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ABSTRACT
Previous work has shown the unreliability of existing algorithms

in the batch Reinforcement Learning setting, and proposed the

theoretically-grounded Safe Policy Improvement with Baseline

Bootstrapping (SPIBB) fix: reproduce the baseline policy in the

uncertain state-action pairs, in order to control the variance on

the trained policy performance. However, in many real-world ap-

plications such as dialogue systems, pharmaceutical tests or crop

management, data is collected under human supervision and the

baseline remains unknown. In this paper, we apply SPIBB algo-

rithms with a baseline estimate built from the data. We formally

show safe policy improvement guarantees over the true baseline

even without direct access to it. Our empirical experiments on fi-

nite and continuous states tasks support the theoretical findings. It

shows little loss of performance in comparison with SPIBB when

the baseline policy is given, and more importantly, drastically and

significantly outperforms competing algorithms both in safe policy

improvement, and in average performance.
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1 INTRODUCTION
Reinforcement Learning (RL) is a framework for sequential decision-

making optimization. Most RL research focuses on the online set-

ting, where the system directly interacts with the environment and

learns from it [16, 31]. While this setting might be the most efficient

in simulation and in uni-device system control such as drones or

complex industrial flow optimization, most real-world tasks (RWTs)

involve a distributed architecture. We may cite a few: distributed

devices (Internet of Things), mobile/computer applications (games,

dialogue systems), or distributed lab experiments (pharmaceutical

tests, crop management). These RWTs entail a high parallellization

of the trajectory collection and strict communication constraints

both in bandwidth and in privacy [4]. Rather than spending a small

amount of computational resource after each sample/trajectory

collection, it is therefore more practical to collect a dataset using a

behavioral (or baseline) policy, and then train a new policy from it.

This setting is called batch RL [11].

Classically, batch RL algorithms apply dynamic programming on

the samples in the dataset [3, 10]. Laroche et al. [13] showed that in
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finite-state Markov Decision Processes (MDPs), these algorithms all

converge to the same policy: the one that is optimal in theMDPwith

the maximum likelihood given the batch of data. Petrik et al. [21]

show that this policy is approximately optimal to the order of the

inverse square root of the minimal state-action pairs count in the

dataset. Unfortunately, Laroche et al. [13] show that even on very

small tasks this minimal amount is almost always zero, and that,

as a consequence, it gravely impairs the reliability of the approach:

dynamic programming on the batch happens to return policies that

perform terribly in the real environment. If a bad policy were to be

run in distributed architectures such as the aforementioned ones,

the consequences would be disastrous as it would jeopardize a high

number of systems, or even lives.

Several attempts have been made to design reliable batch RL

algorithms, starting with robust MDPs [6, 18], which consist of

considering the set of plausible MDPs given the dataset, and then

find the policy for which the minimal performance over the robust

MDPs set is maximal. The algorithm however tends to converge to

policies that are unnecessarily conservative.

Xu and Mannor [32] considered robust regret over the optimal

policy: the algorithm searches for the policy that minimizes the

maximal gap with respect to the optimal performance in every

MDP in the robust MDPs. However, they proved that evaluating

the robust optimal regret for a fixed policy is already NP-complete

with respect to the state and action sets’ size and the uncertainty

constraints in the robust MDPs set.

Later, Petrik et al. [21] considered the regret with respect to the

behavioural policy performance over the robust MDPs set. The

behavioural policy is called baseline in this context. Similarly, they

proved that simply evaluating the robust baseline regret is already

NP-complete. Concurrently, they also proposed, without theoretical

grounding, the Reward-adjusted MDP algorithm (RaMDP), where

the immediate reward for each transition in the batch is penalized

by the inverse square root of the number of samples in the dataset

that have the same state and action than the considered transition.

Recently, Laroche et al. [13] proposed Safe Policy Improvement

with Baseline Bootstrapping (SPIBB), the first tractable algorithm

with approximate policy improvement guarantees. Its principle

consists in guaranteeing safe policy improvement by constraining

the trained policy as follows: it has to reproduce the baseline policy

in the uncertain state-action pairs. Nadjahi et al. [17] further im-

proved SPIBB’s empirical performance by adopting soft constraints

instead. Related to this track of research, Simão and Spaan [26, 27]

also developed SPIBB algorithms specifically for factored MDPs.

