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ABSTRACT
Information gathering in a partially observable environment can

be formulated as a reinforcement learning (RL), problem where the

reward depends on the agent’s uncertainty. For example, the reward

can be the negative entropy of the agent’s belief over an unknown

(or hidden) variable. Typically, the rewards of an RL agent are de-

fined as a function of the state-action pairs and not as a function of

the belief of the agent; this hinders the direct application of deep RL

methods for such tasks. This paper tackles the challenge of using

belief-based rewards for a deep RL agent, by offering a simple in-

sight that maximizing any convex function of the belief of the agent

can be approximated by instead maximizing a prediction reward: a

reward based on prediction accuracy. In particular, we derive the

exact error between negative entropy and the expected prediction

reward. This insight provides theoretical motivation for several

fields using prediction rewards—namely visual attention, question

answering systems, and intrinsic motivation—and highlights their

connection to the usually distinct fields of active perception, active

sensing, and sensor placement. Based on this insight we present

deep anticipatory networks (DANs), which enables an agent to

take actions to reduce its uncertainty without performing explicit

belief inference. We present two applications of DANs: building

a sensor selection system for tracking people in a shopping mall

and learning discrete models of attention on fashion MNIST and

MNIST digit classification.
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1 INTRODUCTION
To act intelligently, an agent must be able to reason about its uncer-

tainty over certain variables in its environment. Active perception
[4, 5] is the ability of an agent to reason about its uncertainty and

take actions to reduce it. The aim of the agent is to take actions, to
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collect observations, that help it predict the value of an unknown
1

variable, say y at each time step t . For example, consider the sen-

sor selection task [19, 41], where an agent has access to a set of

available sensors to infer the unknown position of a person in a

shopping mall (y). At each time step t , due to resource constraints,

the agent must select a subset of the sensors from which to collect

the observations. Another example is the visual attention task [33],

where an agent must sequentially attend to parts of an image to

determine if an object is present (y = 1 or 0).

The problem of taking informative actions—or selecting informa-

tive observations—to minimize (future) uncertainty can be formu-

lated as a reinforcement learning problem. The agent takes actions

and receives rewards for reducing uncertainty. The key question is

how to compute such rewards. The most straightforward approach

is as follows. At each time step, the agent maintains a probability dis-

tribution over the unknown variable y. The agent takes actions at

to collect observations (denoted by z) about this unknown variable.

The agent can then update its probability distribution over the un-

known variable pt+1(y) = Pr(y |z1, z2, . . . , zt+1,a0,a1, . . . ,at ). The
reward corresponds to expected reduction in uncertainty, after tak-

ing an action. A common definition for reduction in uncertainty is

the expected information gain [29]: E
Pr(zt+1 |pt ,a)[H (pt ) −H (pt+1)],

where H (pt ) = −
∑
y∈Y (p

t (y) log(pt (y)) is the entropy of the the

probability distribution pt . The expectation is over the possible

observations zt+1 if the agent takes action a.
Unfortunately, computing these rewards can be prohibitively

expensive. Given a model of the world—the conditional probability

distributions Pr(zt+1 |y0:t+1,a0:t ) and Pr(yt+1 |y0:t ,a0:t )—the agent
can perform explicit belief inference to exactly compute the infor-

mation gain of taking an action and so compute the action that

maximizes it [29, 41]. Such models must be either manually speci-

fied, or learned if a dataset is available, which requires substantial

expert knowledge and significant human effort. Even when a model

of the world is available, performing explicit belief inference can

be expensive or even intractable. In such cases, approximate be-

lief inference methods such as particle filters [13] or variational

approximation [20] must be used to compute the information gain.

In this paper we present a simple model-free reinforcement learn-

ing approach that allows an agent to take actions that maximize

its information gain without performing explicit belief inference.

We start by presenting a simple insight that shows that any convex

1
We use the term unknown variable instead of hidden variable, because we assume that

we have access to this unknown variable during training, as is standard in supervised

learning. A hidden variable, on the other hand, is never available.
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function of the belief of an agent (about an unknown variable) can

be approximated simply by using prediction rewards, for example,

+1 for a correct prediction and 0 for an incorrect prediction. Given

an arbitrary prediction reward, we establish the exact error bounds

the agent would incur for acting greedily with respect to the given

prediction reward in comparison to actions that maximize the infor-

mation gain of the agent. We show that in principle the prediction

rewards can be designed to optimize this error.

The practice of providing an agent with prediction rewards is

common in sub-fields such as visual attention [33], question answer-

ing systems [37] and intrinsic motivation [40]; this work provides

theoretical motivation for these strategies and further generalizes

the types of rewards and prediction problems that can be consid-

ered. Furthermore, the framework put forth unifies disparate areas

that are in fact working on similar approaches, namely the fields

already using prediction rewards and fields where it is common to

maximize information gain, including active perception [41], active

sensing [30] and sensor placement [29].

