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ABSTRACT
Conventional wisdom believes cryptocurrency miners should al-
ways work on particular token at their full power. In this paper,
however, we show that miners’ equilibrium strategy deviates from
it, which a�ects the system security and energy-e�ciency. Specif-
ically, we model mining as a game where each miner has limited
mining power and compete for multiple tokens. We analyze both
pure Nash-equilibrium and Stackelberg-equilibrium of this game,
deriving their closed-forms. It is suggested that miners might not
exert full power, which, compared with fully-powered mining, pro-
vides less mining power for a token and thus makes it more vul-
nerable to attacks, while it helps to reduce energy consumption.
Simulation results show that with more disparate capacity, this
e�ect is more signi�cant. Our results also show that miners should
disperse power among all compatible tokens instead of only one,
which matches realistic statistics well.
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1 INTRODUCTION
The last decade has witnessed the emergence of blockchain-based
cryptocurrency, which has grown from the experimental Bitcoin [31]
into a new asset class with a market capitalization of about $240B
as of Nov, 2019 [6].

The backbone of most cryptocurrencies is the Proof-of-Work
(PoW) protocol, which keeps transactions of tokens (digital money)
in a public ledgers. PoW demands every miner (ledger maintainer)
exert hashrate (computational power) to solve a cryptographic puz-
zle, and only the� rst solution-�nder can commit a new block of
transactions. Usually a miner’s hashrate is bounded by her capacity
(resource).

The vitality of PoW is provided by monetary incentives. On
one hand, in order to generate hashrate, all miners must consume
proportional electricity at a mining price (electricity fare). On the
other hand, PoW allocates the block committer some token as
reward.
∗An extended abstract of this paper titled Moral hazard in games of miners appeared in
Proceedings of DAI-19.
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Since any miner can become a block committer, with the chance
which is proportional to her hashrate out of all miners’ hashrate [3],
she is constantly motivated to invest hashrate for more reward,
maintaining the protocol.

The security of PoW stems from a widespread belief that honest
miners control the majority of mining resource and will use it up
to prevent a malicious adversary from taking over the majority of
hashrate1.

Yet, this belief is misleading. First, miners’ collective hashrate
could be over-estimated, since they might not mine with full ca-
pacity. Chiu et al. [5] suggest that, provided with su�cient (non-
binding) capacity, each miner invests the same optimal hashrate,
which is less than capacity. However, according to [18], the realistic
hashrate is far from symmetric2, and for many miners, the capacity
is probably binding. Thus the following problem is still open. Given
some capacity, should a miner exhaust it, i.e. being all-out, or leave
some of it idle, i.e. being half-hearted? Besides, hashrate of a token
could be taken by other tokens, since nowadays, miners can mine
multiple tokens simultaneously, as long as these tokens are com-
patible with the same mining hardware, an example of which is
Multipool3. Therefore another key question is, how should a miner
distribute hashrate optimally among all compatible tokens?

In this paper, we incorporate the above concerns and propose a
proportional allocation game (PAG) [21], where miners with di�er-
ent mining prices and capacities compete for multiple tokens (see
§ 2). Our analysis includes both the pure Nash-equilibrium (PNE)
(see § 3) and Stackelberg Equilibrium (SE) (see § 4). In addition,
we evaluate the security and energy-e�ciency (see § 5), as well as
comparing our result with real data (see § 6).

Our main contributions are as follows:
• We consider binding capacity, varying mining price, and
multiple tokens in a comprehensive model of mining game,
which is non-trivial in the sense that multiple factors collec-
tively in�uence miners’ behavior.

• We show this game has a unique PNE (Theorem 3.10) and
propose a general algorithm to compute it e�ciently (Al-
gorithm 1). When miners have uniform mining price, we
derive the closed-form PNE (Theorem 3.6), with single-token
environment we show there is a unique SE and derive its
closed-form (Theorem 4.1).

• We show the risk brought by binding capacity and multiple
tokens in PNE. If the capacities are more disparate or the
token allocates less valuable reward, the total hashrate is
lower, making the blockchain more vulnerable to attacks.
Yet, there is a balance: while low hashrate compromises the

1“The system is secure as long as honest nodes collectively control more CPU power
than any cooperating group of attacker nodes.” (Satoshi Nakamoto, Bitcoin whitepaper)
2They show the hashrate follows an exponential distribution.
3https://en.bitcoin.it/wiki/Multipool
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security, it saves more electricity and makes mining more
energy-e�cient.

• Our theoretical model matches realistic statistics well. We
assert the total hashrate in one token is proportional to its
reward value, which e�ectively appears in real world.