Note that this thread of research is very distinct from online safe

policy iteration, such as [7, 20, 22–24], because the online setting

allows them to perform very conservative updates.
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Concurrently to robust approaches described above, another

tractable and theoretically-grounded family of frequentist algo-

rithms appeared under the name of High Confidence Policy Im-

provement [14, 19, 28, HCPI], relying on importance sampling esti-

mates of the trained policy performance. The algorithm by Mandel

et al. [14], based on concentration inequalities, tends to be conser-

vative and requires hyper parameters optimization. The algorithms

by Thomas et al. [29] rely on the assumption that the importance

sampling estimate is normally distributed which is false when the

number of trajectories is small. The algorithm by Paduraru [19]

is based on bias corrected and accelerated bootstrap and tends to

be too optimistic. In contrast with the robust approaches, from

robust MDPs to Soft-SPIBB, HCPI may be readily applied to infi-

nite MDPs with guarantees. However, it is well known that the

importance sampling estimates have high variance, exponential

with the horizon of the MDP. The SPIBB algorithm has a linear

horizon dependency, given a fixed known maximal value and the

common horizon/discount factor equivalence: H = 1

1−γ [8]. Soft-

SPIBB suffers a cubic upper bound but the empirical results rather

indicate a linear dependency.

Nadjahi et al. [17] perform a benchmark on randomly generated

finite MDPs, baselines, and datasets. They report that the SPIBB and

Soft-SPIBB algorithms are significantly the most reliable, and tie

with RaMDP as the highest average performing algorithms. Addi-

tionally, they perform a benchmark on a continuous state space task,

where the SPIBB and Soft-SPIBB algorithms significantly outper-

form RaMDP and Double-DQN [30] both in reliability and average

performance. Soft-SPIBB particularly shines in the continuous state

experiments.

Despite these appealing results, there is a caveat: the SPIBB

and Soft-SPIBB algorithms requires the baseline policy as input.

However, the behavior policy is not always available. Consider for

instance application involving human interactions, such as dialogue

systems [25] and the medical sector. In these situations it is common

to have access to the observations and actions that were taken in a

trajectory but not the policy that was followed. To overcome this

issue, we investigate the use of SPIBB and Soft-SPIBB algorithms in
the setting where the baseline policy is unknown.

Our aim is to answer a very natural question arising from the

existing SPIBB analysis, whether access to the baseline is required

or not. Therefore, our contributions are threefold:

(1) We formally prove safety bounds for SPIBB and Soft-SPIBB

algorithms with estimated baseline policies in finite MDPs

(Section 3).

(2) We consolidate the theoretical results with empirical results

in finite randomly generated MDPs, unknown baselines, and

datasets (Section 4.1, https://github.com/RomainLaroche/

SPIBB).

(3) We apply the method on a continuous state task by inves-

tigating two types of behavioural cloning, and show that

it outperforms competing algorithms by a large margin, in

particular on small datasets (Section 4.2, https://github.com/

rems75/SPIBB-DQN).

In summary, our results bring the SPIBB framework a step closer

to many RWTs where the behavior policy is unknown.

2 BACKGROUND
This section reviews the previous technical results relevant for this

work.

2.1 Preliminaries
A Markov Decision Process (MDP) is the standard formalism to

model sequential decision making problems in stochastic envi-

ronments. An MDP M is defined as M = ⟨X,A, P ,R,γ ⟩, where
X is the state space, A is the set of actions the agent can ex-

ecute, P : X × A → ∆X is the stochastic transition function,

R : X × A → [−Rmax,Rmax] is a stochastic immediate reward

function, γ is the discount factor. Without loss of generality, we

assume that the initial state is deterministically xi .
A policy π : X → ∆A represents how the agent interacts with

the environment. The value of a policy π starting from a state x ∈ X
is given by the expected sum of discounted future rewards:

V π
M (x ) = Eπ ,M,x0=x



∑
t ≥0

γ tR (xt ,at )

. (1)

Therefore, the performance of a policy, denoted ρ (π ,M ), is the
value in the initial state xi . The goal of a reinforcement learning

agent is to find a policy π : X → ∆A that maximizes its expected

sum of discounted rewards, however the agent does not have access

to the dynamics of the true environmentM∗ = ⟨X,A, P∗,R∗,γ ⟩.
In the batch RL setting, the algorithm receives as an input the

dataset of previous transitions collected by executing a baseline

policy πb : D = ⟨xk ,ak , rk ,x
′
k , tk ⟩k ∈J1, |D |K, where the starting

state of the transition is xk = xi if tk = 0 and xk = x ′k−1
other-

wise, ak ∼ πb (·|xk ) is the performed action, rk ∼ R (xk ,ak ) is the
immediate reward, x ′k ∼ P (·|xk ,ak ) is the reached state, and the

trajectory-wise timestep is tk = 0 if the previous transition was

final and tk = tk−1
+ 1 otherwise.