We use the our theoretical result to develop deep anticipatory
networks (DANs) as a principled framework to leverage the power of

deep RL to minimize uncertainty without performing explicit belief

inference. A DAN consists of two neural networks: a Q network

that selects sensory actions and a model, M network that predicts

the state of the world based on the observations generated by

those sensory actions. The main idea behind DAN is to train the

Q network and M network simultaneously: the Q network learns

a Q-function that estimates how much each sensory action would

help theM network to predict the current state. Given some ground

truth data, theM network learns to predict the current state in a

supervised way, given the observations generated by the sensory

actions that were selected according to the Q-network.
Finally, we empirically test our algorithm in two settings: sen-

sor selection and attention. We build a sensor selection system for

tracking people that scales to a large number of people. Using DAN

we learn a policy for sensor selection and we show its performance

on test data (when deployed) in comparison to other baselines that

reward the agent using a heuristic that is based on the coverage of

the sensor. We also apply DAN to a visual attention task where an

agent must predict an MNIST class given only a partial observa-

tion of it. Our experiments on the MNIST [32] and fashion MNIST

[51] datasets show that formulating the visual attention tasks as

a continual problem where the agent is rewarded throughout the

episode is superior to the terminal reward formulation common in

the literature.

2 PROBLEM SETTING
We model the world as a partially observable Markov decision

process (POMDP) [24] with finite state, action and observation

space. At each time step t , the environment is in hidden state s ∈ S,

the agent takes an action a ∈ A and the environment transitions to

a new state s ′ ∈ S. Additionally, the agent receives an observation

z ∈ Ω that is correlated with a target variabley ∈ Y = {1, 2, . . . ,ny }
that is a function of s , y = I (s).

The aim of the agent is to predict the target correctly on each

step. At each time step, the agent maintains a probability distribu-

tion over y given the previous actions and observations,

Pr(y |zt , zt−1 . . . z1,at−1,at−2 . . . a0). After taking action at and re-
ceiving observation zt+1, the agent can update the probability dis-

tribution Pr(y |zt+1, zt , . . . , z1,at ,at−1, . . . a0) using the Bayes rule.
This has been formalized as a ρPOMDP [2] where the reward is

defined as the negative entropy of the probability distribution over

y. This formulation, however, requires access to the true probability

distributions of the POMDP. Instead, we only assume access to a

labelled dataset for training, where for a sequence of observations

we are given the corresponding targets. For a sensor selection task,

such a dataset can be obtained by investing a one-time effort to

collect and label sets of observations, without inferring or knowing

anything about hidden states or the underlying probabilities.

3 A CONNECTION BETWEEN INFORMATION
GAIN AND PREDICTION REWARDS

In this section we provide a bound between the negative entropy

and prediction rewards, which correspond to rewarding the agent

for correct predictions of the target variable. In particular, we show

that prediction rewards provide a set of tangents that form a lower-

bound to the negative entropy. We discuss at the end of the section

how this implies that maximizing expected prediction rewards—as

is done by a reinforcement learning agent—provides an effective

proxy to maximizing expected information gain. We first provide

an informal theorem statement, and then introduce the required

notation to prove the main results.

Let b = (b1,b2, . . .bny ) denote a probability vector in an ny
dimensional vector space such that

∑
i ∈{1,2, ...ny } bi = 1 (Y =

{1, 2, . . . ,ny }), and let H (b) be the Shannon entropy defined by

H (b) = −
∑
i ∈Y bi logbi . The vector b corresponds to the agents

prediction about the what target variable is most probable, given

the history of observations. The goal of the agent is to select actions

to maximize information gain, and so decrease the entropy of the

probabilities b: maximize the negative entropy. We can instead

consider maximizing an expected 0-1 prediction reward for the

most probable class, maxi bi .

Informal Theorem Statement: The difference between the nega-

tive entropy −H (b) and the expected 0-1 prediction rewardmaxi bi
(shifted by the a constant that is the same on every step) is upper

bounded by −1 + log(e + ny − 1).

3.1 Main Theoretical Result
Let ρ(b) be any convex function of the probabilities b, such as

ρ(b) = −H (b). The equation of a tangent plane to ρ is given by:

⟨b,▽ρ(b0)⟩+cb0 , where cb0 is a constant and ▽ρ(b0) is the gradient
of ρ. Though generically complex to compute, cb0 can be computed

analytically for certain functions, using Fenchel conjugates (see

Boyd and Vandenberghe [9] for a comprehensive introduction).

Here, we describe the two most relevant properties for this paper:

Property 1: If ρ(b) is convex, closed and differentiable, then cb0
is the negative of the Fenchel conjugate of ρ(b) at ▽ρ(b0), that is,
cb0 = −ρ∗(▽ρ(b0)), where ρ∗ denotes Fenchel conjugate of ρ [6, 9].

Property 2: The Fenchel conjugate of the negative entropy is

the log-sum-exp function, log(
∑
i e

xi ) [9, Page 93].