1.1 Related Work
PoW, or cryptocurrency mining, which was invented by Nakamoto
[31], provides vast topics on game theory, including the miner’s
dilemma [1, 9], sel�sh mining [10, 29] the gap game [44], reward
sharing inmining pools [27], timing andmechanism design on block
releasing [24, 25], the gap between mining power and reward [47]
etc. See survey by Liu et al. [28] for an overview.

Security is PoW’s� rst priority, and as analyzed by Garay et al.
[16], the ratio of hashrate of an individual miner, who may be an
adversary, should be less than 50% to prevent “majority attack”. In
practice, to launch an attack, the adversary needs to control a nec-
essary amount of capacity, the ratio of which is crucial to security.
Conventional wisdom believes the above ratio of hashrate equals
to that of capacity, since miners always mine with full capacity and
only focus on one token.

Literatures have disproved the optimality of mining at full power.
With symmetric models, Chiu et al. [5] and Pagnotta [33] suggest all
miners invest the same hashrate. Adopting similar setting, Dimitri
[8] and Arnosti and Weinberg [3] endow miners with di�erent
mining prices and induce asymmetric equilibria. Nevertheless, their
models all assume non-binding capacity, while our model supposes
both mining price and capacity are heterogeneously binding. By
exploiting a special mechanism, Goren and Spiegelman [20] and Fiat
et al. [14] suggest miners can disable some capacity periodically to
increase utility. However, they directly assume miners exert full
power periodically, instead of using the optimal portion of capacity.

Recently, miners are motivated to mine multiple tokens. Spiegel-
man et al. [40] and Altman et al. [2] discuss multi-token games,
except that they require each miner to mine only one token. In
contrast, we mostly allow free distribution of hashrate among all
compatible tokens. Bissias et al. [4] discuss the game between two
tokens, who provide dual perspective to our model.

Our model is a variation of PAG, which characterizes allocating
goods to players in proportion to their bids. The basic design comes
from Kelly [22]. As seminal works, Johari and Tsitsiklis [21] analyze
PoA [26] of PAG. Then Tang et al. [43] provide the closed-formed
Nash-equilibrium with a reserved price. Note they take the val-
uation of resource as type of players, while we also include the
capacity. A classic paper [15] also discusses PAG with multiple re-
sources, with a background of advertising. Moreover Feige et al. [12]
introduce asymmetry to resource allocators. In the model of [13],
bidders have limited capacity but must spend every penny. On the
contrary, we bring asymmetry to bidders, by assuming everyone
has a capacity, but do not force anyone to use up.

When agents act simultaneously, PAG is equivalent with a fa-
mous economic model called Cournot competition [7]. The sequen-
tial PAG is modeled by Stackelberg competition [45], where the
leader �rst commits an action that followers observe, and then fol-
lowers respond to it. Puu and Norin [35] and Puu and Marín [34]
study a kind of Cournot model for duopoly and tripoly respectively,

where the price and capacity are the same as ours, except that the
cost is of log function. They show the closed-formed equilibrium
and prove the stability. Osborne and Pitchik [32] analyze a special
duopoly with capacity and characterize the set of Nash-equilibria.
Recently, the e�ect of unequal capacity (wealth) is also studied in
congestion games [17].

2 MODEL
We model cryptocurrency mining game as a PAG. Contrary to liter-
atures assuming Bayesian settings [30, 36–39, 41, 42], we analyze
the model with complete information, as is widely adopted by most
mining games [5, 33] and other similar models [11]. In this game,
N self-interested players compete for allocation ofT token rewards.
Generally, N � 2 and T � 1.
Players. Each miner i is a player, with a capacity ci , and invests
hashrate at a mining price of pi , where pi > 0 and ci > 0. Without
losing generality, miners’ indices are sorted by descending order
of capacity, i.e. c1 � c2 � · · · � cN . A special setting is that every
miner’s mining price is the same, and without losing generality4,
let it be 1. We call this case uniform-price.
Rewards. Each token t has a reward, which can be exchanged into
�at money of value rt 5 The total reward of all compatible tokens is
denoted by R , Õ

t 2[T ] rt .
Actions. Miner i invests hashrate hi ,t into token t . Let Hi ,
(hi ,1, . . . ,hi ,T ) be the hashrate pro�le of miner i , and denote the
total hashrate of miner i by hi ,

Õ
t 2[T ] hi ,t . A valid pro�le should

satisfy hi 2 [0, ci ]. When hi = 0, the miner is called inactivated.
Once activated, we call the miner half-hearted if hi < ci , otherwise
all-out. Additionally, let h�i ,t (H�i ,t ) and h�i (H�i ) be the total
hashrate (hashrate pro�le) of all miners except i in token t and in
whole, respectively. Token t ’s total hashrate in the whole network
is called nethash, denoted by �t ,

Õ
i 2[N ] hi ,t . The nethash of all

compatible tokens is � , Õ
t 2[T ] �t =

Õ
i 2[N ] hi .