We build from a dataset D the Maximum Likelihood Estimate

(MLE) MDP M̂ = ⟨X,A, P̂ , R̂,γ ⟩, as follows:

P̂ (x ′ |x ,a) =
ND (x ,a,x ′)

ND (x ,a)
,

R̂ (x ,a) =

∑
⟨x j=x,aj=a,r j ,x ′j ⟩∈D

r j

ND (x ,a)
,

where ND (x ,a) and ND (x ,a,x ′) are the state-action pair counts

and next-state counts in the dataset D. We also consider the ro-

bust MDPs set Ξ, i.e. the set of plausible MDPs such that the true

environment MDPM∗ belongs to it with high probability 1 − δ :

Ξ =
{
M = ⟨X,A,R, P ,γ ⟩ s.t. ∀x ,a,

| |P (·|x ,a) − P̂ (·|x ,a) | |1 ≤ eδ (x ,a),

|R (x ,a) − R̂ (x ,a) | ≤ eδ (x ,a)Rmax

}
,

(2)

where eδ (x ,a) is a model error function on the estimates of M̂ for

a state-action pair (x ,a), which is classically upper bounded with

concentration inequalities.

In the next section, we discuss an objective for these algorithms

that aims to guarantee a safe policy improvement for the new policy.
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2.2 Approximate Safe Policy Improvement
Laroche et al. [13] investigate the setting where the agent receives

as input the dataset D and must compute a new policy π that ap-

proximately improves with high probability the baseline. Formally,

the safety criterion can be defined as:

P
(
ρ (π ,M∗) ≥ ρ (πb ,M

∗) − ζ
)
≥ 1 − δ , (3)

where ζ is a hyper-parameter indicating the improvement approxi-

mation and 1 − δ is the high confidence hyper-parameter. Petrik

et al. [21] demonstrate that the optimization of this objective is

NP-hard. To make the problem tractable, Laroche et al. [13] end up

considering an approximate solution by maximizing the policy in

the MLE-MDP while constraining the policy to be approximately

improving in the robust MDPs set Ξ. More formally, they seek:

argmax

π
ρ (π , M̂ ), s.t. ∀M ∈ Ξ, ρ (π ,M ) ≥ ρ (πb ,M ) − ζ .

Given a hyper-parameter N∧, their algorithm Πb -SPIBB con-

strains the policy search to the set Πb of policies that reproduce

the baseline probabilities in the state-action pairs that are present

less than N∧ times in the dataset D:

Πb =
{
π ��π (a |x ) = πb (a |x ) if ND (x ,a) < N∧

}
. (4)

We now recall the safe policy improvement guaranteed by the

algorithm Πb -SPIBB:

Theorem 2.1 (Safe policy improvement with baseline boot-

strapping). Let π∗b be the optimal policy constrained to Πb in the
MLE-MDP. Then, π∗b is a ζ -approximate safe policy improvement over
the baseline πb with high probability 1 − δ , where:

ζ =
4Vmax

1 − γ

√
2

N∧
log

2|X||A|2 |X |

δ
− ρ (π∗b , M̂ ) + ρ (πb , M̂ ).

Our work also considers the algorithm Soft-SPIBB [17], that con-

strains the policy search such that the cumulative state-local error

never exceeds ϵ , with ϵ a fixed hyper-parameter. More formally,

the policy constraint is expressed as follows:

Π∼ =


π

������
∀x ,

∑
a∈A

eδ (x ,a)
���π (a |x ) − πb (a |x )

��� ≤ ϵ


. (5)

Under some assumptions, Nadjahi et al. [17] demonstrate a looser

safe policy improvement bound. Nevertheless, the policy search is

less constrained and their empirical evaluation reveals that Soft-

SPIBB safely finds better policies than SPIBB.

Both algorithms presented in this section assume the behavior

policy πb is known and can be used during the computation of a

new policy. In the next section, we get to the main contribution

of this paper, where we investigate how these algorithms can be

applied when πb is not given.

3 BASELINE ESTIMATES
In this section, we consider that the true baseline is unknown and

implement a baseline estimate in order for the SPIBB and Soft-

SPIBB algorithms to still be applicable. Before we start our analysis,

we present an auxiliary lemma.

Let dπM (x ,a) be the discounted sum of visits of state-action pair

(x ,a) ∈ X × A while following policy π in MDPM and dD is the

state-action discounted distribution in dataset D.

Lemma 3.1. Considering that the trajectories in D are i.i.d. sam-
pled, the L1 deviation of the empirical discounted sum of visits of
state-action pairs is bounded. We have the following concentration
bound:

P
(


d

πb
M∗ − dD




1

(1 − γ ) ≥ ε
)
≤

(
2
|X | |A | − 2

)
exp

*
,
−
N ε2

2

+
-
, (6)

where N is the number of trajectories in D.

Proof. Let T = (X × A)N denote the set of trajectories and

T = (T1, . . . ,TN ) be a set of N T -valued random variables. For a

given E ⊂ X × A, we define the function fE on T as:

fE (T ) = fE (T1, . . . ,TN ) B (1 − γ )
N∑
i=1

∑
t ≥0

γ t1(T ti ∈ E),

where T ti is the state-action pair on trajectory i at time t . In partic-

ular, we have that

fE (D) = N (1 − γ )dD (E) and (7)

E[fE (T )] = N (1 − γ )d
πb
M∗ (E), (8)

where dD (E) and d
πb
M∗ (E) denote the mass of set E under dD and

d
πb
M∗ respectively.

