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ABSTRACT
Increasing global maritime traffic coupled with rapid digitization

and automation in shipping mandate developing next generation

maritime traffic management systems to mitigate congestion, in-

crease safety of navigation, and avoid collisions in busy and ge-

ographically constrained ports (such as Singapore’s). To achieve

these objectives, we model the maritime traffic as a large multiagent

system with individual vessels as agents, and VTS (Vessel Traffic

Service) authority as a regulatory agent. We develop a hierarchical

reinforcement learning approach where vessels first select a high

level action based on the underlying traffic flow, and then select the

low level action that determines their future speed. We exploit the

nature of collective interactions among agents to develop a policy

gradient approach that can scale up to large real world problems.

We also develop an effective multiagent credit assignment scheme

that significantly improves the convergence of policy gradient. Ex-

tensive empirical results on synthetic and real world data from one

of the busiest port in the world show that our approach consistently

performs significantly better than the previous best approach.
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1 INTRODUCTION
Recent study by United Nations on maritime transport shows that

global port activity and cargo handling capacity have expanded

rapidly over the years [22]. Furthermore, rapid digitization and

automation are transforming both shipping and port operations for

enhanced performance, sustainable operations and safety. Technolo-

gies such as e-Navigation [14] aim to enhance the safety of maritime

navigation by digitizing both on-board and shore-based operations,

and automating communication among vessels and vessel traffic

services (VTS). Furthermore, autonomous ships are on the horizon

that promise to further enhance safety and reduce cost by removing

the human element from certain operations, and allow for more

efficient use of space in ship design and fuel efficiency [22, 23, 28].

Despite such advances, a key bottleneck remains—that of limited

navigable space in some of the busiest port waters such as Sin-

gapore strait. Unlike air and road traffic which can expand the

network capacity, navigable sea space in busy ports remains in-

herently limited by geographical features, and constantly under
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Figure 1: Navigation map of Singapore Strait overlayed on Elec-
tronic navigation chart (ENC) with color-coded features (best
viewed electronically)

pressure due to land reclamation [29]. Given such hard resource

constraints, increasing maritime traffic requires developing new

traffic management systems that can effectively coordinate vessel

movements to maintain safety of navigation, avoid near miss situa-

tions and reduce collision risks in busy port waters by exploiting

improved digitization and automation in the maritime ecosystem.

Our work precisely addresses such challenges.

As a case study, we focus on Singapore strait, which is one of the

busiest shipping areas in the world, providing the shortest route

between the Indian Ocean and the South China Sea. This makes it a

popular route for oil tankers and cargo ships [10, 19]. Figure 1 shows

the navigationmap of the strait. Our focus is on the traffic separation
scheme (TSS), which is the key maritime highway including a set of

mandatory one-direction routes designed to reduce collision risk

among vessels either transitioning through the strait or entering

fairway which leads vessels to their destinations such as berths
or anchorage area. The TSS can be further divided into smaller

zones as shown in figure 1. Even though we focus on the Singapore

strait, our work is applicable to other busy ports as well which

have their own TSS as mandated by the International Maritime

Organization [15].

Traffic control system: The current traffic is regulated by the

VTS authority in TSS. VTS officers continuously monitor the traffic,

and provide advices and warnings to vessels which are likely to be

involved in a near-miss (a high risk proximity situation) or create

hotspots in the near future (10-15 minutes). The current system

does not proactively regulate the traffic to avoid forming hotspots

in the first place. Our goal is to develop a multiagent traffic control

system that provides vessels a recommended duration to cross each

zone in the TSS based on the prevailing traffic conditions such that

the traffic intensity is within a specified limit in each zone, and max-

imizing traffic throughput while maintaining safety of navigation.

A multiagent control is highly desirable as each vessel (or an agent)

is controlled by a different ship master, with VTS authority being

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1278



the regulatory agent(RA). A policy that can be executed by vessels

in a decentralized fashion is key to the practical adoption of our

techniques. Our model assumes a collaborative setting with navi-

gation safety as the common interest shared by all vessels, along

with the RA. It is noted that in practice, a regulatory authority does

not prefer to provide direct navigation guidance to vessels, as this

can lead to liability issues (e.g., vessels collide even after following

RA’s guidance). Due to this, we follow a centralized-learning and

decentralized-execution paradigm. Vessels can execute the learned

decentralized policies based only on their local observations with-

out requiring direct feedback from the RA. The RA uses a central

simulator to train decentralized policies, which ensures that RA

can reliably evaluate the joint-policy as it has global view during

the learning phase. As a result, learning converges faster, and is

stable as opposed to each vessel learning in a decentralized fashion.

Thus, the role of RA is critical during the learning phase.

We also highlight challenges that make maritime traffic control

different than road traffic. Unlike the road traffic, movement of ves-

sels is highly dynamic in nature due to vessel condition and weather

factors. Therefore, we need to model uncertainty in the movement

of vessels. There are no traffic lights in port waters; vessels cannot

stop completely while in-transit, they must maintain a minimum

cruising speed and have a maximum speed limit. Furthermore, any

traffic control strategy must scale to a large number of agents as

hundreds of vessels navigate through TSS each day.

Our contributions: Motivated by the insight that road traffic can

be categorized into 5-6 qualitative classes, called level of service
(ranging from free flow to traffic breakdown) [27] to convey the

congestion level of the road traffic, we envision that maritime traffic

can similarly be described using multiple level of services (LoS).