Property 1 and 2 give that for ρ(b) = −H (b), the constant term
is cb0 = − log(

∑n
i=1 e

▽ρ(b0)i ), where ▽ρ(b0)i denotes the ith entry

in the vector ▽ρ(b0). Now, let ŷ ∈ Y = {1, 2, 3 . . . ,ny } denote a
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Table 1: Summary of notation

ŷ a random variable that denotes a prediction

ht
the action (a)-observation(z) history

ht = ⟨a0, z1,a1, . . . ,at−1, zt ⟩ .

b denotes a probability vector

ρ(b) a convex and differentiable function of b

ρ∗(b) the Fenchel conjugate of ρ(b)

▽ρ(b) the gradient of ρ(b)

▽ρ(b)i the ith entry in the vector ▽ρ(b)

R(y, ŷ) the prediction reward function

rj
a reward vector, each entry ri of rj is the

scalar reward agent gets for ŷ = j when true y = i .

log natural logarithm

prediction that is input to a reward function R(y, ŷ), which gives

a scalar value ri, j for each combination of i, j ∈ Y . Let R(y, ŷ = j),
the reward vector associated with predicting y as j using ŷ be

denoted by the vector rj . That is, each entry ri in rj is the reward
for predicting ŷ as j when the true value ofy is i . Given a probability
vector b, the expected reward for assigning ŷ = j is

ρ ′(b, ŷ = j) = ⟨b, rj ⟩ =
∑
i ∈Y

biri, j , (1)

which leads to the following lemma.

Lemma 3.1. If ρ is a closed, convex and differentiable function of
b and rj is in the set of all possible values of the gradients of ρ then
ρ ′(b, j) − ρ∗(rj ) = ⟨b, rj ⟩ − ρ∗(rj ) is a tangent to the curve ρ(b) at
b0 that satisfies ▽ρ(b0) = rj for any fixed j ∈ Y .

Proof. Property 1 imply that the equation of a tangent to the

curve ρ(b) is ⟨b,▽ρ(b0)⟩ − ρ∗(▽ρ(b0)). If rj = ▽ρ(b0) then ⟨b, rj ⟩ −
ρ∗(rj ) is a tangent to the curve ρ(b). The condition that rj is in the

set of all possible values of gradients of ρ is required for ρ∗ to be

defined (and for ▽ρ(b0) = rj to have a solution). □

We can use this lemma to show that the maximum over these

tangent planes forms a lower bound on ρ(b). When ρ is the negative
entropy, this maximum over tangent planes precisely corresponds

to the expected prediction reward, shifted by a constant as shown

in Theorem 3.3.

Proposition 3.2. If ρ is a closed, convex, and differentiable func-
tion of b and rj is in the set of all possible values of the gradients of ρ
then the maximum error between ρ(b) and ρ ′(b) ≜ maxŷ∈Y (⟨b, rŷ ⟩−
ρ∗(rŷ )) is bounded and positive for b ∈ dom ρ.

Proof. Since ρ ′(b) is the maximum over a family of tangents

to a convex function ρ(b) it is guaranteed to be a lower bound to

ρ(b). Furthermore, if ρ ′(b) is defined for b ∈ dom ρ then this error

is maximal either at one of the intersection points of the tangents

or at the extreme points of the domain of b. In both cases it is finite

and positive and can be calculated exactly for given values of rj
and definition of ρ(b). □

The above proposition bounds the error between a convex func-

tion and prediction rewards using its Fenchel conjugate. The Fenchel

conjugate is known for several convex functions such as negative

entropy (see Property 2), KL-divergence, and χ2-divergence. Given
an arbitrary prediction reward, we can derive exactly how well it

approximates a given convex function, such as, negative entropy.

In the rest of this section we perform this analysis for the case

where ρ(b) is the negative belief entropy. We restrict ourselves to

the common reward functions where the agent is rewarded with r ′

for correctly predicting y and penalized with r ′′ (or not rewarded
r ′′ = 0) otherwise, with r ′ ≥ r ′′

R(y, ŷ) =

{
r ′ if y = ŷ,∀y, ŷ ∈ Y ;
r ′′ otherwise.

(2)

Using Proposition 3.2 the difference between ρ(b) and ρ ′(b) can
be quantified as:

ρ(b) − ρ ′(b) = −H (b) −max

j ∈Y
(⟨brj ⟩ − ρ∗(rj )) (3)

For the reward defined in (2), r1 is the vector (r ′, r ′′, r ′′, . . . , r ′′), r2
is the vector (r ′′, r ′, r ′′, . . . , r ′′) and so on. We start by observing

that ρ∗(rj ) is a constant term independent of j and it evaluates to:

ρ∗(r1) = ρ∗(r2) = · · · = ρ∗(rny ) = log(er
′

+ (ny − 1)er
′′

). The term

maxj ∈Y ⟨brj ⟩ can be simplified as max over the following terms

{(b1r
′ + b2r

′′ + . . .bny r
′′), (b1r

′′ + b2r
′ + . . .bny r

′′), . . . , (b1r
′′ +

b2r
′′ + . . .bny r

′)}. Since b1 + b2 + . . .bny = 1 and since r ′ > r ′′,
the maximum over these aforementioned terms is simply equal to:

maxj ∈Y ⟨b, rj ⟩ = r ′maxi ∈Y bi + r
′′(1 −maxi ∈Y bi ).