For two sets T and T ′ differing only on one trajectory, say the

k-th, we have:

| fE (T ) − fE (T
′) | = |(1 − γ )

∑
t ≥0

γ t
(
1(T tk ∈ E) − 1(T

′t
k ∈ E)

)
| ≤ 1.

This allows us to apply the independent bounded difference in-

equality by McDiarmid [15, Theorem 3.1], which gives us:

P ( fE (T ) −E[fE (T )] ≥ ε̄ ) ≤ exp
*
,
−2

ε̄2

N
+
-
. (9)

We know that




d
πb
M∗ − dD




1

(1 − γ ) = max

E⊂X×A
2(1 − γ ) (dD (E) − d

πb
M∗ (E)).

This guarantees from a coarse union bound and equations 7, 8 and

9 that:

P
(


d

πb
M∗ − dD




1

(1 − γ ) ≥ ε
)

≤
∑

E⊂X×A

P
(
(1 − γ ) (dD (E) − d

πb
M∗ (E)) ≥

ε

2

)
=

∑
E⊂X×A

P

(
(1 − γ )

(
fE (D)

N (1 − γ )
−
E[fE (D)]

N (1 − γ )

)
≥

ε

2

)

≤
∑

E⊂X×A

exp
*.
,
−2

( N ε
2
)
2

N
+/
-

≤
(
2
|X | |A | − 2

)
exp

(
−
N ε2

2

)
,

where in the sum over subsets, we ignored the empty and full sets

for which the probability is trivially 0. □
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3.1 Algorithm and analysis
We construct the Maximum Likelihood Estimate of the baseline π̂b
(MLE baseline) as follows:

π̂b (a |x ) =



ND (x,a)
ND (x )

if ND (x ) > 0,
1

|A |
otherwise,

(10)

where ND (x ) is the number of transitions starting from state x in

dataset D. Using this MLE policy, we may prove approximate safe

policy improvement:

Theorem 3.2 (Safe policy improvement with a baseline es-

timate). Given an algorithm α relying on the baseline πb to train a
ζ -approximate safe policy improvement π∗b over πb with high prob-
ability 1 − δ . Then, α with an MLE baseline π̂b allows to train a
ζ̂ -approximate safe policy improvement π̂∗b over πb with high proba-

bility 1 − δ̂ :

δ̂ = δ + 2δ ′, (11)

ζ̂ = ζ +
2Rmax

1 − γ

√
3|X||A| + 4 log

1

δ ′

2N
, (12)

where N is the number of trajectories in the dataset D and 1 − δ ′

controls the uncertainty stemming from the baseline estimation.

Proof. We are ultimately interested in the performance im-

provement of π̂∗b with respect to the true baseline πb in the true

environmentM∗. To do so, we decompose the difference into two

parts:

ρ (π̂∗b ,M
∗) − ρ (πb ,M

∗) = ρ (π̂∗b ,M
∗) − ρ (π̂b ,M

∗)︸                        ︷︷                        ︸
α -SPI guarantee

+ ρ (π̂b ,M
∗) − ρ (πb ,M

∗)︸                        ︷︷                        ︸
baseline estimate approximation

.
(13)

Regarding the first term, note that, while π̂b is not the true

baseline, it is the MLE baseline, meaning in particular that it was

more likely to generate the dataset D than the true one. Hence, we

may consider it as a potential behavioural policy, and apply the safe

policy improvement guarantee provided by algorithm α to bound

the difference.

Regarding the second term, we need to use the distributional

formulation of the performance of any policy π :

ρ (π ,M ) =
∑
x ∈X

∑
a∈A

dπM (x ,a)E[R (x ,a)]. (14)

Then, we may rewrite the second term in Equation 13 and upper

bound it using Hölder’s inequality as follows:∑
x ∈X

∑
a∈A

(
d
π̂b
M∗ (x ,a) − d

πb
M∗ (x ,a)

)
E[R∗ (x ,a)]

≤



d

π̂b
M∗ − d

πb
M∗




1

Rmax.

(15)

Next, we decompose the state-action discounted visits divergence

as follows:




d
π̂b
M∗ − d

πb
M∗




1

≤



d

πb
M∗ − dD




1︸          ︷︷          ︸
Lemma 3.1

+



d

π̂b
M∗ − dD




1

.︸           ︷︷           ︸
positive correlation

(16)

For the first term, we can use the concentration inequality from

Lemma 3.1
1
. With a little calculus and by setting the right value

to ε , we obtain with high probability 1 − δ ′:




d
πb
M∗ − dD




1

≤
1

1 − γ

√
3|X||A| + 4 log

1

δ ′

2N
.

