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ABSTRACT
We consider the influence maximization problem (selecting k seeds

in a networkmaximizing the expected total influence) on undirected

graphs under the linear threshold model. On the one hand, we

prove that the greedy algorithm always achieves a (1− (1− 1/k)k +
Ω(1/k3))-approximation, showing that the greedy algorithm does

slightly better on undirected graphs than the generic (1−(1−1/k)k )
bound which also applies to directed graphs. On the other hand,

we show that substantial improvement on this bound is impossible

by presenting an example where the greedy algorithm can obtain

at most a (1 − (1 − 1/k)k +O(1/k0.2)) approximation.

This result stands in contrast to the previous work on the inde-

pendent cascade model. Like the linear threshold model, the greedy

algorithm obtains a (1 − (1 − 1/k)k )-approximation on directed

graphs in the independent cascade model. However, Khanna and

Lucier [24] showed that, in undirected graphs, the greedy algorithm

performs substantially better: a (1 − (1 − 1/k)k + c) approximation

for constant c > 0. Our results show that, surprisingly, no such

improvement occurs in the linear threshold model.

Finally, we show that, under the linear threshold model, the

approximation ratio (1−(1−1/k)k ) is tight if 1) the graph is directed
or 2) the vertices are weighted. In other words, under either of these

two settings, the greedy algorithm cannot achieve a (1−(1−1/k)k +
f (k))-approximation for any positive function f (k). The result in
setting 2) is again in a sharp contrast to Khanna and Lucier’s (1 −

(1 − 1/k)k + c)-approximation result for the independent cascade

model, where the (1− (1− 1/k)k + c) approximation guarantee can

be extended to the setting where vertices are weighted.

We also discuss extensions tomore generalized settings including

those with edge-weighted graphs.
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1 INTRODUCTION
Viral marketing is an advertising strategy that gives the company’s

product to a certain number of users (the seeds) for free such that

the product can be promoted through a cascade process in which

the product is recommended to these users’ friends, their friends’

friends, and so on. The influence maximization problem (InfMax) is

an optimization problem which asks which seeds one should give

the product to; that is, given a graph, a diffusion model defining how
each node is infected by its neighbors, and a limited budget k , how
to pick k seeds such that the total number of infected vertices in this

graph at the end of the cascade is maximized. For InfMax, nearly

all the known algorithms are based on a greedy algorithm which

iteratively picks the seed that has the largest marginal influence.

Some of them improve the running time of the original greedy

algorithm by skipping vertices that are known to be suboptimal [18,

25], while the others improve the scalability of the greedy algorithm

by usingmore scalable algorithms to approximate the expected total

influence [4, 12, 30, 37, 38] or computing a score of the seeds that is

closely related to the expected total influence [9–11, 15, 19, 21, 35].

Therefore, improving the approximation guarantee of the standard

greedy algorithm improves the approximation guarantees of most

InfMax algorithms in the literature in one shot!

Two diffusion models that have been studied almost exclusively

are the linear threshold model and the independent cascade model,
which were proposed by Kempe et al. [22]. In the independent

cascade model, a newly-infected vertex (or seed)u infects each of its

not-yet-infected neighborsv with a fixed probability independently.

In the linear threshold model for unweighted graphs
1
, each non-

seed vertex has a threshold sampled uniformly and independently

from the interval [0, 1], and becomes infected when the fraction of

its infected neighbors exceeds this threshold.

Both models were shown to be submodular (see Theorem 2.4 for

details) even in the case with directed graphs [22], which implies

that the greedy algorithm achieves a (1−(1−1/k)k )-approximation,

or, a (1 − 1/e)-approximation for any k . A natural and important

question is, can we show that the greedy algorithm can perform

1
The linear threshold model can be defined for general weighted directed graphs.

However, if the graph is undirected, the linear threshold model is normally defined

with the edges unweighted. Since this paper mainly deals with undirected graphs, we

will adopt the definition of the linear threshold model for unweighted graphs.
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better than a (1−(1−1/k)k )-approximation through a more careful

analysis?

To answer this question, it is helpful to notice that InfMax is a

special case of theMax-k-Coverage problem: given a collection

of subsets of a set of elements and a positive integer k , find k
subsets that cover maximum number of elements (see details in

Sect. 2.2). ForMax-k-Coverage, it is well known that the greedy

algorithm cannot overcome the (1 − (1 − 1/k)k ) barrier: for any
positive function f (k) which may be infinitesimal, there exists a

Max-k-Coverage instance where the greedy algorithm cannot

achieve (1 − (1 − 1/k)k + f (k))-approximation. Thus, to hope that

the greedy algorithm can overcome this barrier for InfMax, we

need to find out what makes InfMaxmore special and exploit those

InfMax features that are not in Max-k-Coverage.

Unfortunately, InfMax with the independent cascade model

for general directed graphs is nothing more special than Max-k-

Coverage, as it can simulate anyMax-k-Coverage instance: set

the probability that u infects v to be 1 for all edges (u,v) (i.e., a
vertex will be infected if it contains an infected in-neighbor); use

a vertex to represent a subset in the Max-k-Coverage instance,

and use a clique of sizem to represent an element; create a directed

edge from the vertex representing the subset to an arbitrary vertex

in the clique representing the element if this subset contains this

element. It is easy to see that this simulates a Max-k-Coverage

instance ifm is sufficiently large. Therefore, the greedy algorithm

cannot achieve a (1 − (1 − 1/k)k + f (k))-approximation for any

positive function f (k). This implies we must use properties beyond

mere submodularity (a property shared byMax-k-Coverage) to

improve the algorithmic analysis.

Khanna and Lucier [24] showed that the (1 − (1 − 1/k)k ) barrier
can be overcome if we restrict the graphs to be undirected in the

independent cascade model. They proved that the greedy algorithm

for InfMax with the independent cascade model for undirected

graphs achieves a (1 − (1 − 1/k)k + c)-approximation for some

constant c > 0 that does not even depend on k .2 This means the

greedy algorithm produces a (1 − 1/e + c)-approximation for any

k . Moreover, this result holds for the more general setting where

1) there is a prescribed set of vertices V ′ ⊆ V as a part of input

to the InfMax instance such that the seeds can only be chosen

among vertices in V ′ and 2) a positive weight is assigned to each

vertex such that the objective is to maximize the total weight of

infected vertices (instead of the total number of infected vertices).

This result is remarkable, as many of the social networks in our

daily life are undirected by their nature (for example, friendship,

co-authorship, etc.). Knowing that the (1 − (1 − 1/k)k ) barrier can
be overcome for the independent cascade model, a natural question

is, what is the story for the linear threshold model?