Using above simplifications ρ ′ can be written as:

ρ ′(b) = (r ′ − r ′′)max

i ∈Y
bi + r

′′ − log(er
′

+ (ny − 1)er
′′

), (4)

and the difference between ρ(b) − ρ ′(b) can be characterized as:

ρ(b)−ρ ′(b) =−H (b)−(r ′−r ′′)max

i ∈Y
bi−r

′′+log(er
′

+(ny−1)e
r ′′). (5)

This equation provides the exact error from using the tangents,

rather than the negative entropy, and can be queried for a specific b
to provide insights into the level of approximation.We can, however,

also bound this difference for all b, as given in the next theorem.

Theorem 3.3. Letm = r ′ − r ′′ and let2 1 ≤ m ≤ ny . For every
b ∈ [0, 1]ny s.t.

∑
i ∈Y bi = 1,

ρ(b) − ρ ′(b) ≤ max{ϵ1, ϵ2} + −r
′′ + log(er

′

+ (ny − 1)er
′′

)

where ϵ1 = log

(
1

r ′−r ′′
)
− 1, and ϵ2 = log

(
1

ny

)
−
(r ′ − r ′′)

ny
.

Proof. Starting from (5),

ρ(b)−ρ ′(b) =−H (b)−(r ′−r ′′)maxi ∈Y bi −r
′′+log(er

′

+(ny−1)e
r ′′).

Wlog, let b1 = maxi ∈Y bi , then

ρ(b) − ρ ′(b) =−H (b) − (r ′ − r ′′)b1 − r ′′+ log(er
′

+ (ny − 1)er
′′

). (6)

For a fixed maximal element b1, the optimal choice to maximize

−H (b) is to concentrate the remaining probability mass on as few

elements as possible subject to constraints that bi ≤ b1 for i , 1 and

i ∈ Y . This means setting b2 = 1−b1 if b1 > 0.5. Of course, b1 might

be less than 0.5. In general, for some k ≥ 1, we set b
1:k = b1 and

2
We can get bounds form < 1 andm > ny , but this introduces more cases and

reduces the clarity of the result. We focus the result for the most commonm.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1217



then bk+1 = 1 − kb1 for the remaining probability. The resulting

−H (b) = kb1 log(b1) + (1 − kb1) log(1 − kb1) upper bounds the
negative entropy for any distribution with max element b1.

Form � r ′ − r ′′ ≥ 0, define

д(b1) � kb1 log(b1) + (1 − kb1) log(1 − kb1) −mb1

where ny ≥ k ≥ 1 and b1 ∈ [ 1

ny ,
1

k ]. Finding b1 that is maximal for

д will will be the same b1 that is maximal for the rhs of (6) and so

give an upper bound on ρ(b) − ρ(b′). Therefore, we only need to

find an upper bound on д(b1) to prove the theorem. First, we know

that д(b1) is a convex function for b1 where
1

ny ≤ b1 ≤ 1

k because

д′(b1) = k + k log(b1) − k log(1 − kb1) − k −m

= k log(b1) − k log(1 − kb1) −m,

and

д′′(b1) =
k

b1
−

k

1 − kb1
(−k)

=
k

b1
+

k2

1 − kb1
> 0

Therefore д(b1) is maximal at the endpoints b1 =
1

ny or at b1 =
1

k ,

where ny ≥ k ≥ 1.

If b1 =
1

k (b1 →
1

k to be more precise), then

д
(
b1 =

1

k

)
= log

(
1

k

)
+ 0 −

m

k

We can again reason about this function, and find the k that makes

this maximal and so provides an upper bound on д. Let f (k) �

log

(
1

k

)
− m

k . f
′(k) = − 1

k +
m
k2
= 0 gives k = m. Further, for

1 ≤ m ≤ ny , we know this function is concave for the region

0 ≤ k ≤ 2m because f ′′(k) = 1

k2
− 2m

k3
< 0 if k ≤ 2m. Since this

stationary point k = m is in this concave region, we know it is a

local maxima. Further, for k > 2m, the function becomes convex,

but only decreases because there is no stationary points other than

k =m. Therefore, for this case, the maximal д is

ϵ1 = log

(
1

m

)
− 1.

If b1 =
1

ny , then

ϵ2 = д
(
b1 =

1

ny

)
= log

(
1

ny

)
−

m

ny
.

Putting it all together, since we foundmax(ϵ1, ϵ2) as an upper bound
on д(b1) for all b1, we get that

ρ(b) − ρ ′(b) = д(b1) − r ′′ + log(er
′

+ (ny − 1)er
′′

)

≤ max(ϵ1, ϵ2) − r ′′ + log(er
′

+ (ny − 1)er
′′

).

□

Corollary 3.4 (0-1 Prediction Rewards). If r ′ = 1 and r ′′ = 0,
then for every b ∈ [0, 1]ny s.t.

∑
i ∈Y bi = 1,

ρ(b) − ρ ′(b) ≤ −1 + log(e + ny − 1).