Regarding the second term of Equation 16, we may observe

that there is a correlation between π̂b and dD through D, but

it is a positive correlation, meaning that the divergence between

the distributions is smaller than the one with an independently

drawn dataset of the same size. As a consequence, we are also

able to upper bound it by assuming independence, and using the

same development as for the first term. This finally gives us from

Equation 16 and with high probability 1 − 2δ ′:




d
π̂b
M∗ − d

πb
M∗




1

≤
2

1 − γ

√
3|X||A| + 4 log

1

δ ′

2N
, (17)

which allows us to conclude the proof using union bounds. □

3.2 Theorem 3.2 discussion
SPIBB and Soft-SPIBB safe policy improvement guarantees exhibit

a trade-off (controlled with their respective hyper-parameters
1√
N∧

and ϵ) between upper bounding the true policy improvement error

(first term in Theorem 2.1) and allowing maximal policy improve-

ment in the MLE MDP (next terms). When the hyper-parameters

are set to 0, the true policy improvement error is null, because,

trivially, no policy improvement is allowed: the algorithm is forced

to reproduce the baseline. When the hyper-parameters grow, larger

improvements are permitted, but the error upper bound term also

grows. When the hyper-parameters tend to +∞, the algorithms are

not constrained anymore and find the optimal policy in the MLE

MDP. In that case, the error is no longer upper bounded, resulting

in poor safety performance.

When using the MLE baseline instead of the true baseline, Theo-

rem 3.2 introduces another error upper bound term accounting for

the accurateness of the baseline estimate that cannot be reduced by

hyper-parameter settings. That fact is entirely expected, as other-

wise we could consider an empty dataset, pretend it was generated

with an optimal policy and expect a safe policy improvement over it.

Another interesting point is that the bound depends on the number

of trajectories, not the number of state-action visits, nor the total

number of samples. Indeed, even with a huge number of samples, if

there were collected only from a few trajectories, the variance may

still be high, since future states visited on the trajectory depend on

the previous transitions.

Regarding the MDP parameters dependency, the upper bound

grows as the square root of the state set size, as for standard SPIBB,

but also grows as the square root of the action set size contrarily

to SPIBB that has a logarithmic dependency, which may cause

issues in some RL problems. The direct horizon dependency is the

same (linear). But one could argue that it is actually lower. The

maximal valueVmax in the SPIBB bounds can reach
Rmax
1−γ , making

the dependency in H quadratic, while the N in our denominator

1
We need to rescale with (1 − γ ) the state-action discounted visits to make it sum to 1

since the original bound applies to probability distributions.
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Figure 1: Finite MDPs with η = 0.9, N∧ = 7 and ϵ = 0.5. On the left, the mean curves, on the right, the 1%-quantile curves.

may be regarded as a hidden horizon (since N ≈ |D |H ), making the

total dependency ≈ H3/2
. In both cases, those are better than the

Soft-SPIBB cubic dependency.

One may consider other baseline estimates than the MLE, using

Bayesian priors for instance, and infer new bounds. This should

work as long as the baseline estimate remains a policy that could

have generated the dataset.

4 EMPIRICAL ANALYSIS
Our empirical analysis reproduces the most challenging experi-

ments found in Laroche et al. [13] and Nadjahi et al. [17]. We split

it in two parts, the first considers random MDPs with finite state

spaces and the second MDPs with continuous state spaces.

4.1 Random finite MDPs
4.1.1 Setup: The objective of this experiment is to empirically

analyse the consistency between the theoretical findings and the

practice. The experiment is run on finite MDPs that are randomly

generated, with randomly generated baseline policies from which

trajectories are obtained. We recall the setting below.

The true environment is a randomly generated MDP with 50

states, 4 actions, and a transition connectivity of 4: a given state-

action pair may transit to 4 different states at most. The reward

function is 0 everywhere, except for transitions entering the goal

state, in which case the trajectory terminates with a reward of 1.

The goal state is the hardest state to reach from the initial one.

The baselines are also randomly generated with a predefined

level of performance specified by a ratio η between the optimal

policy π∗ performance and the uniform policy π̃ performance:

ρ (πb ,M ) = ηρ (π∗,M ) + (1 − η)ρ (π̃ ,M ). For more details on the

process, we refer the interested reader to the original papers. Two

values for η were considered: the experiments with η = 0.9 are

reported here. The experiments with η = 0.1 had similar results

and are omitted for lack of space. We also study the influence of

the dataset size |D| ∈ [10, 20, 50, 100, 200, 500, 1000, 2000].