1.1 Our Results
We show that Khanna and Lucier’s result on the independent cas-

cade model can only be partially extended to the linear threshold

2
Khanna and Lucier [24] only claimed that the greedy algorithm achieves a (1−1/e+c)-
approximation. However, c being a constant implies that there exists k0 such that

1 − (1 − 1/k )k < 1 − 1/e + c/2 for all k ≥ k0 (notice that (1 − (1 − 1/k )k ) is
decreasing and approaches to 1 − 1/e ); the greedy algorithm will then achieve a

(1 − (1 − 1/k )k + c/2)-approximation for k ≥ k0 .

model. Our first result is an example showing that the greedy algo-

rithm can obtain at most a (1−(1−1/k)k+O(1/k0.2))-approximation

for InfMax on undirected graphs under the linear threshold model.

This shows that, up to lower order terms, the approximation guar-

antee 1 − (1 − 1/k)k is tight. In particular, no analogue of Khanna

and Lucier’s (1 − 1/e + c) result is possible if c > 0 is a constant.

For our second result, we prove that the greedy algorithm does

achieve a (1− (1− 1/k)k +Ω(1/k3))-approximation under the same

setting (the linear threshold model with undirected graphs). This

indicates that the greedy algorithm can overcome the (1−(1−1/k)k )
barrier by a lower order term. In particular, the barrier is overcome

for constant k . We remark that the additive term Ω(1/k3) does
not depend on the number of vertices/edges in the graph, so this

improvement is not diminishing as the size of the graph grows.

Our results corresponding to the last two paragraphs in the

abstract is deferred to the full version of this paper.

1.2 Related Work
The influence maximization problem was initially posed by Domin-

gos and Richardson [13, 32]. Kempe et al. [22] showed the lin-

ear threshold model and the independent cascade model are sub-

modular, so the greedy algorithm achieves a (1 − (1 − 1/k)k )-
approximation. This result was later generalized to all diffusion

models that are locally submodular [23, 28]. As mentioned ear-

lier, for the independent cascade model with undirected graphs,

Khanna and Lucier [24] showed that the greedy algorithm achieves

a (1 − (1 − 1/k)k + c)-approximation for some constant c > 0.

On the hardness or inapproximability side, Kempe et al. [22]

showed that InfMax on both the linear threshold model and the in-

dependent cascade model is NP-hard. For the independent cascade

model with directed graphs, Kempe et al. [22] showed a reduction

from Max-k-Coverage preserving the approximation factor. Since

Feige [14] showed that Max-k-Coverage is NP-hard to approxi-

mated within factor (1 − (1 − 1/k)k + ε) for any constant ε > 0, the

same inapproximability factor holds for the independent cascade

InfMax. Therefore, up to lower order terms, the gap between the

upper bound and the lower bound for the independent cascade (on

directed graphs) InfMax is closed. If undirected graphs are consid-

ered, Schoenebeck and Tao [35] showed that, for both the linear

threshold model and the independent cascade model, InfMax is

NP-hard to approximate to within factor (1 − τ ) for some constant

τ > 0.

If the diffusion model can be nonsubmodular, Kempe et al. [22]

showed that InfMax is NP-hard to approximate to within a factor

of N 1−ε
for any ε > 0. Many works after this [5, 26, 33, 34, 39]

showed that strong inapproximability results extend to even very

specific nonsubmodular models.

InfMax has also been studied in the adaptive setting, where the

seeds are selected iteratively, and the seed-picker can observe the

cascade of the previous seeds before choosing the next one [6, 17,

31]. Due to its iterative nature, the greedy algorithm can be easily

generalized to an adaptive version [7, 20].

As mentioned in the introduction section, there was extensive

work on designing implementations that are more efficient and

scalable [4, 9, 10, 12, 15, 18, 19, 21, 25, 30, 37, 38]. These algorithms

speedup the greedy algorithm by either disregarding those seed
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candidates that are identified to be clearly suboptimal or finding

smart ways to approximate the expected number of infected vertices.

Arora et al. [2] benchmark most of the aforementioned variants

of the greedy algorithms. We remark that there do exist InfMax

algorithms that are not based on greedy [1, 3, 16, 33, 34, 36], but

they are typically for nonsubmodular diffusion models.

2 PRELIMINARIES
2.1 InfMax with Linear Threshold Model
Throughout this paper, we use G = (V ,E) to represent the graph

which may or may not be directed. We use S to denote the set

of seeds, k to denote |S |. Let deg(v) be the degree of v when G is

undirected and the in-degree of vertex v otherwise. For each v ∈ V ,

let Γ(v) = {u : (u,v) ∈ E} be the set of (in-)neighbors of vertex v .

Definition 2.1. The linear threshold model LTG is defined by a

directed graphG = (V ,E). On input seed set S ⊆ V , LTG (S) outputs
a set of infected vertices as follows:

(1) Initially, only vertices in S are infected, and for each vertex

v a threshold θv ∈ Z
+
is sampled uniformly at random from

{1, 2, . . . , deg(v)} independently. If deg(v) = 0, set θv = ∞.
(2) In each subsequent iteration, a vertex v becomes infected if

v has at least θv infected in-neighbors.

(3) After an iteration where there are no additional infected

vertices, LTG (S) outputs the set of infected vertices.

In this paper, we mostly deal with undirected graphs. When we

restrict our attention to undirected graphs, the undirected graph

is viewed as a special directed graph with each undirected edge of

the graph being viewed as two anti-parallel directed edges.

Previous work showed that the linear threshold model has live-
edge interpretation as stated in the theorem below.

Theorem 2.2 (Claim 2.6 in [22]). Let L̂TG (S) ⊆ V be the set of
vertices that are reachable from S when each vertex v picks exactly
one of its incoming edges uniformly at random to be included in the
graph and vertices pick their incoming edges independently. Then
L̂TG (S) and LTG (S) have the same distribution. Those picked edges
are called “live edges”.

The intuition of this interpretation is as follows: consider a not-

yet-infected vertex v and a set of its infected in-neighbors IN (v) ⊆
Γ(v). By the definition of the linear threshold model, v will be

infected by vertices in IN (v) with probability |IN (v)|/deg(v). On
the other hand, the live edge coming into v will be from the set

IN (v) with probability |IN (v)|/deg(v).
Once again, when considering undirected graphs, those live

edges in Theorem 2.2 are still directed. Whenever we mention a

live edge in the remaining part of this paper, it should always be

clear that this edge is directed.

Remark 1. Since each vertex can choose only one incoming edge

as being live, if a vertex v is reachable from a vertex u after sampling
all the live edges, then there exists a unique simple path consisting of
live edges connecting u to v .