Corresponding to the prevailing traffic, a suitable LoS can be de-

termined, and agents can take the best action for the chosen LoS.

However, accurately mapping traffic to a particular LoS is challeng-

ing. We therefore develop a hierarchical reinforcement learning

approach that first learns a policy over high-level actions (each such

meta action can be thought of as corresponding to a LoS) directly

from data generated using a simulator. Each meta action maps to

the low level policy that tells a vessel the recommended duration

to cross a zone. We optimize both high-level and low-level policies

using the policy gradient method.

Our approach is scalable to realistic instances with hundreds of

agents, and is executable in a decentralized setting where agents

only observe traffic in their local neighborhood. Standard policy

gradient is very slow to converge due to the presence of large

number of agents resulting in high variance of gradient estimates.

We therefore also develop a multiagent credit assignment method

that accurately determines the contribution of each meta action to

the overall traffic management objective. We empirically test on

several synthetic instances, and real-world data which consists of

all vessel movements in Singapore strait over a 6 months period

(consisting of more than 14 million unique position records). We

show that our hierarchical policy gradient approach significantly

outperforms the previous best method [30] consistently, providing

about 30%-40% improvement in solution quality in several settings.

Related Work: Several existing works address maritime traffic

management. Expert system and rule-based traffic modeling tech-

niques have been presented in [12, 13, 16]. Mathematical program-

ming based methods exist to optimize efficiency of port opera-

tions [18]. Scheduling methods are developed to increase traffic

efficiency while maintaining safety of navigation [1, 6, 36]. Mul-

tiagent path finding is used to re-route vessels that are in close

quarter situation [33]. However, these approaches do not model the

uncertainty present in environment, and often require a central-

ized control. In contrast, our approach can model the uncertainty

and partial observability in the maritime domain, and provides

decentralized policies.

Closely related to our approach is the policy gradient approach

for maritime traffic management in [30]. The key difference in our

solution strategy is the use of meta actions and optimizing a policy

over them. Using such meta actions enables better exploration of

the state-space while learning policies. As a result, our approach

gives significantly better solution quality than [30] over a range of

synthetic and real-world problems.

Our work is motivated by hierarchical reinforcement learning

(HRL) [2, 5, 26, 32], a framework for control with temporally ex-

tended actions. High level actions can take variable amount of time

to complete, unlike primitive actions which are executed at every

time step. One key benefit of HRL is structured exploration, i.e

exploration using higher level actions rather than just primitive ac-

tions. However, existing approaches that extend HRL to multiagent

systems are limited in scalability to a few agents [35]. In contrast,

our approach exploits the fact that vessels in maritime traffic can

be considered homogenous (or belonging to a few types) affecting

each other only via their collective presence (such as congestion).

Exploiting such collective nature of interactions enables scalability

to large number of agents.

2 MODEL DEFINITION
We use a similar traffic control model used in [30] with the addition

of meta actions. In practice, vessels in port waters may belong to

different types such as ferries, barges, pilot boats among others.

However, our primary focus is on tankers and cargo vessels which

are the largest vessel in size. Alleviating congestion for such vessels

is critical as due to their size, they are much less maneuverable than

smaller vessels, and can quickly result in unsafe situations without

proper traffic management.

We assume a total ofM vessels, and a planning horizon H . The

planning horizon can coincide with the peak traffic window, or our

approach can be used in a rolling window basis. Our main area

of interest is TSS where majority of the traffic activity occurs as

vessels enter and leave the port through TSS. The TSS is divided

into unidirectional zones z ∈ Z to ensure traffic safety as shown in

figure 1. A directed acyclic graph is an input for the model where

nodes are zones and edges represent the traffic flow.

Zone classification: The zone set Z is further categorized as fol-

lows. We introduce a dummy zone zd ∈ Z which contains all the

future vessels that will arrive in the port waters within the planning

window. Source zones z ∈ Zsrc ⊂ Z are zones from where vessels

enter the TSS. There can be multiple source zones. E.g., zones adja-

cent to the extreme ends of TSS where new vessels enter; vessels in
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berths re-enter TSS through intersection zones (where traffic from

TSS can flow towards berths and vice-versa) after cargo loading and

unloading; similarly for vessels in anchorages. The dummy zone

zd sends vessels at different time periods to source zones (vessel

arrival distribution can be learned from the data).

Terminal zones z ∈ Zter ⊂ Z represent zones such as berth, an-

chorages or port water boundary. After entering the TSS, some

vessels head directly to berths, some enter anchorage area waiting

for berth spots, and some vessels transit through the port at the

other end without entering to berth or anchorage.

Planning zones z ∈Z are the main zones for which we optimize

the travel time to control congestion and delay.

Vessel model and state-space: Let the state of a vesselm at time

t be denoted using smt . The vessel can be newly arrived at zone z,
or in-transit through zone z given that navigating a zone may take

multiple time steps.

• For in-transit state, we define smt = ⟨z, z
′,τ ⟩, where z ∈ Z is

current zone vessel is transiting through, z′ ∈Z is the next zone

vessel is heading to, and τ is time remaining to reach z′.

• For newly arrived state, we define smt = ⟨z, ∅, ∅⟩, where z ∈ Z is

the new zone vessel just entered. For vessels in such state, next

zone z′, and τ , the time-to-next zone, are not yet decided.