4.1.2 Competing algorithms: Our plots display nine curves:

• π∗: the optimal policy,

• πb : the true baseline,

• π̂b : the MLE baseline,

• Πb /Π̂b -SPIBB: SPIBB with their respective baselines,

• Πb /Π̂b -Soft: Soft-SPIBB with their respective baselines,

• RaMDP: Reward-adjusted MDP,

• and Basic RL: dynamic programming on the MLE MDP.

All the algorithms are compared using their optimal hyper-

parameter according to previous work. Our hyper-parameter search

with the MLE baselines did not show significant differences and

we opted to report results with the same hyper-parameter values.

Soft-SPIBB algorithms are the ones coined as Approx. Soft SPIBB

by Nadjahi et al. [17].

4.1.3 Performance indicators: Given the random nature of the

MDP and baseline generations, we normalize the performance to

allow inter-experiment comparison:

ρ =
ρ (π ,M∗) − ρ (πb ,M

∗)

ρ (π∗,M∗) − ρ (πb ,M
∗)
. (18)

Thus, the optimal policy always has a normalized performance of

1, and the true baseline a normalized performance of 0. A posi-

tive normalized performance means a policy improvement, and a

negative normalized performance an infringement of the policy im-

provement objective. Figures either report the average normalized

performance of the algorithms or its 1%-quantile
2
. Each setting is

processed on 250k seeds, to ensure that every performance gap

visible to the naked eye is significant.

4.1.4 Empirical results: Figure 1 shows the results with η = 0.9,

i.e. the hard setting where the behavior baseline is almost optimal,

and therefore difficult to improve.

Performance of the MLE baseline. First, we notice that the mean

performance of the MLE baseline π̂b is slightly lower than the

true baseline policy πb for small datasets. As |D| increases, the

performance of π̂b quickly increases to reach the same level. The

1%-quantile is significantly lower when the number of trajectories

is reduced.

2
Note the difference with previously reported results in SPIBB papers, which focused

on the conditional value at risk indicator.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1273



Soft-SPIBB with true and estimated baselines. Comparing the re-

sults of Πb -Soft and Π̂b -Soft curves, it is surprising that the policy

computed using an estimated policy as a baseline yields better re-

sults than the one computed with the true policy. Notice that the

estimated baseline π̂b has a higher variance than the true base-

line πb . If we consider the impact of this variance in a given state,

it means that sometimes the best (resp. worst) action will be taken

more often (resp. less). When it is the case, the trained policy will

be better than what could have been done with the true baseline.

Sometimes, the opposite will happen, but in this case, the algorithm

will try to avoid reaching this state and choose an alternative path.

This means that in expectation, this does not average out and the

variance in the baseline estimation might be beneficial.

SPIBB with true and estimated baselines. Analysing the perfor-

mance of the Π̂b -SPIBB algorithm, we notice that it also slightly

improves over Πb -SPIBB on the mean normalized performance. As

far as safety is concerned, we see that the 1%-quantile of policies

computed with Π̂b -SPIBB falls close to the 1%-quantile of the esti-

mated baseline π̂b for small datasets and close to the 1%-quantile

of the policies Πb -SPIBB for datasets with around 100 trajectories.

It is expected as Π̂b -SPIBB tends to reproduce the baseline for very

small datasets, and improves over it for larger ones. That statement

is also true of Π̂b -Soft.
RaMDP and Basic RL. Finally, it is interesting to observe that

although RaMDP and Basic RL can compute policies with rather

high mean performance, these algorithms often return policies

performing much worse than the MLE policy π̂b (as seen in their

1%-quantile).

4.2 Continuous MDPs

Figure 2: Helicopter.

4.2.1 Helicopter domain: ForMDPs

with continuous state space, we focus

on the helicopter environment [13,

Figure 2]. In this stochastic domain,

the state is defined by the position

and velocity of the helicopter. The

agent has a discrete set of 9 actions

to control the thrust applied in each

dimension. The helicopter begins in

a random position of the bottom-left

corner with a random initial velocity.

The episode ends if the helicopter’s

speed exceeds some threshold, giving a reward of -1, or if it leaves

the valid region, in which case the agent gets a reward between -1

and 10 depending on how close it is to the top-right corner. Using

a fixed behavior policy πb we generate 1, 000 datasets for each

algorithm. We report results for two dataset sizes: 3, 000 and 10, 000

transitions.

4.2.2 Behavioural cloning: In infinite MDPs, there is no MLE

baseline definition. We have to lean on behavioural cloning tech-

niques. We compare here two straightforward ones in addition to

the true behavior policy πb : a baseline estimate π̂c based on the

same pseudo-counts used by the algorithms, and a neural-based

baseline estimate π̂n that uses a standard probabilistic classifier.