Remark 2. When considering the probability that a given vertex

v will be infected by a given seed set S , we can consider a “reverse

random walk without repetition” process. The random walk starts

at v , and it chooses one of its neighbors (in-neighbors for directed

graphs) uniformly at random and moves to it. The random walk

terminates when it reaches a vertex that has already been visited or

when it reaches a seed. Each move in the reverse random walk is

analogous to selecting one incoming live edge. Theorem 2.2 implies

that the probability that this random walk reaches a seed is exactly

the probability that v will be infected by seeds in S .

Given a set of vertices A and a vertex v , let A→ v be the event

that v is reachable from A after sampling live edges. Alternatively,

this means that the reverse random walk from v described in Re-

mark 2 reaches a vertex inA. IfA is the set of seeds, then Pr(A→ v)
is exactly the probability that v will be infected. Intuitively, A→ v
can be seen as the event that “A infects v”. We set Pr(A→ v) = 1

if v ∈ A. In this paper, we mean A → v when we say v reversely
walks to A or v is reachable from A. In particular, the reachability is

in terms of the live edges, not the original edges.

Given a set of vertices A, a vertex v , and a set of vertices B,

let A �B−→ v be the event that the reverse random walk from v
reaches a vertex in A and the vertices on the live path from v to A,
excluding v and the reached vertex in A, do not contain any vertex

in B. By definition, A �B−→ v is the same as A → v if B = ∅, and

Pr(A �B−→ v) = 1 for any B if v ∈ A.
Let σ (S) be the expected total number of infected vertices due

to the influence of S , σ (S) = E[|LTG (S)|], where the expectation is

taken over the samplings of thresholds of all vertices, or equiva-

lently, over the choices of incoming live edges of all vertices. By

the linearity of expectation, we have σ (S) =
∑
v ∈V Pr(S → v). It is

known that computing σ (S) or Pr(A→ v) for the linear threshold
model is #P-hard [10].

3
On the other hand, a simple Monte Carlo

sampling can approximate σ (S) arbitrarily close with probability ar-

bitrarily close to 1. In this paper, we adopt the standard assumption

σ (·) can be accessed by an oracle.

Definition 2.3. The InfMax problem is an optimization problem

which takes as inputs G = (V ,E) and a positive integer k , and
outputs argmaxS ⊆V : |S |=k σ (S), a seed set of size k that maximizes

the expected number of infected vertices.

The greedy algorithm consists of k iterations; in each iteration i ,
it includes the seed si into the seed set S (i.e., S ← S∪{si }) with the

highest marginal increment to σ (·): si ∈ argmaxs ∈V \S (σ (S ∪ {s})−

σ (S)). Under the linear threshold model, the objective function σ (·)
is monotone and submodular (see Theorem 2.4), which implies that

the greedy algorithm achieves a (1− (1− 1/k)k )-approximation [22,

29]. Notice that this approximation ratio becomes 1 − 1/e when k

tends to infinity, and 1 − (1 − 1/k)k > 1 − 1/e for all positive k .

Theorem 2.4 ([22]). Consider InfMax with the linear threshold
model. For any two sets of verticesA,B withA ⊊ B and any vertexv <
B, we have σ (A∪{v})−σ (A) ≥ σ (B∪{v})−σ (B), and for any vertex
u < B ∪ {v}, Pr (A ∪ {v} → u) − Pr (A→ u) ≥ Pr (B ∪ {v} → u) −
Pr (B → u).

Remark 2 straightforwardly implies the following lemma, which

describes a negative correlation between the event that {u} infects

3
Computing σ (S ) and Pr(S → v) are also #P-hard for the independent cascade

model [8].
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v and the event that u is infected by another seed set. Some other

properties for the linear threshold are presented in Sect. 4.2. We

introduce Lemma 2.5 in the preliminary section because this neg-

ative correlation property is a signature property that makes the

linear threshold model quite different from the independent cascade

model. In the independent cascade model, knowing the existence of

certain connections between vertices only makes it more likely that

another pair of vertices are connected. Intuitively, this is because, in

the independent cascade model, each vertex does not “choose” one

of its incoming edges, but rather, each incoming edge is included

with a certain probability independently. In addition, Lemma 2.5

holds for directed graphs, while all the lemmas in Sect. 4.2 hold

only for undirected graphs.

Lemma 2.5. For any three sets of vertices A,B1,B2 and any two

different vertices u,v , Pr(A �B1

−−→ u) ≥ Pr(A �B1

−−→ u | {u}
��A∪B2

−−−−−→ v).

Proof. Consider any simple path p from u to v . If u
��A∪B2

−−−−−→ v

happens with all edges inp being live, then Pr(A �B1

−−→ u) ≥ Pr(A �B1

−−→

u | p is live). This is apparent by noticing Remark 2: if p is already

live, then the reverse random walk starting from u should reach A
without touching any vertices on p (if the random walk touches a

vertex inp, it will follow the reverse direction ofp and eventually go
back tou), which obviously happens with less probability compared

to the case without restricting that the random walk cannot touch

vertices on p.
Noticing this, the remaining part of the proof is trivial:

Pr

(
A �B1

−−→ u | u
��A∪B2

−−−−−→ v

)
=

∑
p

Pr(A �B1

−−→ u | p is live) Pr(p is live)

Pr(u
��A∪B2

−−−−−→ v)

≤ Pr(A �B1

−−→ u)
∑
p

Pr(p is live)

Pr({u}
��A∪B2

−−−−−→ v)
= Pr

(
A �B1

−−→ u

)
,

where the summation is over all simple paths p connecting u to v
without touching any vertices inA∪B2, and Remark 1 ensures that

the events “p is live” over all possible such p’s form a partition of

the event u
��A∪B2

−−−−−→ v . □

2.2 InfMax—A Special Case of Max-k-Coverage

In this section, we establish that linear threshold InfMax is a spe-

cial case of the well-studied Max-k-Coverage problem, a folklore

that is widely known in the InfMax literature. This section also

introduces some key intuitions that will be used throughout the

paper. We will only discuss the linear threshold model for the pur-

pose of this paper, although submodular InfMax in general can

also be viewed as a special case of Max-k-Coverage.

Definition 2.6. The Max-k-Coverage problem is an optimiza-

tion problem which takes as input a universe of elements U =
{e1, . . . , eN } , a collection of subsets M = {S1, . . . , SM : Si ⊆
U } and an positive integer k , and outputs a collection of k sub-

sets that maximizes the total number of covered elements: S ∈

argmax

S⊆M, |S |=k

����� ⋃
S ∈S

S

�����. Given S ⊆ M, we denote val(S) =

����� ⋃
S ∈S

S

�����.
It is well-known that the greedy algorithm (that iteratively se-

lects a subset that maximizes the marginal increment of val(·))

achieves a (1 − (1 − 1/k)k )-approximation forMax-k-Coverage.

