it, and return to the depot. Whenever this makespan
is reached, there are no advantages in using more robots.

From Figure 4c, we observe that when the distance between
doorways is set to 0, the standard deviation of the tour lengths is
zero. This is due to the fact that the number of modules is a multiple
of the number of robots and that, in this case, all the modules are
virtually connected to the depot d1 because their doorways can be
reached at no cost. In the robots-modules allocation plot, we notice

that, as the distance between doorways increases, modules near
to the depot tend to be allocated in big chunks to the same robot
and modules far from the depot tend to be allocated individually
to di�erent robots. Indeed, when increasing the e�ort to reach the
last module from the depot, the minimum achievable makespan
increases. This implies that robots that cover modules close to the
depot have more time to cover multiple modules.

6.2 Complex Modular Environments
In this section, we compare our algorithm against Frederickson and
AHP-mTSP in di�erent modular environments varying the number
n of modules, the numberm of robots, and the patterns in which the
three base modules A, B, and C are organized. We consider three
di�erent patterns:

• in environments of type ‘random’ modules are chosen ran-
domly with a uniform probability (so that each base module
is selected approximately 1/3 of times with large n),

• in environments of type ‘decreasing’ the�rst n/3 modules
are of type C, then there are n/3 modules of type B, and the
rest of the modules are of type A,

• environments of type ‘increasing’ have the same structure
but reversed, starting from modules of type A and ending
with modules of type C.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1184

(a) Makespan comparison (b) Computing time comparison (c) Computing time vs Makespan

Figure 5: Comparison of our algorithm, Frederickson, andAHP-mTSP. (a) compares themakespan of the three algorithms over
instances that di�er in the number of modules n and the number of robotsm. (b) shows a comparison of the computing time
needed by the three algorithms. Note that the scale is logarithmic. These computing time values are single data points and not
averages: the values are orders of magnitude di�erent and noise does not a�ect the comparison. The agnostic version of our
algorithm yields the same solutions as the base version, but it requires more time because it computes the TSP approximation
of every module. (c) o�ers another perspective into the comparison of the three algorithms, showing all the data for the three
patterns and form = {5, 10, 20},�xing n = 30. Data points close to the origin are the best. Missing data points for Frederickson
and AHP-mTSP are due to memory or timeout limitations.

In ‘decreasing’ and ‘increasing’ environments, what is decreasing
and increasing is the size of the modules as the indexes of the
modules grow. We created a total of 27 di�erent environments
generated by combining the three patterns, three values for the
number of modules, n = {30, 60, 120}, and three values for the
number of robots,m = {5, 10, 20}. We� xed the distance between
doorways to 20 meters for all the environments, both because the
impact of this distance has already been analyzed in Section 6.1 and
because we have not observed anything relevant in changing it.

We set a timeout of 1 hour for solving each instance. All in-
stances have been solved by our algorithm. Frederickson exceeds
the available RAM for all the environments with n = 120 modules.
Finally, AHP-mTSP exceeds the timeout for instances with n = 60
and n = 120 and for instances with n = 30 andm = 20.

Figure 5a and Figure 5b show the experimental results for the
9 environments of type ‘random’. Results for the environments of
types ‘decreasing’ and ‘increasing’ are similar, also quantitatively
(for given n and m, the variations in the value of the makespan
in the order of 10%) and are not reported here. Our algorithm
consistently computes solutions with a makespan that is half of
the makespan of the solutions returned by Frederickson. AHP-
mTSP, for the instances in which it terminates within the timeout,
provides solutions with comparable makespan wrt to our algorithm.
However, when looking at the computing times, AHP-mTSP is
orders of magnitude slower than our algorithm.

To show that our algorithm exploits the particular structure of
modular environments and calculates integer solutions in a short
computing time, we present the computing times for the base ver-
sion, which takes advantage of knowing that the three base modules
are repeated and computes the TSP approximation for the three
base modules just once, and for the agnostic version, which blindly
computes the TSP approximation for every module in the environ-
ment. The agnostic version of the algorithm is slightly slower than
the base version, as expected, but still much faster than Frederick-
son and AHP-mTSP (Figure 5b). In Figure 5c we compare the overall

performance of the three algorithms, in terms of the goodness of
the solution found by the algorithms and the time required for
the computation. Our algorithm, in both the base and the agnostic
version, is the only one that generates solutions with both low
makespan and low computing time (see the data points close to the
origin).

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have studied the multi-Traveling Salesperson
Problem (mTSP) in modular environments, providing an e�cient
approximation algorithm that partitions the modules and assigns
each group of adjacent modules to a di�erent robot, obtaining a
solution whose cost is within a� xed bound from the cost of an
optimal solution. Experiments show that our approach e�ectively
solves mTSP instances in large modular environments, outper-
forming state-of-the-art algorithms designed for mTSPs in generic
environments.

Future work will extend the results of this paper to modular en-
vironments that are not linear, for example, those in which modules
are arranged in trees, circles, or grids. Also, in environments with
identical modules, the problem input can be exponentially com-
pressed, implying that any algorithm running in poly(n) (included
ours) is actually pseudo-polynomial in the problem instance size.
This problem variant would deserve further investigation. Another
extension will consider the presence of multiple doorways for each
module, like in the case of a multi-�oor building in which� oors are
connected to each other by di�erent staircases and elevators. More-
over, the study of approximation algorithms that go beyond the
idea of integer solutions could be addressed. Finally, steps towards
the practical implementation of the proposed algorithm in robot
platforms employed in real-world applications will be undertaken.