Vessel observation: Based on its local state smt and the global state

smt , vesselm receives the observation omt . If vesselm is in zone z,

and n
tot

t = ⟨n
tot

t (z)∀z⟩ be the count table representing total number

of vessels present in different zones (we show how to compute

it later), then agent m’s observation is o(z, ntott ). Typically, in a

partially observable setting, this observation corresponds to the

counts of all vessels in zone z and local neighborhood of z. Such
observation is easily obtained using the on-board radars in vessels.

Vessel decision making: When a vesselm is newly-arrived at a

zone z, it needs to take two actions—direction action amt to decide

which zone z′ to go to next; and navigation action ωmt to decide

how much time to take to navigate to z′. We describe them next.

When vessel m is newly arrived at zone z (or smt = ⟨z, ∅, ∅⟩ ),
it samples its next zone amt = z

′
from the distribution α (z′ |z). In

several ports, destinations vessels are headed to are limited (e.g.,

berths, anchorages, transit-through). Furthermore, for large vessels

such as tankers and cargos (which are our focus), spatial movement

is restricted to only deep water routes. Therefore, to optimize the

average traffic flow, we assume α (z′ |z) as an input parameter which

can be learned from the data, and do not optimize such spatial

direction decision of vessels, similar to [30]. Our solution approach

does not require direct access to this distribution; instead it uses

samples from the traffic simulator, which may utilize α .
When a vessel is in-transit (or smt = ⟨z, z

′,τ ⟩ ), it can only take a

dummy direction action.

Next, we discuss how temporal movement of vessels is modeled

(and optimized) in our approach. Intuitively, vessels in TSS can

safely move between certain minimum andmaximum speeds (based

on our discussion with domain experts, in Singapore strait, it is

[5knot, 15knot]). When a vessel starts navigating (say from zone z
to z′), the traffic control can specify the time vessel should take to

perform this navigation action. Navigation time can be converted

to raw speed by considering the distance from z to z′. However, for
effective practical implementation, we leave it to the ship captain to

adjust vessel’s speed such that the navigation action takes place as

per the recommended duration. Moreover, the actual time required

to navigate may not be exactly same as the recommended time. We

also model this navigation uncertainty as discussed next.

Meta actions and navigation duration: After a newly-arrived
vesselm has taken the direction actionam =z′, it takes ameta action

ωm based on its local observation of the traffic or (sm ,om ). A meta

action ω maps to the low level action βzz
′

ω , which is a continuous

control parameter that determines how long vesselm should take

to navigate to z′.

Given the control input βzz
′

ω to vessel m, [30] show that the

time required to navigate to z′ (say τ ) can be sampled from the

distribution pnav (·|z, z′; βzz
′

ω ). Intuitively, the parameter βzz
′

ω can

be interpreted as providing the average travel time to go to z′ from
z. However, given the movement uncertainty, a vessel may take

sometimes more or less time than βzz
′

ω to navigate. In the absence

of any other information about vessel’s characteristics, one can

use the concept of maximum entropy distribution which has mean

βzz
′

ω [17]. Given that a vessel requires a minimum and maximum

travel time (tmin, tmax resp. based on hard speed limits), the max-

imum entropy distribution with a specified mean and bounded

support is shown to be the binomial distribution [11]. Therefore,

similar to [30], we assume pnav is a binomial distribution with its

outcome ∆ ∈ {0, . . . , (tmax−tmin)}. The realized time required by

the vesselm to navigate to z′ is τ =tmin+∆. We provide empirical

validation of this assumption using an expanded dataset than [30]

by simulating traffic using a learned binomial distribution from

the data, and showing that the simulated traffic produces traffic

intensity similar to the actual observed traffic.

State transition function: For a newly-arrived vesselm at zone z
with state smt = ⟨z, ∅, ∅⟩, let the direction action be z

′
andmeta action

beω. The set of next possible states are {⟨z, z′,τ ⟩∀τ ∈ {tmin, .., tmax}}.

The transition probability is:

ϕ
(
⟨z, z′,τ ⟩|⟨z, ∅, ∅⟩, ⟨z′,ω⟩

)
=pnav (τ |z, z′; βzz

′

ω )I(τ ∈ {tmin, .., tmax})

where I is the indicator function; ⟨z′,ω⟩ is the joint action.
If the vessel m is in-transit from zone z to z′ at time t (smt =

⟨z, z′,τ ⟩), then it can only take a dummy action until it finishes the

navigation and reaches the zone z′. The transition function of such

a vessel is deterministic and depends on the value of τ . There are
two cases. If τ = 1, then the remaining time to reach z′ is 1 time

step, therefore the next state is ⟨z′, ∅, ∅⟩. If τ > 1, then the vessel

would still remain in-transit in zone z, but τ decreases by 1:

ϕ
(
⟨z′, ∅, ∅⟩|⟨z, z′,τ ⟩

)
= 1 iff τ = 1 (1)

ϕ (⟨z, z′,τ − 1⟩|⟨z, z′,τ ⟩) = 1 iff τ > 1 (2)

We assume that terminal zones are absorbing states and have no

outgoing transitions. We also assume that all vessels have the same

transition function (as they are of the same type).

Reward function: The joint-reward is based on two components—

congestion and delay. Each zone z is a limited capacity resource;

its capacity Cz is the number of vessels that are allowed to transit

at any time with sufficiently safe margins. Such capacities can

be set by the VTS authority. There is a penalty imposed when the

capacity of a zone is violated. To increase traffic throughput, a delay

penalty is also imposed unless the vessel is at its final destination
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(or a terminal zone). Let n
tot

t (z) denote the total number of vessels

(either in-transit or newly-arrived) in zone z. The reward given to

an agentm which is in zone z is:

rmt = −C (z, ntott ) = −
[
wr ·max

(
(ntott (z) −Cz ), 0

)
+wd

]
(3)

where wr ,wd > 0 are the resource and delay penalties. Since all

agents have the same reward function, we can compute the overall

reward at time t as rt = −
∑
z n

tot

t (z)C (z, ntott ).