Proof. Direct application of Theorem 3.3. Substituting m =
r ′ − r ′′ = 1 − 0 = 1, we get ϵ1 = −1 and ϵ2 = log( 1

ny ) −
1

ny . Since

Since −1 ≥ log( 1

ny ) −
1

ny for ny ≥ 1, and substituting r ′ = 1 and

r ′′ = 0, we get ρ(b) − ρ ′(b) ≤ −1 + log(e + ny − 1). □

Multiple tangent for
multiple reward
functions

Negative entropy

Figure 1: Approximation induced by prediction rewards to a
translated negative entropy curve.

3.2 Consequences of the Theory
Computing the optimal action The previous results showed that

ρ ′(b) = maxj ∈Y ⟨b, rj ⟩ − ρ∗(rj ) is an approximation to ρ(b) if ρ is

convex. Fortunately, to compute the action a∗,t that maximizes the

information gain of the agent we do not need to compute ρ∗(rj )
as it is independent of the actions and is a constant for a fixed

j = argmaxj ∈S ⟨b, rj ⟩ − ρ∗(rj ) equal to log(er
′

+ (ny − 1)er
′′

)

(for reward defined in (2)). The agent can approximate a∗,t =
argmaxa∈A E[H (pt ) −H (pt+1)] (here pt+1 depends on a) by pick-

ing actions thatmaximizeE
Pr(zt+1 |pt ,a)[maxŷ∈Y

∑
y p

t+1(y)R(y, ŷ)]
or an sample estimate of it. This sample estimate can be computed

without maintaining an explicit distribution pt but instead by train-
ing an agent to make correct predictions based on history of action

and observations. In the next section we do exactly that.

Reducing the error to zero: The error between prediction re-

ward and information gain can be further reduced by giving the

agent the choice of selecting from one of many prediction variables,

each of which defines a separate prediction reward as shown in

Figure 1. To do so we define multiple prediction reward Rl (y, ŷl ),
each of which takes as input a separate prediction variable ŷ. Fur-

thermore, define ρ ′(b) = max{l, j }∈{M×Y }(⟨b, rlj ⟩ − ρ∗(rlj )), where
M is the set of all values l can take (4 in this case). Each of these

reward functions projects a tangent (or tangent hyperplane) to the

original ρ, in this case the entropy, with ŷ4 (corresponding to the

blue tangent line parallel to x-axis) being unique in that it rewards

the agent equally for correct or incorrect predictions. In this way,

ŷ4 offers the agent an the option to abstain, which is optimal when

it is most uncertain (bottommost point of the negative entropy

curve). As more and more tangents are defined using new predic-

tion variables, the upper surface of the tangents can approximate

the original ρ more and more closely.

3.3 Connection to Existing Literature
An important consequence of this section is that it ties the problem

of maximizing information gain [29, 38, 41, 52] to many recent

deep RL approaches, that are based on making a correct predictions

at the end of an episode [21, 33, 36, 37, 39]. For example, both
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visual attention approaches [17, 33, 36] and question answering

systems [37] train deep RL agents on a 0-1 prediction reward for

classifying an image and answering a query correctly respectively.

Visual attention, question answering systems, intrinsic motivation,

active perception, sensor placement, and active sensing are separate

sub-fields of artificial intelligence, that do not necessarily refer to

each other very often, however, our results show that they are in

fact solving the same problem (or a close approximation of it).

Our theoretical results are related to ρPOMDPs [2] and POMDP-

IR [44] and their equivalence as established in [41]. This works

shows that given a ρPOMDP—which has a reward function defined

by a set of vectors that approximate a convex curve—it is possi-

ble to design an equivalent POMDP-IR with a prediction reward.

However, they do not give any direction as to how to compute the

vectors that closely approximate the convex curve. We circumvent

the procedure of computing these vectors by using the theory of

Fenchel conjugates that gives us direct and analytical expressions

for computing the tangent hyperplanes to a convex curve. Conse-

quently, we are able to derive the exact error bound caused by a

prediction reward, for example, a 0-1 prediction reward.

4 DEEP ANTICIPATORY NETWORKS
The insights in the previous section motivate that we no longer

need an explicit belief to evaluate the information gain of an action,

and can instead employ existing deep RL algorithms such as deep

Q-learning to learn a policy that maximizes prediction rewards.

In this section we introduce deep anticipatory networks (DANs),
an algorithm that enables an agent to take actions that help it

predict the current and future values of y accurately. DAN consists

of two different networks: a Q network and a model M network.

The Q network takes as input the action-observation history ht =
⟨a0, z1,a1, . . . ,at−1, zt ⟩ of the agent and outputs the Q-values of
all available actions. The agent takes an action at (t denoting the
current time step) that maximizes the Q-values and receives an

observation zt+1 that is correlated with the unknown variable y at

time step t + 1. This new action-observation pair is added to the

history and fed into the M network.

The M network takes as input the agent’s action-observation

history and predicts the value of the unknown variable. The M
network is trained in a supervised fashion using the agent’s dataset

of action-observation histories labelled with the corresponding true

Y. If theM network predicts the state of the world correctly, then

the Q network is rewarded +1 and otherwise 0. In other words, the

Q network is rewarded for learning aQ-function that takes actions

that help the model to predict the state from partial observations.