REFERENCES
[1] M. Anderberg. 1973. Cluster analysis for applications. Academic Press.
[2] I. Averbakh and O. Berman. 1997. (p � 1)(p + 1)-approximate algorithms for

p-traveling salesmen problems on a tree with minmax objective. Discrete Applied

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1185

Mathematics 75, 3 (1997), 201–216.
[3] A. Barrientos, J. Colorado, J. Del Cerro, A. Martinez, C. Rossi, D. Sanz, and J.

Valente. 2011. Aerial remote sensing in agriculture: A practical approach to
area coverage and path planning for� eets of mini aerial robots. Journal of Field
Robotics 28, 5 (2011), 667–689.

[4] T. Bektas. 2006. The multiple traveling salesman problem: an overview of formu-
lations and solution procedures. Omega 34, 3 (2006), 209–219.

[5] M. Bellmore and S. Hong. 1974. Transformation of multisalesman problem to the
standard traveling salesman problem. Journal of the ACM 21, 3 (1974), 500–504.

[6] N. Chandran, T. Narendran, and K. Ganesh. 2006. A clustering approach to solve
the multiple travelling salesmen problem. International Journal of Industrial and
Systems Engineering 1, 3 (2006), 372–387.

[7] H. Choset. 2001. Coverage for robotics–A survey of recent results. Annals of
Mathematics and Arti�cial Intelligence 31, 1-4 (2001), 113–126.

[8] N. Christo�des. 1976. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa Man-
agement Sciences Research Group.

[9] W. Cook. 2016. Concorde TSP Solver. (2016). http://www.math.uwaterloo.ca/tsp/
concorde.html

[10] N. Correll and A. Martinoli. 2009. Multirobot inspection of industrial machinery.
IEEE Robotics Automation Magazine 16, 1 (2009), 103–112.

[11] S. Eilon, C. Watson-Gandy, N. Christo�des, and R. de Neufville. 1974. Distribution
Management-Mathematical Modelling and Practical Analysis. IEEE Transactions
on Systems, Man, and Cybernetics SMC-4, 6 (1974), 589–589.

[12] G. Frederickson, M. Hecht, and C. Kim. 1976. Approximation Algorithms for Some
Routing Problems. In Proceedings of the 17th Annual Symposium on Foundations
of Computer Science. 216–227.

[13] E. Galceran and M. Carreras. 2013. A survey on coverage path planning for
robotics. Robotics and Autonomous Systems 61, 12 (2013), 1258–1276.

[14] M. Latah. 2016. Solving Multiple TSP Problem by K-Means and Crossover based
Modi�ed ACO Algorithm. International Journal of Engineering Research and

Technology 5 (2016), 430–434.
[15] M. Luperto and F. Amigoni. 2019. Predicting the global structure of indoor

environments: A constructive machine learning approach. Autonomous Robots
43, 4 (2019), 813–835.

[16] W. Malik, S. Rathinam, and S. Darbha. 2007. An approximation algorithm for
a symmetric generalized multiple depot, multiple travelling salesman problem.
Operations Research Letters 35, 6 (2007), 747–753.

[17] R. Nallusamy, K. Duraiswamy, R. Dhanalaksmi, and P. Parthiban. 2010. Opti-
mization of Non-Linear Multiple Traveling Salesman Problem Using K-Means
Clustering, Shrink Wrap Algorithm and Meta-Heuristics. International Journal
of Nonlinear Science 9, 2 (2010), 171–177.

[18] A. Nikitenko, J. Grundspenkis, A. Liekna, M. Ekmanis, G. Kulikovskis, and I. An-
dersone. 2014. Multi-robot System for Vacuum Cleaning Domain. In Proceedings
of the International Conference on Practical Applications of Agents and Multi-Agent
Systems. 363–366.

[19] C. Okonjo-Adigwe. 1988. An e�ective method of balancing the workload amongst
salesmen. Omega 16, 2 (1988), 159 – 163.

[20] D. Portugal and R.. Rocha. 2013. Multi-robot patrolling algorithms: examining
performance and scalability. Advanced Robotics 27, 5 (2013), 325–336.

[21] J. Svestka and V. Huckfeldt. 1973. Computational experience with an m-salesman
traveling salesman algorithm. Management Science 19, 7 (1973), 790–799.

[22] I. Vandermeulen, R. Groß, and A. Kolling. 2019. Balanced Task Allocation by
Partitioning the Multiple Traveling Salesperson Problem. In Proceedings of the
International Conference on Autonomous Agents and MultiAgent Systems. 1479–
1487.

[23] M. Yu, V. Nagarajan, and S. Shen. 2017. Minimum Makespan Vehicle Routing
Problem with Compatibility Constraints. In Integration of AI and OR Techniques in
Constraint Programming, D. Salvagnin andM. Lombardi (Eds.). Springer, 244–253.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1186