2.1 Policy representation
As noted earlier, we do not optimize the direction decision. We

assume all vessels share a common policy—⟨µθ ,πν ⟩. The policy

µθ is the meta action selection policy, and πν is the low level

navigation decision policy.

Meta action policy:We have µθ = {µθ zz′∀z, z
′} where meta ac-

tion policy µθ zz′ is associated with the zone pair (z, z′). Intuitively,
this represents a traffic control system where each zone z controls
its outgoing traffic via the policy µθ zz′∀z

′ ∈Nb(z) where Nb(z) are
the immediate neighbors of z. Let Ω be the set of all (discrete) meta

actions (for simplicity, assume each zone pair has the same number

of meta actions). If a vessel is newly-arrived at zone z and its direc-

tion action is z′, it samples its meta action as ω ∼ µθ zz′ (o
m ), where

om is the observation received by the vessel. That is, the policy µ
returns a probability distribution over Ω.

Low level policy:We have πν = {πν zz′∀z,z′ }. Consider a vessel

m is newly-arrived at zone z and its direction decision is z′ andmeta

action is ω, then βzz
′

ω =πν zz′ (o
m ,ω), where βzz

′

ω is the parameter

that controls the realized navigation duration τ ∼ pnav (·|z, z′; βzz
′

ω ).
We note that each policy πν zz′ is a deterministic policy that maps the

agent’s observation and meta action to βzz
′

ω . As mentioned earlier,

we interpret βzz
′

ω as the average recommended time to move from

zone z to z′. However, given that pnav is binomial distribution, we

interpret βzz
′

ω as the success probability in binomial distribution

(essentially, the average travel time is tmin + (tmax − tmin)β
zz′
ω ).

Previous work [30] involved only optimizing low level deter-

ministic policy π . In contrast, our policy representations involve

optimizing over both discrete meta actions and continuous low

level actions simultaneously , which encodes a challenging decision

making setting. However, a key benefit of our policy representation

is that there is better exploration possible while learning as µ is a

stochastic policy over meta actions. In addition, we can also use

entropy based penalties over µ that further encourage exploration.

Such exploration is difficult in a purely deterministic policy setting

of [30]. As a result, our approach is able to provide much better

solution quality than [30].

2.2 Count based value function
Let (s1:H , a1:H , ω1:H ) be a complete trajectory of joint states, di-

rection actions and meta actions of all the agents. The learning

objective can be defined as follows:

J (µθ ,πν ) = Es 1:H ,a1:H ,ω1:H



H∑
t=1

rt
��� µθ ,πν


(4)

Computing the above expression is challenging even for a fixed

policy. We need to sample the complete trajectory of each vessel

multiple times, which can quickly become intractable given that we

have hundreds of vessels. Fortunately, sampling individual agent

trajectories is not required. In maritime traffic, transition, reward

and observation functions do not depend on the identities of vessels;

rather on their aggregate influence on each other, which can be

summarized by different types of agent counts. The framework pre-

sented above is an instance of collective decentralized POMDPs [24],

which is a formal model for collective multiagent planning. Work-

ing with count-based information is also a sufficient statistic for

planning in the maritime case [30]. The main benefit of learning

with count abstractions is that it is highly scalable w.r.t. the number

of agents as individual agent trajectories need not be sampled. We

next show different count statistics our learning approach uses.

Let (st ,at ,ωt ) = ⟨s
m
t ,a

m
t ,ω

m
t ⟩m∈1:M denote the joint state,

direction action, and meta action for all vessels at time t .

• For vessels that are in-transit, we define counts:

n
txn

t (z, z′,τ ) =
∑M
m=1 I(s

m
t = ⟨z, z

′,τ ⟩),∀z, z′,τ . The table is

n
txn

t =
(
n
txn

t (z, z′,τ )∀z, z′,τ
)
.

• To count newly arrived vessels in a zone z, we define:

n
arr

t (z) =
∑M
m=1 I(s

m
t = ⟨z, ∅, ∅⟩). The table is n

arr

t =
(
n
arr

t (z)∀z
)

• To count newly arrived vessels in a zone z which decide to go

to z′, we define: nnxtt (z, z′) =
∑M
m=1 I(s

m
t = ⟨z, ∅, ∅⟩,a

m
t = z

′).

Table is n
nxt=

(
n
nxt (z, z′)∀z, z′

)
• To count newly arrived vessels at a zone z which plan to move

to z′ and chooses meta action ω:
n
mta

t (z, z′,ω)=
∑M
m=1 I(s

m
t = ⟨z, ∅, ∅⟩),a

m
t =z

′,ωmt =ω). Count

table n
mta

t =
(
n
mta

t (z, z′,ω)∀z, z′,ω
)

• To count newly arrived vessels at z, who decide to go to z′,
choose meta action ω and would take τ time steps to reach z′,
we have: ñt (z, z

′,ω,τ ) =
∑M
m=1 I(s

m
t = ⟨z, ∅, ∅⟩,a

m
t = z′,ωmt =

ω, smt+1 = ⟨z, z
′,τ ⟩). The table is ñt =

(
ñt (z, z

′,ω,τ )∀z, z′,ω,τ
)

Based on above counts, we can also compute total number of agents

in a zone z (either newly-arrived or in-transit) as ntott (z)=narrt (z) +∑
z′,τ n

txn

t (z, z′,τ ).
The relation between all the above count tables is shown in the

figure 2.We show in the supplemental material
1
how to sample such

counts directly without sampling individual agent trajectories. The

value function can now be computed by expectation over counts:

J (µθ ,πν ) = En1:H



H∑
t=1

r (nt )
��� µθ ,πν


(5)

Simulator design: We note that our solution approach (presented

next) requires only count samples from the maritime traffic simula-

tor that essentially samples from the graphical model in figure 2.