On the other hand, this approximation guarantee is tight: for any

positive function f (k) > 0 which may be infinitesimal, there exists

aMax-k-Coverage instance such that the greedy algorithm cannot

achieve a (1 − (1 − 1/k)k + f (k))-approximation. We will review

some properties of Max-k-Coverage in Sect. 4.1 that will be used

in our analysis for InfMax.

InfMax with the linear threshold model can be viewed as a

special case of Max-k-Coverage in that an instance of InfMax

can be transformed into an instance ofMax-k-Coverage. Given an

instance of InfMax (G = (V ,E),k), let H be the set of all possible

live-edge samplings. That is, H is the set of directed graphs on V
that are subgraphs ofG where each vertex has in-degree equal to 1.

In particular, |H | =
∏

v ∈V deg(v).4 We create an instance ofMax-k-

Coverage by letting the universe of elements beV ×H , i.e., pairs of

vertices and live-edge samplings, (v,д), wherev ∈ V and д ∈ H . We

then create a subset for each vertexv ∈ V . The subset corresponding

to v ∈ V contains (u,д) if u is reachable from v in д. We denote by

Σ(S) = {(u,д) : u is reachable from S under д} the set of “elements”

that the “subsets” in S cover. Since σ (S) =
∑
v ∈V Pr(S → v) =∑

v ∈V
| {д: v is reachable from S under д } |∏

w∈V deg(w ) =
|Σ(S ) |∏

w∈V deg(w ) , σ (S) equals

to the total number of elements covered by “subsets” in S , divided by
|H |. As a result, σ (S) is proportional to the total number of covered

elements if viewing S as a collection of subsets. This establishes

that InfMax is a special case of Max-k-Coverage.

Having established the connection between InfMax andMax-

k-Coverage, we take a closer look at the intersection, union and

difference of two subsets. Let S1, S2 be two seed sets. Σ(S1) ∪ Σ(S2)
contains all those (u,д) such that u is reachable from either S1
or S2 under д. Clearly, σ (S1 ∪ S2) = |Σ(S1 ∪ S2)|/

∏
v ∈V deg(v) =

|Σ(S1) ∪Σ(S2)|/
∏

v ∈V deg(v). The first equality holds by definition
which holds for set intersection and set difference as well. The

last equality, however, does not hold for set intersection and set

difference.

Σ(S1)∩Σ(S2) contains all those (u,д) such thatu is reachable from

both S1 and S2 under д. We have |Σ(S1) ∩ Σ(S2)|/
∏

v ∈V deg(v) =∑
v ∈V Pr((S1 → v) ∧ (S2 → v)). For the special case where S1 =
{u1} and S2 = {u2}, by Remark 1, the event (S1 → v) ∧ (S2 → v)
can be partitioned into two disjoint events: 1)v reachesu2 beforeu1

in the reverse random walk, ({u1}
��{v }
−−−→ u2) ∧ ({u2}

��{u1 }
−−−−→ v), and

2) v reaches u1 before u2 in the reverse random walk, ({u2}
��{v }
−−−→

u1) ∧ ({u1}
��{u2 }
−−−−→ v). For general S1, S2 with S1 ∩ S2 = ∅, the event

(S1 → v) ∧ (S2 → v) can be partitioned into two disjoint events

depending on whether v reversely reaches S1 or S2 first.
Similarly, Σ(S1) \ Σ(S2) contains all those (u,д) such that u is

reachable from S1 but not from S2 under д, and we have |Σ(S1) \
Σ(S2)|/|H | =

∑
v ∈V Pr((S1 → v) ∧ ¬(S2 → v)).

3 UPPER BOUND
In this section, we show that the approximation guarantee for the

greedy algorithm on InfMax is at most (1− (1− 1/k)k +O(1/k0.2))
with the linear threshold model on undirected graphs. This shows

4
Of course, vertices with in-degree 0 should be excluded from this product. Whenever

we write this product, we always refer to the one excluding vertices with in-degree 0.
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that the approximation guarantee (1−1/e) cannot be asymptotically

improved, even if undirected graphs are considered.

Before we prove our main theorem in this section, we need the

following lemma characterizing the cascade of a single seed on a

complete graph which is interesting on its own.

Lemma 3.1. Let G be a complete graph with n vertices, and let S
be a set containing a single vertex. We have σ (S) < 3

√
n.

The proof of Lemma 3.1 is in the full version of this paper. The in-

tuition behind this lemma is simply the birthday paradox. Consider

the reverse random walk starting from any particular vertex v with

seed set {u}. At each step, the walk chooses a random vertex other

than the current vertex. By the birthday paradox, the expected time

for the walk to reach a previously visited vertex is Θ(
√
n). The prob-

ability v is infected is the probability that the random walk reaches

the seed {u} before reaching a previously visited vertex. This is

approximately 1 − (1 − 1/n)
√
n ≈ 1/

√
n. Finally, by the linearity of

expectation, the total number of infected vertices is about

√
n.

The remainder of this section proves the following theorem.

Theorem 3.2. Consider InfMax on undirected graphs with the
linear threshold model. There exists an instance where the greedy
algorithm only achieves a (1−(1−1/k)k +O(1/k0.2))-approximation.

The InfMax instance mentioned in Theorem 3.2 is shown below.

Example 3.3. Given the number of seeds k , we construct the

undirected graph G = (V ,E) with k ⌈k1.2⌉ + ⌊(1 − 100

k0.2 )k
1.8⌋ ver-

tices as follows. Firstly, construct k cliquesC1, . . . ,Ck of size ⌈k1.2⌉,
and in each clique Ci label an arbitrary vertex ui . Secondly, con-
struct k vertices v1, . . . ,vk . For each i = 1, . . . ,k , create ⌈k0.8(1 −
1/k)i−1⌉ − 1 vertices and connect them to vi . For each i , those
⌈k0.8(1− 1/k)i−1⌉ − 1 vertices combined with vi form a star of size

⌈k0.8(1−1/k)i−1⌉, and wewill useDi to denote the i-th star. Thirdly,
we continue creating ℓ of these kinds of stars Dk+1, . . . ,Dk+ℓ cen-

tered at vk+1, . . . ,vk+ℓ such that |Dk+1 | = · · · = |Dk+ℓ−1 | =

⌈k0.8(1 − 1/k)k ⌉, |Dk+ℓ | ≤ ⌈k
0.8(1 − 1/k)k ⌉, and

∑k+ℓ
i=1 |Di | =

⌊(1− 100

k0.2 )k
1.8⌋. In other words, we keep creating stars of the same

size ⌈k0.8(1 − 1/k)k ⌉ until we reach the point where the total num-

ber of vertices in all those stars is ⌊(1 − 100

k0.2 )k
1.8⌋ (we assume k is

sufficiently large), where the last star created may be “partial” and

have a size smaller than ⌈k0.8(1−1/k)k ⌉. Notice that |D1 | ≥ |D2 | ≥

· · · ≥ |Dk | ≥ |Dk+1 | = · · · = |Dk+ℓ−1 | ≥ |Dk+ℓ | = Θ(k0.8).5 Fi-
nally, create k×(k+ℓ) edges {(ui ,vj ) : i = 1, . . . ,k ; j = 1, . . . ,k+ℓ}.