Figure 2 illustrates an abstract DAN.

To train DAN, both theQ and theM networks are trained simulta-

neously on small mini-batches of data. Since one of the components

in DAN is DQN, we additionally borrow the techniques used to

train DQNs to train DAN. Specifically, each history-action pair that

the agent encounters is stored in an experience buffer to be sampled

later to train both the Q and the M networks. We maintain two

separate target networks for Q andM networks to get stable target

values when updating the Q network.

Q agent is rewarded if M agent 
predicts the unknown variable correctly.

Figure 2: An abstract model of DAN that consists of a Q net-
work and an M network. The Q network controls the input
to theM network and theM network controls the reward the
Q network gets.

In each iteration, for each episode, the agent follows the policy

that is greedy with respect to theQ-values of theQ network. The ac-

cumulated experience is added to the experience buffer in the form

of the tuple ⟨ht ,at , r t+1,ht+1,yt+1⟩ that is later used to train theQ
network. The observations zt+1 and the trueyt+1 are obtained from
the dataset while the reward r t+1 is obtained from the target M
network. At each time step, the agent samples random experience

tuples from the experience buffer and updates θQ using a Q-learning

update, with a target network. Once θQ is updated, θM is updated by

gradient descent with a cross-entropy loss: θM = θM+α∇θLM(θM),

where LM(θM) = cross-entropy(M(ht |θM),y).
The idea of learning sensory actions (Q) and a predictive model

(M) simultaneously have appeared in earlier literature, with [33] the

closest of all architectures. Similar architecture are presented in [3,

17, 36]. The specific architectures in [33], [17], [3] and [36] differ, but

they share a common idea: to train the neural network architecture

with policy gradient methods on a single unified objective, for

example, using REINFORCE [50] or proximal policy optimization

[42]. We chose to use DQN, particularly because it facilitates the use

of factorization of the state-space and because we use knowledge

of the exact action-values for the sensor selection system.

Otherwise, this choice is not critically different: either policy

gradient methods or Q-learning methods can be used to solve this

problem. A more interesting distinction is in the fact that the DAN

architecture makes the it clear how general RL problem definitions

can be used. It is common to model the problem of classification as

a terminal-reward problem where the agent is rewarded only at the

end of the episode (after a fixed number of steps). This is applicable

when y is not changing with time. We explicitly formulate this

problem as a continual problemwhere the agent is rewarded at each

time step if it correctly prediction the unknown variable y. Such
a formulation is critical when y changes with time, for example,

in the sensor selection problem. But even in cases when y does

not change with time, our experiments suggests that providing

feedback on every step leads to faster learning. This has important
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implications for training visual attention and question answering

systems.

5 EXPERIMENTS
In this section we present two different applications of DAN: sensor

selection for tracking people in a shopping mall and discrete visual

attention for classifying MNIST digits. Code for our experiments is

available online.
3

We apply DAN to build a sensor selection system that we demon-

strate can scale to arbitrarily large spaces. We use DAN to learn a

sensor selection policy to track people in a shopping mall. The prob-

lem was extracted from a real-world dataset collected in a shopping

mall [8]. The dataset was gathered over 4 hours using 13 CCTV

cameras. Each person’s position is represented by x-y coordinates,

where both x and y take values in the set {1, 2, . . . 50} resulting

in a total of 50 × 50 cells. At each time step, the agent selects one

camera out of 10 to get an observation about the location of the

person in the image. Each camera covers a subset of 50×50 cells and

provides a noisy observation regarding the position of the person.

If the person is not present in the image then a null observation is

received. This observation along with the selected camera is passed

to theM network that predicts which of the 50 × 50(= 2500) cells

the person occupies.

5.1 Sensor Selection
The number of states of the world increases rapidly with the num-

ber of people in the scene. To address this, we assume that the

movement of a person in the x-direction is independent of his/her

movement in the y-direction and vice-versa. We train two separate

DAN architectures, DAN-x and DAN-y for separately predicting

the x and y coordinates of the position of a person. Furthermore,

we assume that the movement of people present in the scene is

independent of each other. These approximations let us build a

sensor selection system that can scale to larger spaces and numbers

of people.

For sensor selection, both the Q and M networks share an iden-

tical architecture: three fully connected layers of output size 60, 30,

and 128, followed by a recurrent layer of output size 128, and a final

fully connected output layer of size 10 (the number of cameras)

and 51 (the number of possible cells + null observation). Strictly

speaking, here we are using deep recurrent Q network (DRQN)[18]

in the DAN architecture instead of DQN. We use ReLU activation

for all fully connected layers except the last, and use L2 weight

regularization (scale=0.01). We use the discount factor γ = 0.99 and

perform a double DQN [47] update to train Q network with the

Adam optimizer [27]. We also train following baselines for com-

parison. Coverage baseline — train only the Q network using the

popular state-based reward (i.e., reward the agent for selecting the

camera corresponding to the person’s current location and getting

a positive observation) without theM net. It uses its observations

as final predictions, and during evaluation the agent only has to ob-

tain a positive observation to be considered to have made a correct

prediction. Random Policy baseline — only train theM network

with a random policy for camera selection.DAN + Coverage base-
line — use a combination of DAN reward and coverage reward, in