Our approach can be categorized as centralized learning and decen-

tralized execution approach. The learning takes place in a central-

ized setting, but the policies can be executed in a decentralized and

partially observable setting [20].

An example use case of the system is as follows. The RA trains

decentralized policies in a centralized manner using the traffic

simulator. The learned policy parameters are then distributed to

vessels as they enter the strait waters, or enter a new zone. Vessels

1
http://jamesarambam.github.io/files/aamas20_sup.pdf
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Figure 2: Bayes net showing relationship among counts at time
step t and t + 1. Each variable is a count table

can then use the learned policy and their local observations to

get the next action. Due to uncertainty in the environment, some

deviation in the realized travel time is captured by the model. In

practice, due to human factors, some vessels may not heed the

policy’s recommendations. In our ongoing work, we plan to develop

robust policies which take into account such human factors using

methods such as quantal response theories [21].

3 META ACTION POLICY GRADIENT
We follow the policy gradient scheme [31] where we take the gra-

dient of objective (5) w.r.t. policy parameters θ and ν , and adjust

parameters towards the direction of the gradient. We focus on com-

puting gradients w.r.t. meta-policy parameters θ ; gradients w.r.t. the
low level policy parameters ν is shown in previous work [30]. The

key difference is that meta-policy µ is a stochastic policy whereas

previous work only optimized the deterministic low-level policy π .
Furthermore, we show that following standard meta-policy gradi-

ents results in very slow convergence and provides poor solution

quality. We therefore develop a multiagent credit assignment tech-

nique based on ideas presented in traffic light control in road net-

works [4, 34]. Without effective credit assignment, the contribution

of a particular meta action ω is difficult to ascertain towards the

overall objective, and as a result gradients are not very informa-

tive. The zone-based value function we develop for meta actions

effectively pinpoints the contribution of different meta actions, and

results in faster convergence than vanilla policy gradient method.

Theorem 3.1. The meta action policy gradient ∇θ zz′ J (µθ ,πν )
for each zone pair (z, z′) is given as:

En
1:H

[ H−1∑
t=1

(∑
ω

n
mta

t (z, z′, ω )∇θ zz′ log µθ zz′ (ω |o (z, n
tot

t ))Gt

)]
where Gt =

∑H
t ′=t r (nt ′ ) is the total empirical return.

Proof sketch. From (5), we have expected objective:

J (µθ ,πν ) =
∑
n1:H

P (n1:H ; µθ ,πν )
( H∑
t ′=1

r (nt ′ )
)

Using the above expression, gradient ∇θ zz′ J (µθ ,πν ) is:

=
∑
n1:H

P (n1:H )∇θ zz′ log P (n1:H ; µθ ,πν )
( H∑
t ′=1

r (nt ′ )
)

= En1:H

[
∇θ zz′ log P (n1:H ; µθ ,πν )

( H∑
t ′=1

r (nt ′ )
)]

(6)

The joint count distribution P (n1:H ; µθ ,πν ) from figure 2 can be

represented as:

=P (n1)
H−1∏
t=1

P (nnxtt | narrt )P (nmta

t | nnxtt ; µθ )P (ñt | n
mta

t ;πν )P (nt+1 |ñt )

Intuitively, meta policy parameters θ only affect those vessels that

have already sampled next zone z′ and are sampling for meta ac-

tion ω using policy µ. Therefore only the term P (nmta

t | nnxtt ; µθ ) is
affected by θ ; rest are constants w.r.t. θ . Using this information:

∇θ zz′ log P (n1:H ) =
H−1∑
t=1
∇θ zz′ log P (n

mta

t | nnxtt ;θ ) (7)

The distribution P (nmta

t | nnxtt ;θ ) is a product of multinomial dis-

tributions, one for each zone pair. We can show that if n
nxt

t (z, z′)

vessels have decided to go from z to z′, counts nmta

t (z, z′,ω) are

generated from n
nxt

t (z, z′) using a multinomial distribution as:

n
mta

t (z, z′, ·) ∼ Mul

(
n
nxt

t (z, z′), µθ zz′ (ω |o(z, n
tot

t ))∀ω
)

(8)

The gradient∇θ zz′ log P (n
mta

t | nnxtt ) consequently involves derivat-
ing the multinomial distribution corresponding the zone pair (z, z′):

∇θ zz′ log P (n
mta

t | nnxtt ;θ ) =
∑
ω

n
mta

t (z, z′,ω)×

∇θ zz′ log µθ zz′ (ω |o(z, n
tot

t ))

Using the above expression in (7), ∇θ zz′ log P (n1:H ;θ ,ν ) is:

H−1∑
t=1

∑
ω

n
mta

t (z, z′,ω)∇θ zz′ log µθ zz′ (ω |o(z, n
tot

t )) (9)

Substituting (9) in (6), we get:

∇θ zz′ J (µθ ,πν ) = En1:H

[ H−1∑
t=1

∑
ω

n
mta

t (z, z′,ω)·

∇θ zz′ log µθ zz′ (ω |o(z, n
tot

t )) ·

( H∑
t ′=1

r (nt ′ )
)]

In order to reduce the variance of the gradient estimator we can

use the below equivalent expression:

∇θ zz′ J (µθ ,πν ) = En1:H

[ H−1∑
t=1

∑
ω

n
mta

t (z, z′,ω)·

∇θ zz′ log µθ zz′ (ω |o(z, n
tot

t )) ·

( H∑
t ′=t

r (nt ′ )
)]

(10)

Notice that

∑H
t ′=t r (nt ′ ) is nothing but the empirical return Gt ,

which completes our proof. □

Entropy based exploration: Various studies have shown that

introducing policy entropy in the learning process improves explo-

ration and makes the policy more robust [8, 9, 25, 37]. Therefore,

we introduce policy entropy as a regulariser in the policy loss. The

return Gt in (10) is replaced with

(
Gt + ηH (µθ zz′ (·|o(z, n

tot

t ))
)
,

whereH is the entropy of meta policy, and η is a parameter that

determines the relative importance between the entropy and the

return. Note here that introduction of expected entropy in the pol-

icy network loss is not possible in the work of [30], as their policy

is deterministic.
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Figure 3: Individual value function computation for meta actions

We omit the proof for the gradient w.r.t. low level policy param-

eters ν as it is similar to [30]. Final gradient expression is:

∇ν zz′ J (µθ ,πν ) = En1:H

[ H−1∑
t=1

∑
ω,τ

ñt (z, z
′,ω,τ )

(
(τ − tzz

′

min
)·

∇ν zz′ log β
zz′
ω + (tzz

′

max
− τ )∇ν zz′ log(1 − β

zz′
ω )

)
·Gt

]

The policy trained with global empirical returnGt is known to be

sample inefficient and results in poor solution quality particularly

in multiagent settings because the global reward signal does not

address the multiagent credit assignment problem [3, 7]. Therefore,

we next address this issue for meta actions.

Credit assignment with meta actions: To address the multia-

gent credit assignment problem, we propose a solution approach

motivated from car-based value function used for traffic light con-

trol [34]. The car-based value function essentially estimates the

total expected reward of each car until they reach their destination

given their current traffic light setting. The value function of a

traffic light is the sum of car-based value functions of all cars that

are waiting in queue at the particular light.

In the maritime traffic case, consider all vessels that enter a zone

z, decide to move to z′ and choose meta action ω at time t , then
the value function of the zone intersection ⟨z, z′⟩ at time t is the
expected reward obtained by all such agents. It is given as:

V zz′
t (µθ zz′ ,πν zz′ )=Es 1:H ,a1:H ,ω1:H

[ M∑
m=1
I
[
smt = ⟨z, ∅, ∅⟩,

amt =z
′,ωmt =ω

]
·
( H∑
t ′=t

rmt ′
)]

(11)

Computing (11) requires sampling joint agent trajectories, which is

not a scalable approach when there are a large number of agents.

However, we can show (proof omitted) that the count based frame-

work allows to compute the same by directly sampling counts:

V zz′
t (µθ zz′ ,πν zz′ ) = En1:H

[∑
ω

n
mta

t (z, z′,ω) · f nt (z, z′ω)

]
(12)

where f nt (z, z′,ω) is a total average return a vessel receives until

it reaches its destination given its state at time t is ⟨z, ∅, ∅⟩, and
action taken is (z′,ω). We refer f nt (z, z′,ω) as individual meta value
function (IMVF). Next, we show a dynamic programming approach

to compute IMVF given count samples n1:H .

We first illustrate intuitively given a count sample n1:H , how we

can compute the IMVF. In figure 3, 10 vessels enter zone z1, and
3 vessels decide to move to zone z2, and 7 to zone z3. The value
function f nt is the weighted average of the value received when

taking action z2 and z3. Of the 7 vessels who decided to move to z3,
2 take meta actionω1 and 5 take meta actionω2. The value function

f nt (z1, z3) is again the weighted average of the values received upon
taking action ω1 and ω2. Out of 5 vessels who took meta action ω2,

4 will take time τ2 to cross z1 and will reach z3 at time t + τ2 and 1

vessel would reach z3 at time t + τ1. The 4 vessels whose current
state is ⟨z1, z3,τ2⟩ (bottom right, second last node) will stay in zone

z1 until τ2 time units and accumulate reward rnt (z1, z3,τ2) as shown
in figure 3. This whole process can summarized below with the

following dynamic programming equations (proof omitted):

r nt (z, z
′, τ ) =

t+τ∑
t ′=t

−C (z, ntott ′ ), ∀τ ∈ [t
zz′
min

, tzz
′

max
]

f nt (z, z′, τ ) = r nt (z, z
′, τ ) + f nt+τ (z

′)

f nt (z, z′, ω, τ ) =
f nt (z, z′, τ ) · ñt (z, z′, ω, τ )∑

ω ñt (z, z′, ω, τ )

f nt (z, z′, ω ) =

∑tzz
′

max

τ=tzz
′

min

f nt (z, z′, ω, τ ) · ñt (z, z′, ω, τ )

∑tzz
′

max

τ=tzz
′

min

ñt (z, z′, ω, τ )

f nt (z, z′) =

∑
ω f nt (z, z′, ω ) · nmta

t (z, z′, ω )∑
ω n

mta

t (z, z′, ω )

f nt (z ) =

∑
z′ f nt (z, z′) · nnxtt (z, z′)∑

z′ n
nxt

t (z, z′)

With IMVF we can perform efficient credit assignment as it gives

a clearer training signal. Thus, the new policy gradient expression

with credit assignment uses f nt (z, z′,ω) instead of the global return
Gt in theorem 3.1. For low level policy gradient, we similarly replace

Gt with IMVF. We can estimate both low level and meta policy

gradients using count samples n1:H generated from the simulator,

and parameters can be moved towards the direction of gradients.