Proof Sketch of Theorem 3.2. We want that the greedy algorithm

picks the seeds v1, . . . ,vk , while the optimal seeds are u1, . . . ,uk .
The purpose of constructing a clique Ci for each ui is to simulate

directed edges (ui ,vj ) (such that, as mentioned earlier, each ui
will be infected with o(1) probability even if all of v1, . . . ,vk+ℓ are
infected, and the total number of infections among the cliques is

negligible so that the “gadget” itself is not “heavy”). In the optimal

seeding strategy, each vi will be infected with probability 1 − o(1),
as the number of edges connecting to the seeds u1, . . . ,uk is k ,
which is significantly more than the number of edges inside Di
(which is at most ⌈k0.8⌉). Therefore,σ ({u1, . . . ,uk }) ≈

∑k+ℓ
i=1 |Di | =

5
These inequalities may not be strict. In fact, |D1 | may be equal to |D2 | as k0.8 −

k0.8(1 − 1/k ) = 1/k0.2 < 1.

⌊(1 − 100

k0.2 )k
1.8⌋, which is slightly less than k1.8. Moreover, each

σ ({ui }) is approximately
1

k of σ ({u1, . . . ,uk }), which is slightly

less than k0.8

The greedy algorithm would pick v1 as the first seed, as σ (v1)
is at least ⌈k0.8⌉ (by only accounting for the infected vertices in

D1) which is slightly larger than each σ ({ui }). After picking v1
as the first seed, the marginal increment of σ (·) by choosing each

of u1, . . . ,uk becomes approximately
1

k
∑k+ℓ
i=2 |Di | =

1

k (−|D1 | +∑k+ℓ
i=1 |Di |), which is slightly less than

1

k (−⌈k
0.8⌉ + k1.8) ≈ |D2 |.

On the other hand, noticing that v1 infects each of u1, . . . ,uk as

well as v2 with probability o(1), the marginal increment of σ (·) by
choosing v2 is approximately |D2 |, which is slightly larger than the

marginal increment by choosing any ui based on our calculation

above. Thus, the greedy algorithm will continue to pick v2. In
general, we have designed the sizes of D1,D2, . . . ,Dk such that

they are just large enough to make sure the greedy algorithm will

pick v1,v2, . . . ,vk one by one.

Our construction of cliques C1, . . . ,Ck makes sure that each

of u1, . . . ,uk will be infected with o(1) probability even if all of

v1, . . . ,vk are seeded. Therefore, σ ({v1, . . . ,vk }) ≈
∑k
i=1 |Di | =∑k

i=1 ⌈k
0.8(1− 1/k)i−1⌉ ≤ k +

∑k
i=1 k

0.8(1− 1/k)i−1 = k +k1.8(1−

(1−1/k)k ). On the other hand, we have seen that σ ({u1, . . . ,uk }) is
just slightly less than k1.8. To be more accurate, σ ({u1, . . . ,uk }) ≈
(1− 100

k0.2 )k
1.8

. Dividing σ ({v1, . . . ,vk }) by σ ({u1, . . . ,uk }) gives us
the desired upper bound on the approximation ratio in Theorem 3.2.

The numbers 0.2, 0.8, 1.2 on the exponent of k are optimized for

getting the tightest bound while ensuring that the greedy algorithm

still picks v1, . . . ,vk .
See the full version of this paper for a rigorous proof.

4 LOWER BOUND
In this section, we prove that the greedy algorithm can obtain a

(1 − (1 − 1/k)k + Ω(1/k3))-approximation, stated in Theorem 4.1.

This indicates that the barrier 1 − (1 − 1/k)k can be overcome if k
is a constant. We have seen that InfMax is a special case ofMax-

k-Coverage in Sect. 2.2, and it is known that the greedy algorithm

cannot overcome the barrier 1 − (1 − 1/k)k inMax-k-Coverage.

Theorem 4.1 shows that InfMaxwith the linear threshold model on

undirected graphs has additional structure. To prove Theorem 4.1,

we first review in Sect. 4.1 some properties of Max-k-Coverage

that are useful to our analysis, and then we prove Theorem 4.1 in

Sect. 4.2 by exploiting some special properties of InfMax that are

not satisfied in Max-k-Coverage.

Theorem 4.1. Consider InfMax on undirected graphs with the
linear threshold model. The greedy algorithm achieves a (1 − (1 −
1/k)k + Ω(1/k3))-approximation.

4.1 Some Properties of Max-k-Coverage

In this section, we list some of the properties of Max-k-Coverage

which will be used in proving Theorem 4.1. The proofs of the

lemmas in this section are all standard, and are deferred to the

appendix. For all the lemmas in this section, we are considering

a Max-k-Coverage instance (U ,M,k), where S = {S1, . . . , Sk }
denotes the k subsets output by the greedy algorithm and S∗ =

{S∗
1
, . . . , S∗k } denotes the optimal solution.
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Lemma 4.2. If S1 ∈ S∗, then val(S) ≥ (1−(1− 1

k )
k + 1

4k2
) val(S∗).

Lemma 4.3. If
|S1∩(

⋃k
i=1 S

∗
i ) |

val(S∗)
< [ 1k −ε,

1

k +ε] for some ε > 0 which

may depend on k , then val(S) ≥ (1 − (1 − 1/k)k + ε/4) val(S∗).

Lemma 4.4. If
∑k
i=1 |S

∗
i | > (1 + ε) val(S

∗) for some ε > 0 which
may depend on k , then val(S) ≥ (1 − (1 − 1

k )
k + ε

8k ) val(S
∗).

Lemma 4.5. If |S1 \ (
⋃k
i=1 S

∗
i )| > ε val(S∗) for some ε > 0 which

may depend on k , then val(S) ≥ (1 − (1 − 1/k)k + ε/16) val(S∗).

Lemma 4.6. If there exists S∗i ∈ S
∗ such that |S∗i | < (

1

k −ε) val(S
∗)

for some ε > 0 which may depend on k , then val(S) ≥ (1−(1− 1

k )
k +

ε
8k ) val(S

∗).