3
https://github.com/sungsulim/DeepAnticipatoryNetworks
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Figure 3: Training curves and multi-person tracking results
for sensor selection for DAN agent.

which case the agent is rewarded +1 for correctly predicting the

state, +0.2 for not being correct but getting a positive observation,

and 0 otherwise (but we still use theM network to predict the x and

y coordinates). DAN-shared is when the Q and M networks share

representations, that is the top layers share the same parameters

for both the Q and M network, but the last layer is separated.

We also compare to a model-based particle filter approach and

to a DAN model that is trained on a terminal reward (only provided

at the end of the episode during training) instead of a continuous

reward that is provided at each time step of the training. However,

these two baselines performed particularly poorly. The particle

filter based approach that had access to the learned transition dy-

namics (under Gaussian assumption) and the true observations

noise results in a performance of 1.9 (less than 1/3 of DAN’s) total

reward per trajectory for 400 particles and saturates at 3.5 (less than

1/2 of DAN’s performance) for 1500 particles and after tuning many

parameters of the particle filter. Rewarding an agent only at the

termination of the episode does not work either as for tracking the

agent needs continuous feedback. We did not experiment further

with these baselines.
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For training DAN and baseline methods, we swept over the ex-

ploration probability ϵ : {0.1, 0.3, 0.5} and Q/M network learning

rate: {0.01, 0.001, 0.0001}. For all methods we found ϵ = 0.1 and

Q/M network step-size = 0.001 to work the best. We first train

x ,y-agents for tracking a single person, and the training curves

are shown in Figure 3 (a) and (b). We perform 25 runs for each

agent. We use track length of 12, sampled from the training track

dataset, and train it for 60,000 steps (or 5000 episodes). We also

collect experience without training for 3,000 steps (250 episodes).

For updating the networks, we use a mini-batch of size 4 to sample

episodes from the replay buffer, with trace length of 8 (not updating

on the first 4 steps of the episode).

We test the trained DAN agents in single-person and multi-

person tracking. For single person tracking, at each time step the

agent queries theQ-values from both the DAN-x agent and DAN-y
agent and selects the camera (action) that maximizes the average

Q-value among all the available actions. For multi-person track-

ing we transfer the policy learned for single-person tracking to

track multiple people. The same Q network is used to compute the

Q-values of selecting each camera for each person independently.

Finally, the agent selects the camera that maximizes the average Q-

value from all the people present in the scene, and the M network

predicts the location of all the people based on the observation.

During evaluation the agent is rewarded +1 only if both x and y
coordinates are predicted correctly. Figure 3 (c) shows the result

of multi-person tracking of 500 test tracks. In all cases, variants

of DAN outperform the random and coverage baselines. Surpris-

ingly, sharing representation is comparable to DAN with separate

representations for Q andM networks, which is good as sharing

representations reduces the number of parameters.

5.2 Discrete attention
In this set of experiments, we apply DAN to learn discrete models

of attention in which the agent can observe the unknown variable

only via a discrete set of available glimpses. As compared to sensor

selection here the hidden variable is not changing and selecting one

of the available glimpse does not necessarily provides the agent

enough information for predicting the digit in the image. So ideally

the agent must learn representation that help it predict the digits

from as little glimpses as possible. At the start of the episode the

agent receives a blank image and as it makes its selections, glimpses

of the images are revealed. This task is discussed in earlier papers

[33] with different glimpse styles depending on the motivation

of the paper. However, many earlier approaches based on deep

reinforcement learning model this task with a terminal reward the

agent receives the feedback (reward and true label) about its policy

only at the end of the episode. Our formulation models this as a

continuous feedback task, where the agent makes a prediction at

each time step and is rewarded at every time step for making correct

predictions. Since during the training the true label is available to

the agent, there is no point of making this label available to the

agent only at the end of the episode.

For this experiment, the Q and M networks are identical convo-

lutional neural networks (CNN) with two convolutional layers. This

is followed by a max pooling layer and two fully connected layers

with a dropout [45] probability of 0.5. ReLUs are used as activation
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Figure 4: (top, middle) Performance results for discrete
attention in continuous/terminal reward setting averaged
over 10 runs, (bottom) Sequence ofMNIST glimpses selected
by the DAN agent for two separate examples.

units for all layers. The length of the episode is kept to 12 and the

networks are updated every 4 steps. A learning rate of 0.0005 (after

performing a parameter sweep over {0.05, 0.005, 0.0005}) is used

with the Adam optimizer [27]. An exploration probability of 0.05

is used throughout training but an exploration probability of 1 is

used during the first 1500 episodes.