4 EXPERIMENTS
We evaluate our approach on both synthetic and real world in-

stances. Synthetic experiments compare against different baselines

by varying different features of instances (e.g., number of agents,

zone capacities, number of zones). Experiments based on real world

scenarios are to measure performance of our approach on miti-

gating hotspots and improving throughput. We use the following

approaches:

• Vessel-PG : Previous best approach by [30] for maritime traffic

• Meta-PG : Vanilla policy gradient version of meta action policy

(Meta-PG ) trained using the empirical return Gt

• IMVF-PG : Our approach with meta action policy trained using

individual meta value functions

Synthetic experiments: We generate semi-random connected

directed graphs where each edge denotes a zone which has a mini-

mum and maximum travel time along with a maximum capacity

of vessels it can accommodate at any time. Vessels enter the graph

through different source zones, and they follow an arrival rate. To

provide a fair comparison, we use same neural network based pol-

icy hyper-parameter settings for all three approaches. More details
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Figure 4: (a-d) show results for synthetic instances (lower value
is better). Percentage values in graphs show the improvement by
IMVF-PG over Vessel-PG for the respective setting.

on the experimental settings are provided in the supplemental ma-

terial. In experiments, we measure total objective which combines

both delay and congestion cost (a lower value is better). For all

synthetic (and real world experiments) we use 4 meta actions and

delay penaltywd = 1. We experimented with varying number of

meta actions, and observed that increasing beyond 4 meta actions

provided little marginal gain.

We compute improvement in solution quality by our approach

IMVF-PG over Vessel-PG using
Vessel-PG −IMVF-PG

Vessel-PG
; Meta-PG was

often much worse than other approaches.

Figure 4a shows results for experiment with varying resource
penalty (wr ), 100 vessels, max capacity of each zone is uniformly

sampled between [5, 10], vessels arrival time at source zones is

sampled uniformly between [1, 20]. Each data point is an average

of 10 runs (we also show standard deviations). We observe that

performance gap between IMVF-PG and Vessel-PG grows as we

increase resource penalty—IMVF-PG achieves improvement of 31%

and 36% on settingswr =100, 500 respectively over Vessel-PG . This

is because with increasing resource penalty, tighter coordination is

required among vessels, which is better achieved by our approach

IMVF-PG using better exploration using meta actions. The standard

policy gradient Meta-PG without the credit assignment is much

worse, which confirms the benefits of our credit assignment scheme.

Figure 4b shows result for experiments with varying vessels pop-
ulation (M), capacity for each zone is uniformly sampled from [5,

50] for all population sizes. We increased the capacity from the

previous setting as the number of vessels is much larger than in

figure 4a. We omit the result for Meta-PG for M = 400 as it finds
poor solution which distorts the graph for other approaches. In this

setting, IMVF-PG is able to achieve improvement of 24%, 25% on

M =200, 300 respectively over Vessel-PG . Our approach IMVF-PG

was consistently better than previous best Vessel-PG for all other

agent populations also.

14_16 6_12 7_15 10_12 10_13 9_15 11_15

Zone	Intersection

0

5

10

15

20

25

30

T
ra
v
e
l	
T
im
e

Meta_action_1

Meta_action_2

Meta_action_3

Meta_action_4

IMVF

(a) Synthetic instances

5_7 12_11 23_26 20_19 19_28 23_26

Zone	pairs

0

5

10

15

20

25

30

35

T
ra
v
e
l	
T
im
e
(i
n
	M
in
s.
)

Meta_action_1

Meta_action_2

Meta_action_3

Meta_action_4

IMVF

(b) Real world instances

Figure 5: (a-b) shows results for multi-modal behavior of travel
time in the maritime traffic.

For figure 4c, we vary the number of planning zones, fix the total
number of vesselsM =100, and capacity is uniformly sampled from

[5, 10]. In this setting, we observe improvements (by IMVF-PG over

Vessel-PG ) of 22% and 44% on total planning zones 60, 80. For other

zone sizes also, our approach IMVF-PG is the best among baselines.

Figure 4d shows results on varying max capacity of zones. We

fix the total number of vessels to 100 and maximum capacity is set

to 50. Then, for each zone we uniformly sample from [5, capacity

ratio × 50]. E.g., for 20% capacity ratio, the capacity range becomes

[5, 10]. In this setting, we see consistent significant improvement of

IMVF-PG over Vessel-PG for all capacity settings—the improvement

for 60% capacity is 39%. Furthermore, with increasing capacity,

our approach provides consistently decreasing objective, which is

highly desirable confirming that our approach can use increased

capacity to better coordinate vessels in reducing the congestion.