4.2 Proof of Theorem 4.1
We begin by proving some properties that are exclusively for Inf-

Max.

Lemma 4.7. Given a subset of vertices A ⊆ V , a vertex v < A and
a neighbor u ∈ Γ(v) of v , with probability at most |A |

|A |+1 , there is
a simple live path from a vertex in A to vertex v such that the last
vertex in the path before reaching v is not u.

Proof. We consider all possible reverse random walks starting

from v , and define a mapping from those walks that eventually

reach A to those that do not. For each reverse random walk that

reaches a vertex a ∈ A, v ← w1 ← · · · ← wℓ−1 ← wℓ ← a
(with w1, . . . ,wℓ < A), we map it to the random walk v ← w1 ←

· · · ← wℓ−1 ← wℓ ← wℓ−1, i.e., the one with the last step moving

back. Notice that the latter reverse random walk visitswℓ−1 more

than once, and thus will not reach A. Specifically, for those reverse
random walks that reach A in one single step v ← a (in the case v
is adjacent to a ∈ A), we map it to the reverse random walk v ← u,
which are excluded from the event that “there is a simple live path

from a vertex in A to vertex v such that the last vertex in the path

before reaching v is not u” (if v ← u, then every path that reaches

v should then reach u in the penultimate step).

It is easy to see that at most |A| different reverse random walks

that reach A can be mapped to a same random walk that does not

reach A. In order to make different reverse random walks have

the same image in the mapping, they must share the same path

v ← w1 ← · · · ← wℓ except for the last step. The last step, which

moves to a vertex in A, can only have |A| different choices. For the
special reverse random walks that move to A in one step, there are

at most |A| of them, which are mapped to the random walk v ← u.
It is also easy to see that each random walk happens with the

same probability as its image does. This is becausewℓ chooses its

incoming edges uniformly, so choosing a happens with the same

chance as choosingwℓ . Specifically, v chooses its incoming edge

(a,v) with the same probability as (u,v).
Since we have defined a mapping that maps at most |A| disjoint

sub-events in the positive case to a sub-event in the negative case

with the same probability, the lemma follows. □

Lemma 4.8. Given a subset of vertices A ⊆ V and two different

vertices u,v < A, we have Pr(A→ u | {u} �A−→ v) ≤ |A |
|A |+1 .

Proof. Letw1, . . . ,wt enumerate all the neighbors of u that are

not in A. For each i = 1, . . . , t , let Ei be the event that the reverse
random walk starting from v reaches u without touching A and

its last step before reaching u is at wi . Clearly, {E1, . . . ,Et } is a

partition of {u} �A−→ v . Conditioning on the event Ei , if A → u
happens, the reverse random walk from u to A cannot touch wi ,

since wi has already chosen its incoming edge (u,wi ) in the case

Ei happens. Therefore, by Lemma 2.5 and Lemma 4.7, Pr(A→ u |

Ei ) = Pr(A ��{wi }
−−−−→ u | Ei ) ≤ Pr(A ��{wi }

−−−−→ u) ≤ |A |
|A |+1 .

6
We have

Pr(A→ u | {u} �A−→ v) =

∑t
i=1 Pr(A→ u | Ei ) Pr(Ei )

Pr({u} �A−→ v)

≤
|A|

|A| + 1

∑t
i=1 Pr(Ei )

Pr({u} �A−→ v)

=
|A|

|A| + 1
,

which concludes this lemma. □

Finally, we need the following lemma which is due to Lim et al.

[27], while a more generalized version is proved by Schoenebeck

and Tao [35].

Lemma 4.9 (Lim et al. [27]). For anyv ∈ V , σ ({v}) ≤ deg(v)+1.

Now we are ready to show Theorem 4.1. In the remaining part

of this section, we use S = {v1, . . . ,vk } and S∗ = {u1, . . . ,uk } to
denote the seed sets output by the greedy algorithm and the optimal

seed set respectively. Recall that InfMax is a special case ofMax-

k-Coverage (Sect. 2.2), and v1, . . . ,vk ,u1, . . . ,uk can be viewed

as subsets inMax-k-Coverage. Thus, the lemmas in Sect. 4.1 can

be applied here.

First of all, if v1 ∈ S
∗
, Lemma 4.2 implies Theorem 4.1 already.

In particular, Lemma 4.2 implies that |Σ(S)| ≥ (1 − (1 − 1/k)k +
1/4k2)|Σ(S∗)| (refer to Sect. 2.2 for the definition of Σ(·)), which im-

plies σ (S) ≥ (1−(1−1/k)k +1/4k2)σ (S∗) by dividing
∏

w ∈V deg(w)
on both side of the inequality. Therefore, we assume v1 < S

∗
from

now on.

Next, we analyze the intersection between Σ({v1}) and Σ(S
∗). As

an overview of the remaining part of our proof, suppose the barrier

1 − (1 − 1/k)k cannot be overcome, Lemma 4.4 and Lemma 4.6

imply that Σ({u1}), . . . , Σ({uk }) must be almost disjoint and al-

most balanced, Lemma 4.3 implies that Σ({v1}) must intersect ap-

proximately 1/k fraction of Σ(S∗), and Lemma 4.5 implies that

Σ({v1}) \ Σ(S
∗) should not be large. We will prove that these con-

ditions cannot be satisfied at the same time.

6
Rigorously speaking, the statement of Lemma 2.5 does not directly imply Pr(A ��{wi }−−−−→

u | Ei ) ≤ Pr(A ��{wi }−−−−→ u). However, the proof of Lemma 2.5 can be adapted to show

this. Instead of summing over all simple paths p from u to v in the summation of the

last inequality in the proof, we sum over all simple paths from u to v such that u first
moves to wi . The remaining part of the proof is the same. The idea here is that, the

event v reversely walks to u is negatively correlated to the event that u reversely

walks to A, as the latter walk cannot hit the vertices on the path u → v if there is

already a path from u to v .
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The intersection Σ({v1}) ∩ Σ(S∗) consists of all the tuples (w,д)
such thatw is reachable from both v1 and S

∗
under the live-edge

realization д. Consider the reverse random walk starting from w .

There are three different disjoint cases: 1) w reaches v1 first, and
then reaches a vertex in S∗; 2) w reaches a vertex in S∗, and then

reaches v1; 3)w visits more than one vertex in S∗, and then reaches

v1. The three terms in the following equation, which are named

C1,C2,C3, correspond to these three cases respectively.

|Σ({v1}) ∩ Σ(S∗)|∏
w ∈V deg(w)

=
∑
w ∈V

Pr

( (
S∗ → v1

)
∧

(
{v1}

�S∗
−−→ w

))
+ (C1)

∑
w ∈V

k∑
i=1

Pr

((
{v1}

�S∗
−−→ ui

)
∧

(
{ui }

�S∗
−−→ w

))
+ (C2)∑

w ∈V

∑
i,j

Pr

( (
{v1} → uj

)
∧

(
{uj }

�S∗
−−→ ui

)
∧

(
{ui }

�S∗
−−→ w

))
(C3)

Notice that this decomposition assumes v1 < S
∗
.