The count-based policy follows a principle similar to the MLE

policy. It uses a pseudo-count for state-action pairs Ñ (x ,a) defined
according to the sum of the euclidean distance ∥x − x ′∥2 from the

state x and all states of transitions in the dataset where the action a
was executed [13, Section 3.4]:

ÑD (x ,a) =
∑

⟨x j ,aj=a,r j ,x ′j ⟩∈D

max

{
0, 1 −

∥x − x j ∥2

d0

}
, (19)

where d0 is a hyper-parameter to impose a minimum similarity

before increasing the counter of a certain state. We also compute the

state pseudo-count using this principle: ÑD (x ) =
∑
a∈A ÑD (x ,a).

This way, we can define the count-based baseline estimate replacing

the count in Equation 10 by its pseudo-count counterpart:

π̂c (a |x ) =



ÑD (x,a)
ÑD (x )

if ÑD (x ) > 0,

1

|A |
otherwise.

(20)

The neural-based policy π̂n (a |x ) is estimated using a supervised

learning approach. We train a probabilistic classifier using a neural

network to minimize the negative log-likelihood with respect to

the actions in the dataset.

We use the same architecture as the one used to train the Double-

DQN models, which is shared among all the algorithms in the

helicopter domain experiments: a fully connected neural network

with 3 hidden layers of 32, 128 and 28 neurons respectively, and 9

outputs corresponding to the 9 actions.

To avoid overfitting, we split the dataset in two parts: 80% for

training and 20% for validation. During training, we evaluate the

classifier on the validation dataset at the end of every epoch and

keep the network with the smallest validation loss.

4.2.3 Competing algorithms:

• πb : the true baseline,
• π̂c : the pseudo-count-based estimate of the baseline,

• π̂n : the neural-based estimate of the baseline,

• Πb /Π̂c /Π̂n-SPIBB: SPIBB with their respective baselines,

• Πb /Π̂c /Π̂n-Soft: Soft-SPIBB with their respective baselines,

• RaMDP: Double-DQN with Reward-adjusted MDP,

• and Double-DQN: basic deep RL algorithm.

4.2.4 Hyper-parameters. Building on the results presented by

Nadjahi et al. [17], we set the hyper-parameters for the experiments

with |D| = 10, 000 (|D| = 3, 000) as follows: Πb -SPIBB withN∧ = 3

(N∧ = 1), Πb -Soft with ϵ = 0.6 (ϵ = 0.8), and RaMPD with κ = 1

(κ = 1.75). For the algorithms using an estimated baseline we run a

parameter search considering N∧ ∈ [2, 3, 4, 5] (N∧ ∈ [0.5, 1, 2, 3])

for SPIBB and ϵ ∈ [0.4, 0.6, 0.8, 1] (ϵ ∈ [0.6, 0.8, 1, 1.2, 1.5, 1.8, 2])

for Soft-SPIBB and set the parameters for the main experiments as

follows: Π̂n-SPIBB and Π̂c -SPIBB with N∧ = 3.0 (N∧ = 1.0), and

Π̂n-Soft and Π̂c -Soft with ϵ = 0.6 (ϵ = 0.8).

4.2.5 Performance indicators: The plots represent for each algo-

rithm a modified box-plot where the caps show the 10%-quantile

and 90%-quantile, the upper and lower limits of the box are the

25% and 75% quantiles and the middle line in black shows the me-

dian. We also show the average of each algorithm (dashed lines in

green) and finally add a swarm-plot to enhance the distribution

visualization. The table provides additional details, including the
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πb π̂n π̂c Πb-SPIBB Π̂n-SPIBB Π̂c-SPIBB Πb-So� Π̂n-So� Π̂c-So� RaMDP Double-DQN

1.88

3.34

2.75

3.16

3.54

Pe
rf

om
an

ce

2.27

1.26

2.97

3.30

3.45

Figure 3: |D| = 10, 000. The green dashed line shows the average and the caps show the 10% and 90% percentile. Each dot on
the swarm plots displays the evaluation of a seed.

πb π̂n π̂c Πb-SPIBB Π̂n-SPIBB Π̂c-SPIBB Πb-So� Π̂n-So� Π̂c-So� RaMDP Double-DQN

1.22

2.29
2.23

2.99

2.66

Pe
rf

om
an

ce

2.27

1.47

2.85

2.48

Figure 4: |D| = 3, 000. The green dashed line shows the average and the caps show the 10% and 90% percentile. Each dot on the
swarm plots displays the evaluation of a seed.
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|D| = 3, 000 |D| = 10, 000

Baseline Algorithm P (ρ (π ) > ρ (πb )) avg perf 10%-qtl 1%-qtl P (ρ (π ) > ρ (πb )) avg perf 10%-qtl 1%-qtl