We compare and evaluate DAN trained with continuous reward

and DAN trained with terminal reward in two different setting

(a) continuous reward and in (b) terminal reward settings. For the

evaluation in the continuous reward setting the agent is rewarded

at each time step for an episode of length 12 (so the agent can earn

a maximum reward of 12) where as in the terminal reward setting

the agent is evaluated on a terminal reward that the agent receives

at the end of the episode. Figure 4 shows the average test reward on

500 test images (sampled from a set of 10000 test images at every
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evaluation) as a function of the training episode for both MNIST

and fashion MNIST. The top figure shows the results for when the

agent is rewarded at each time step and the middle figure shows

results when evaluating on a terminal reward. In both settings the

agent trained on continuous reward is significantly faster than the

terminal reward setting simply because (a) it is simultaneously

trained to select glimpses that can most quickly identify the classes

as well as to identify classes from as few glimpses as possible; (b)

it better uses the same set of experience to make more updates

to its parameters because of the continuous feedback. DAN with

terminal rewards performs particularly poorly in the continuous

reward setting, as theM network in the terminal reward DAN is

not trained to predict the class from smaller number of glimpses.

Furthermore, the results also show that, at least for MNIST, it is

possible to identify the digits from only one or two glimpses, as the

DAN agent gets an average reward of more than 10 out of 12 on

test images, whereas for the fashion MNIST, correctly predicting

the right class requires a couple of more glimpses.

6 RELATEDWORK
Prediction rewards are popular in reinforcement learning, for exam-

ple, visual attention models [17, 33], question answering systems

[11, 37], learning active learning strategies [3], intrinsic motivation

[40]. On the other hand, literature such as active perception [41],

sensor placement [29], and active sensing [30], formulate the prob-

lem of either sensor management/selection/fusion with information

gain as the objective function. Our paper ties these fields together

by exactly establishing the relationship between prediction rewards

and information gain.

Model-based methods as proposed in various active perception

[1, 5, 10, 12, 26, 48, 53] and sensor selection [19, 23, 30, 35, 43, 46, 49]

literature require a model of the world for their application. The

model-free nature of DAN lets us to deploy deep RL machinery

for sensor selection in a principled manner. Recently, attempts to

perform online active perception [15, 36] either focus on fast subset

selection or on neural network architecture improvement, e.g., for

MNIST, but offer no insight on connecting prediction rewards to

information gain.

Neural models of visual attention, such as that of [33] and [17],

consider a classification task where the unknown variable is not

changing at every time step. Consequently they model the loss

function as one conditioned on a terminal reward that the agent

receives if it correctly classifies the image after certain time steps. By

contrast, sensor selection is a continual learning setting where the

position of the person is continuously changing and the agent must

predict it at each time step using noisy observations. Moreover, the

agent in the classification task is free to adjust the size and shape

of the glimpse. By contrast, in sensor selection the agent can only

attend to the scene with a fixed (already deployed) set of glimpses

that cannot be resized.

Approaches that use intrinsic motivation [40] and auxiliary tasks

[21] use the prediction reward as a means to train an agent to solve

a specific task. The performance of the policy is evaluated on an

extrinsic state-based reward; the goal is not prediction accuracy. By

contrast, our aim is to maximize the prediction reward and not use

it achieve any other target.

DANs are related to learning in POMDPs/MDPs [22, 25] but are

designed to learn hidden representations of the world as opposed

to the transition or observation function after assuming/designing

the representation of the world. Generative adversarial networks

(GANs) [16] and DIAYN [14] train two different networks on each

other’s feedback. However, GANs assume an adversarial relation-

ship between the two networks leading to a min-max formulation

of the final objective, while DANs lead to max-max formulation of

the final objective. DIAYN [14] consists of two networks, one of

which tries to help the other discriminate between objects in order

to learn various skills, whereas our aim is to predict the unknown

variable and maximize the prediction reward in itself.

Neural estimators based on variational lower bound to KL diver-

gence [7, 34] do not acknowledge the connection between predic-

tion rewards and negative entropy as we do. These approaches also

do not categorize the error between the variational lower bound

and information gain as we do, which can be further exploited

to vanish this error. Thanks to the theory of convex duality, our

insights are extendible to any convex functions of the belief and

not just KL-divergence. Furthermore, these approaches propose an

estimator but do not demonstrate the use of these estimator in a

partially observable setting for sensor selection as we do.

Our results are also related to ρPOMDP [2] and POMDP-IR

[44] and their equivalence as established in [41]. Apart from the

distinction made earlier in Section 3, this paper present a deep

reinforcement learning algorithm as compared to a model-based

planning method they propose. Approaches [28, 31] that model

active perception tasks with surrogate state-based rewards are fun-

damentally different from our formulation because of the definition

of the reward.

7 CONCLUSIONS & FUTUREWORK
This paper established that an agent trying to maximize a prediction

reward naturally maximizes a lower bound on the information

gain. This insight helps tie together multiple disparate sub-fields of

machine learning that use prediction rewards and information gain

separately. The DAN algorithm follows as a consequence of these

results, which uses a model-free RL agent to gather data, based on

prediction rewards, while simultaneously learning the predictions.

We show that the approach improves performance in both a sensor

selection and two visual attention tasks.
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