Firstly, we show that C1 cannot be too large if the barrier 1 −

(1 − 1/k)k is not overcome. Intuitively, C1 describes thosew that

first reversely reaches v1 and then reversely reaches a vertex in

S∗. Lemma 4.8 tells us that v1 will reversely reach S∗ with at most

probability k/(k + 1) conditioning onw reversely reaching v1. This
implies that, ifw reversely reachesv1,v1 will not reversely reach S

∗

with probability at least 1/(k + 1), which is at least 1/k of the prob-

ability that v1 reversely reaches S∗. Therefore, whenever we have a
certain number of elements in Σ({v1}) ∩ Σ(S∗) that corresponds to
C1, we have at least 1/k fraction of this number in Σ({v1}) \ Σ(S

∗).

Lemma 4.5 implies that the 1 − (1 − 1/k)k barrier can be overcome

if |Σ({v1}) \ Σ(S
∗)| is large.

Proposition 4.10. If C1 >
9

10k · σ (S
∗), then σ (S) ≥ (1 − (1 −

1

k )
k + 1

640k2
) · σ (S∗).

Proof. If w = v1, {v1}
�S∗
−−→ w happens automatically, and

Pr(({v1}
�S∗
−−→ w) ∧ (S∗ → v1)) = Pr(S∗ → v1). Substituting this

into C1, we have

C1

= Pr(S∗ → v1) +
∑

w ∈V \{v1 }

Pr

( (
S∗ → v1

)
∧

(
{v1}

�S∗
−−→ w

))
≤1 +

∑
w ∈V \{v1 }

Pr

(
{v1}

�S∗
−−→ w

)
· Pr

(
S∗ → v1 | {v1}

�S∗
−−→ w

)
≤1 +

∑
w ∈V \{v1 }

Pr

(
{v1}

�S∗
−−→ w

)
· k Pr

(
¬(S∗ → v1) | {v1}

�S∗
−−→ w

)
(Lemma 4.8)

=1 + k
∑

w ∈V \{v1 }

Pr

((
{v1}

�S∗
−−→ w

)
∧ ¬

(
S∗ → v1

) )
,

where the penultimate step is due to Lemma 4.8 from which we

have Pr(S∗ → v1 | {v1}
�S∗
−−→ w) ≤ k

k+1 , which implies Pr(¬(S∗ →

v1) | {v1}
�S∗
−−→ w) ≥ 1

k+1 , which further implies Pr(S∗ → v1 |

{v1}
�S∗
−−→ w) ≤ k · Pr(¬(S∗ → v1) | {v1}

�S∗
−−→ w).

Notice that

∑
w ∈V \{v1 }

Pr(({v1}
�S∗
−−→ w)∧¬(S∗ → v1)) describes

those (w,д) such that w is reachable from v1 but not S∗ under
realization д, which corresponds to elements in Σ({v1}) \ Σ(S

∗).

Therefore,
|Σ({v1 })\Σ(S∗) |∏

w∈V deg(w ) ≥
∑
w ∈V \{v1 }

Pr(({v1}
�S∗
−−→ w)∧¬(S∗ →

v1)) ≥
C1−1
k .

If σ (S∗) ≤ 8

7
k , we can see that σ (S) ≥ k ≥ 7

8
σ (S∗) > (1 − (1 −

1

k )
k + 1

640k2
)σ (S∗) and the proposition is already implied. Thus, we

assume σ (S∗) > 8

7
k from now on.

If we have C1 >
9

10k σ (S
∗) as given in the proposition state-

ment, we have C1 − 1 > 9

10k σ (S
∗) − 7

8k σ (S
∗) = 1

40k σ (S
∗) =

1

40k
|Σ(S∗) |∏

w∈V deg(w ) . Putting together,

|Σ({v1}) \ Σ(S
∗)|∏

w ∈V deg(w)
≥

C1 − 1

k
>

1

40k2
|Σ(S∗)|∏

w ∈V deg(w)
,

which yields |Σ({v1}) \ Σ(S
∗)| > 1

40k2
|Σ(S∗)|. Lemma 4.5 implies

|Σ(S)| ≥ (1 − (1 − 1

k )
k + 1

640k2
)|Σ(S∗)|, which further implies this

proposition. □

Secondly, we show that C2 cannot be too large if the barrier

1 − (1 − 1/k)k is not overcome. To show this, we first show that

there exists ui ∈ S∗ such that Pr({v1} → ui ) ≥
C2

σ (S∗) , and then

show that this implies that |Σ({v1}) \ Σ(S
∗)| is large by accounting

for v1’s influence to ui ’s neighbors.

Proposition 4.11. If C2 >
1

100k · σ (S
∗), then σ (S) ≥ (1 − (1 −

1

k )
k + 1

64000k3
)σ (S∗).

Proof. We give an outline of the proof first. Assume u1 ∈

argmax

ui ∈S∗
Pr

(
{v1}

�S∗
−−→ ui

)
without loss of generality. The proof is

split into two steps.

• Step 1: We will show that

∑
w ∈Γ(u1)\S∗ Pr({v1}

�S∗
−−→ w) =

Ω
(
1

k2

)
σ (S∗) if we have C2 >

1

100k · σ (S
∗) in the proposi-

tion statement. Notice that the summation consists of the

neighbors of u1 (that are not in S∗) that reversely reaches

v1, which is a lower bound to σ (v1) (v1 may infect more

vertices than only the neighbors of u1). To show this, we

first find an upper bound of C2 in terms of this summation:

C2

σ (S∗) ≤
1

deg(u1)
∑
w ∈Γ(u1)\S∗ Pr({v1}

�S∗
−−→ w). This will im-

ply that

∑
w ∈Γ(u1)\S∗ Pr({v1}

�S∗
−−→ w) = Ω

(
1

k2

)
σ (S∗) if as-

sumingC2 >
1

100k ·σ (S
∗), because deg(u1) is (approximately)

an upper bound to σ ({u1}) by Lemma 4.9, and σ ({u1}) is
approximately

1

k σ (S
∗) (otherwise, the proposition holds di-

rected by Lemma 4.6).