In figure 5a, we show results on multi-modal behavior of travel

time in the maritime traffic for our IMVF-PG approach. This figure

shows that different meta actions indeed encode different naviga-

tion behaviors for different zone intersections. On the x-axis, we

show the different zone intersections—14_16 denotes intersection

between zone z = 14 and z′ = 16. For each zone intersection, we

show the mean of the binomial travel time distribution for each

meta action ω on the y-axis. We observe that meta actions in all

zone intersections show multi modal behavior. Each meta action

has a different average travel time. For different traffic intensities,

the meta action policy selects the most appropriate meta action for

vessels to use. Using our learning process, we do not have to pre-

define what should be behavior encoded by different meta actions;

it is learned automatically during the course of training.

Real data experiments: We also test on real data data gathered

in Singapore strait. We use a total of 6 months datasets from 1 Jan

2017-30th June 2017, total of 180 days. We use 150 days for training

and 30 days for testing. Our data contains AIS record of vessels

voyaging through Singapore strait, which is one of the busiest ports

of the world. The AIS record contains a timestamp, vessel unique

id, lat-long position, speed over ground, direction and navigation

status (anchored/sailing etc). We have data for every few seconds

for majority of vessel in the strait totaling about 14 million records.

Our dataset is 50% larger than the one used by [30].

Training: From the training datasets we learn the following

input parameters—arrival distribution, initial vessel counts, and

direction distribution α , zone capacities Cz , minimum tzz
′

min
and

maximum tzz
′

max
travel time for each zone intersection. From the
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Figure 6: Results on real world historical data

arrival distribution we get information about new vessels entering

the planning area at each time step. Initial count distribution gives

us number of vessels that are present in the various zones when we

start our system at t = 1. The maximum number of vessels present

in a zone z over all days and at any point in time is treated as the

max capacity of the zone. With set zone capacities for our traffic

optimization to 50%MaxCapacity (MaxCapacity can be different for

different zones). This ensures that our approach tries to increase

safety of navigation by decreasing the traffic congestion. All the

learned parameters are embedded into the simulator which provides

count samples to the learning approaches. We set resource penalty

wr = 500 and delay penalty wd = 1 (this combination worked

well empirically). We train our policy mainly for the peak traffic

intensity period as shown in figure 6f; i.e from 3rd hour–7th hour.

Testing: We test our learned policy on 30 different days com-

prising the test dataset. Each day is unique with its arrival rate and

initial vessel counts. Figure(6a) and (6b) results are average over 30

days. Figure (6a) shows results on total travel time for east-bound

route (as shown in figure 1) measuring average time (in minutes)

a vessel takes to navigate through the east bound route from one

end to the other during peak hours. The result shows that both

IMVF-PG and Vessel-PG are able to perform well against the un-

scheduled (Unsch.) traffic (which is the essentially the replay of the

historical data). Our approach IMVF-PG is able to further reduce the

travel time over Vessel-PG . Results were similar for the west-bound

route. Our observations suggest that there is significant scope for

better traffic coordination in real world data. Our discussions with

domain experts also confirm that an effective way to decrease the

congestion is to sail through TSS as fast as possible (but within

given min and max travel times). Our approach IMVF-PG validates

this observation in simulation also.

Figure(6b) results show the maximum violations (top) and aver-

age violations (below) per minute for different (peak) hours over

30 days. If there is one more vessel in a zone than its capacity,

then it is counted as one violation. We observe that IMVF-PG is

able to effectively reduce the violations significantly on the peak

hour (5th and 6th). Previous approach Vessel-PG also performs well

against Unsch., but sub-par against our approach IMVF-PG . This

result is significant as it shows that our approach can significantly

increase the safety of navigation while keeping traffic throughout

high, which is our study’s main goal.

In figures (6c-bottom) to (6e), we show capacity violation results

for top 5 busiest days for the 5 peak hours period (3rd–7th hour).

We observe that in all 5 days and 5 peak hours, IMVF-PG is able

to reduce congestion, and significantly reduce travel time (shown

in figure 6c-top) effectively over both Vessel-PG and Unsch. In fig-

ure 5b, we also observe the multi-modal behavior of vessels in real

world problem scenarios as well where different meta actions en-

code different average travel times for different zone intersections.

Simulator Validity: We also evaluated the count based simula-

tor model against observed real data count. We use the same 150

days of training dataset to estimate the travel time parameter βzz
′

.

Then for testing, we use the remaining 30 test days. We evaluate

accuracy for the peak hour period (3rd - 7th hour). For each day,

we start with the initial count of the test day and use the learned

parameter βzz
′

to simulate traffic movement using the simulator.

For each hour, we then compute the RMSE value of the generated

counts with the actual observed counts from data over all the zones.

The average RMSE value overall 30 days was fairly low for each

hour—4.8 for hour 3, 5.5 for hour 4, 6.6 for hour 5, 6.7 for hour 6,

and 7.8 for hour 7. Our RMSE values are fairly low for each peak

hour period given that more than 70 vessels are present in differ-

ent zones during peak hours (as shown in figure 6f).It shows that

the simulator and travel time assumptions are fairly accurate to

describe aggregate traffic.

Conclusion:We have presented a new approach for maritime traf-

fic control in geographically constrained ports such as Singapore’s.

Our key objective was to make congested waters safer by reducing

the traffic intensity, while keeping traffic throughput high. We de-

veloped a hierarchical learning approach that used the notion of

high level meta actions, which intuitively correspond to different

traffic situations. Each meta action provided a mapping to a low

level navigation action that provided vessels a recommended travel

time to cross a zone. Using such high level and low level policies,

we showed both theoretical advantages (such as better exploration

while learning using the meta policy), and empirically validated

our approach on both synthetic and a large real world datasets.
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