πb 0.499 2.27 2.22 2.18 0.499 2.27 2.22 2.18

π̂n baseline 0.002 1.47 1.06 0.75 0.032 1.88 1.57 1.34

π̂c 0.000 1.22 1.13 1.05 0.000 1.26 1.19 1.14

πb 0.928 2.85 2.36 1.90 0.992 3.34 2.99 2.39

π̂n SPIBB 0.582 2.29 1.86 1.43 0.973 2.97 2.61 2.15

π̂c 0.514 2.23 1.73 1.21 0.930 2.75 2.37 1.75

πb 0.990 2.99 2.71 2.31 1.000 3.54 3.21 2.82

π̂n Soft-SPIBB 0.760 2.48 2.12 1.71 0.996 3.30 2.93 2.47
π̂c 0.785 2.66 2.11 1.51 0.980 3.45 2.93 2.09

N/A RaMDP 0.006 0.37 -0.75 -0.99 0.876 3.16 2.13 0.23

N/A Double-DQN 0.001 -0.77 -1.00 -1.00 0.076 0.25 -0.97 -1.00

Table 1: Numerical results for the two size of datasets. The key performance indicators are respectively the percentage of policy
improvement over the true baseline, the average performance of the trained policies, the 10%-quantile, and the 1%-quantile.
For each column, we bold the best performing algorithm that is not using the true baseline πb .

percentage of policies that showed a performance above the average

performance of the true baseline policy.

4.2.6 Results: The results are reported numerically in Table 1

and graphically on Figure 3 for |D| = 10, 000 and Figure 4 for

|D| = 3, 000.

Empiric baseline polices.On Figure 3, we observe that the baseline
policies π̂c and π̂n have a performance poorer than the true behavior

policy πb . On the one hand, the neural-based baseline estimate

π̂n can get values close to the performance of the true behavior

policy, however, it has a high variance and even the 90%-quantile

is below the mean of the true policy. On the other hand, the count-

based policy π̂c has a low variance, but it has a much lower mean

performance. In general, we observe a larger performance loss than

in finite MDPs between the true baseline and the estimated baseline.

SPIBB.With SPIBB, the neural-based baseline estimate leads to

better results for all indicators. The loss in average performance

makes it worse than RaMDP in the |D| = 10, 000 datasets, but it is

more reliable and yields more consistently to policy improvements.

On the |D| = 3, 000 datasets, it demonstrates a higher robustness

with respect to the small datasets, still compared to RaMDP.

Soft-SPIBB. The Soft-SPIBB results with baseline estimates are

impressive. The loss of performance with respect to Soft-SPIBBwith

the true baseline is minor. We highlight that, although the policy

based on pseudo-counts has a lower performance than the true one

(1 point difference), it still achieves a strong performance when

used with Soft-SPIBB (less than 0.1 point difference). This indicates

that the proposed method is robust with respect to the performance

of the estimated policy. It seems that Soft-SPIBB changes are much

more forgiving the baseline approximations.

Small dataset. The experiment with a small dataset |D| = 3, 000

(Figure 4) aims to evaluate the robustness of these algorithms. We

observe that the estimated policies have a performance even lower

than in the experiment with |D| = 10, 000. While RaMDP’s perfor-

mance indicators dramatically plummet, even largely lower than

the behavioural cloning policies, the algorithm SPIBB using the es-

timated policies usually returns policies with a performance similar

to the true baseline πb . Most exciting, the algorithm Soft-SPIBB

manages to improve upon πb with all the baselines policies, obtain-

ing a mean performance above the average performance of πb , and
a 10%-quantile slightly lower than that of the true baseline when

using the estimated policies.

Hyper-parameter sensitivity. The hyper-parameter search gave

us extra insights on the behavior of the algorithms SPIBB and Soft-

SPIBB using estimated baselines. We noticed that these algorithms

do not have a high sensitivity to their hyper-parameters, since the

performance is stable in a wide range of values, specially the Soft-

SPIBB variations. We sometimes notice a tradeoff that has to be

made between variance reduction and expectation maximization.

5 CONCLUSION
This paper addresses the problem of performing safe policy im-

provement in batch RL without direct access to the baseline, i.e. the
behavioural policy of the dataset. We provide the first theoretical

guarantees for safe policy improvement in this setting, and show

on finite and continuous MDPs that the algorithm is tractable and

significantly outperforms all competing algorithms that do not have

access to the baseline. We also empirically confirm the limits of the

approach when the number of trajectories in the dataset is low.

Currently, the limitation of SPIBB methods is the lack of algo-

rithms to compute the parametric uncertainty of the estimated

model. [1, 2, 5] investigated some methods for optimism-based ex-

ploration, which proved to not be robust enough for pessimism

based purpose, where there is a requirement for exhaustiveness. Our

future work in priority addresses this issue, but also the multi-batch

setting, when there are several sequential updates [12], extending

the method to continuous action spaces [9], and investigating the

use of SPIBB in a full online setting, as a value estimation stabilizer.
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