• Step 2: We will show that Pr(¬(S∗ → v1) | {v1}
�S∗
−−→ w) ≥

1

2(k+1) for each w ∈ Γ(u1) \ S
∗
. This says that, for each of

u1’s neighborw , if it reversely reaches v1, it will not reach
S∗ with a reasonably high probability. Correspondingly, a

reasonably large fraction of Σ({v1}) will not be in Σ(S∗). By
Lemma 4.5, this proposition is concluded.
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Step 1. Based on the first vertex in S∗ thatw reversely reaches,

we can decompose σ (S∗) as σ (S∗) =
∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

)
.

Next, we have

C2/σ (S
∗)

=

∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

)
Pr

(
{v1}

�S∗
−−→ ui | {ui }

�S∗
−−→ w

)
∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

)

≤

∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

)
Pr

(
{v1}

�S∗
−−→ ui

)
∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

) (Lemma 2.5)

≤ Pr

(
{v1}

�S∗
−−→ u1

)
·

∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

)
∑
w ∈V

∑k
i=1 Pr

(
{ui }

�S∗
−−→ w

)
= Pr

(
{v1}

�S∗
−−→ u1

)
=

1

deg(u1)

∑
w ∈Γ(u1)\S∗

Pr

(
{v1}

�S∗
−−→ w

)
.

For the last step, v1 needs to first connect to one of u1’s neighbors
before connecting tou1. Notice that these neighbors may includev1

itself. In this special casew = v1 ∈ Γ(u1) \ S
∗
, we have Pr({v1}

�S∗
−−→

w) = 1 and u1 chooses its incoming live edge to be (v1,u1) with
probability

1

deg(u1)
, which is also a valid term in the summation

above.

If C2 >
1

100k · σ (S
∗) as suggested by the proposition statement,

we have ∑
w ∈Γ(u1)\S∗

Pr

(
{v1}

�S∗
−−→ w

)
≥

deg(u1)C2

σ (S∗)

>
deg(u1)

100k
≥

deg(u1) + 1

200k
≥

σ ({u1})

200k
≥

9σ (S∗)

2000k2
,

where the penultimate step is due to Lemma 4.9 and the last step

is based on the assumption σ ({u1}) ≥
9

10k σ (S
∗). Notice that we

can assume this without loss of generality, as otherwise Lemma 4.6

implies that |Σ(S)| ≥ (1 − (1 − 1

k )
k + 1

80k2
)|Σ(S∗)|, which directly

implies this proposition.

Step 2. If w , v1, Lemma 4.8 implies that Pr(¬(S∗ → v1) |

{v1}
�S∗
−−→ w) ≥ 1

k+1 >
1

2(k+1) . Ifw = v1, thenu1 andv1 are adjacent.

Notice that deg(v1) ≥ 2, for otherwise σ ({u1}) > σ ({v1}) so v1
cannot be the first seed picked by the greedy algorithm. Therefore,

v1 reversely reaches u1 in one step with probability at most
1

2
. If

v1 reversely reaches a vertex in S∗ such that the first step of the

reverse random walk is not towards u1, Lemma 4.7 implies that

the probability this happens is at most
k

k+1 . Putting together, for

w = v1, Pr(S
∗ → v1 | {v1}

�S∗
−−→ w) ≤ 1

2
+ 1

2
· k
k+1 . Therefore, it is

always true that Pr(¬(S∗ → v1) | {v1}
�S∗
−−→ w) ≥ 1

2(k+1) .

Finally, we consider Σ({v1})\Σ(S
∗) by only accounting for those

vertices in Γ(u1) \ S
∗
.

|Σ({v1}) \ Σ(S
∗)|∏

w ∈V deg(w)
≥

∑
w ∈Γ(u1)\S∗

Pr

((
{v1}

�S∗
−−→ w

)
∧ ¬

(
S∗ → v1

) )
≥

∑
w ∈Γ(u1)\S∗

1

2(k + 1)
Pr

(
{v1}

�S∗
−−→ w

)
>

1

2(k + 1)
·
9σ (S∗)

2000k2
(result from Step 1)

>
1

4000k3
|Σ(S∗)|∏

w ∈V deg(w)
.

By Lemma 4.5, this implies |Σ(S)| ≥ (1− (1− 1

k )
k + 1

64000k3
)|Σ(S∗)|,

which further implies this proposition. □

Finally, we prove that C3 cannot be too large if the greedy algo-

rithm does not overcome the 1− (1− 1/k)k barrier. Informally, this

is because C3 corresponds to a subset of the intersection among

Σ({u1}), . . . , Σ({uk }), and Lemma 4.4 implies that it cannot be too

large.

Proposition 4.12. IfC3 >
1

k2
·σ (S∗), then σ (S) ≥ (1−(1− 1

k )
k +

1

8k3
)σ (S∗).

Proof. Notice that C3

∏
w ∈V deg(w) is at most the number of

tuples (w,д) such thatw is reachable from more than one vertex in

S∗ under д. It is easy to see that

C3

∏
w ∈V

deg(w) ≤

( k∑
i=1
|Σ({ui })|

)
− |Σ(S∗)|

because: 1) each (w,д) such thatw is reachable by more than one

vertex in S∗ under д is counted at most once by C3

∏
w ∈V deg(w),

exactly once by Σ(S∗), and at least twice by

∑k
i=1 Σ({ui }), so the

contribution of each such (w,д) to the right-hand side of the in-

equality is at least the contribution of it to the left-hand side; 2)

each (w,д) such that w is reachable by exactly one vertex in S∗

under д is not counted by C3

∏
w ∈V deg(w) and is counted exactly

once by both

∑k
i=1 Σ({ui }) and Σ(S∗), so the contribution of such

(w,д) is the same on both sides of the inequality; 3) each (w,д) such
that д is not reachable from S∗ contributes 0 to both sides of the

inequality. Observing this inequality, if C3 >
1

k2
· σ (S∗), we have( k∑

i=1
|Σ({ui })|

)
− |Σ(S∗)| >

1

k2
σ (S∗)

∏
w ∈V

deg(w) =
1

k2
|Σ(S∗)|.

Lemma 4.4 implies |Σ(S)| ≥ (1 − (1 − 1

k )
k + 1

8k3
)|Σ(S∗)|, which

implies this proposition. □

With Proposition 4.10, 4.11 and 4.12, if σ (S) = (1 − (1 − 1/k)k +

o(1/k3))σ (S∗), it must be that
|Σ({v1 })∩Σ(S∗) |∏

w∈V deg(w ) = C1 + C2 + C3 ≤(
1

k2
+ 9

10k +
1

100k

)
σ (S∗) <

92

100k |Σ(S
∗) |∏

w∈V deg(w ) .However, Lemma 4.3 then

would have implied σ (S) ≥ (1 − (1 − 1

k )
k + 8

400k )σ (S
∗), which is a

contradiction. This finishes proving Theorem 4.1.
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