Utilities. For each token t , the utility of any miner i is ui ,t ,
hi ,t
�t

rt �pihi ,t , where the former term is the expected token reward
and the latter term is mining cost. Combining together, the total
utility that miner i tries to maximize is ui (Hi ,H�i ) ,

Õ
t 2[T ] ui ,t .

Equilibrium.One typical solution concept of Cournot competition
is pure Nash-equilibrium (PNE). A hashrate pro�le (H⇤1 , . . . ,H

⇤

N ) is
a PNE, if for any miner i and any valid H 0i , it holds ui (H

0
i ,H
⇤
�i ) 

ui (H⇤i ,H
⇤
�i ). Stackelberg competition’s solution concept is Stackel-

berg equilibrium (SE), where the leader plays the best commitment
while followers play best response to that commitment. Denote
the leader by miner x . Given commitment Hx , similar to PNE, fol-
lowers’ hashrate pro�le is a best response, denoted by H

⇤
(Hx ),

if for any follower, any deviation cannot improve the utility. The
leader’s hashrate H⇤x is a best commitment, if for any valid H 0x it
holds ux (H 0x ,H⇤(h0x )) ux (H⇤x ,H

⇤
(H⇤x )). Note that unless spe-

cially mentioned, we always focus on PNE except in § 4 and § 5.2.
Security and Energy-E�ciency.When an equilibrium is reached,
we measure the security as the conversion ratio of miners’ capacity
into nethash, denoted by Saf et� , �⇤/

Õ
i 2[N ] ci . Typically, higher

4Any game can be rescaled to allow any mining prices. Like the change of currency
rate, it does not alter the essential of game.
5The exchange rate for everyone is the same, since it usually occurs in a public market.
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Saf et� requires attackers have higher capacity and thus makes the
system safer. We denote �-ATK by an attack which needs to control
more than � of nethash to accomplish. The energy-e�ciency is
measured by the collective mining cost, i.e. Ener�� =

Õ
i 2[N ] pih

⇤
i .

3 PURE NASH-EQUILIBRIUM
In this section, we show the game has a unique PNE and derive its
closed-form. Miners are layered into 3 groups according to their
mining price and capacity, and each token’s nethash is proportional
to the reward. See Example 3.1 for a PNEwith 4miners and 2 tokens.
Before revealing the whole picture (§ 3.3), we begin with the basic
structure of PNE and miners’ best response (§ 3.1). After that, we
study the game with uniform price (§ 3.2).

Example 3.1. Consider 2 tokens, A and B, with rA = 100 and
rB = 50, and 4 miners with c1 = 200, c2 = 100, c3 = 50, c4 = 1 and
p1 = 2, p2 = p3 = p4 = 1.

They play with a PNE, which is shown in Fig 1. We explain it
more throughout this section.

Figure 1: The PNE of Example 3.1

3.1 Basic Structure of PNE
In this section, we show the basic structure of PNE from two per-
spectives. First, the following theorem reveals miners’ distribution
of their hashrate among tokens.

T������ 3.2 (D����������� �����C ���������������). In
PNE, for any activated miner i , h⇤i ,t > 0 for any token t . Furthermore,

for any two tokens t, t 0 2 [T ] (if T � 2), it holds
h⇤i ,t
h⇤i ,t 0

= rt
rt 0 .

For an activated miner, she invests in all compatible tokens and
the hashrate in each token is proportional to the reward. Recall in
Example 3.1, token A’s reward is twice of B’s, and for each activated
miner, the hashrate in token A is also twice of that in B.

Next we try to determine the total hashrate of each miner by the
following theorem.

T������ 3.3 (L�������). In PNE, for any miner i , if and only
if pi � R

�⇤ , she is inactivated and h⇤i = 0. Otherwise if and only
if ci  �⇤ � pi

R (�⇤)2, miner i is all-out and h⇤i = ci . Or with ci >

�⇤ � pi
R (�⇤)2, miner i is all-out and h⇤i = �⇤ � pi

R (�⇤)2.

Essentially, miners’ behaviors are jointly decided by their capac-
ities and mining prices, which forms 3 groups (layers) in PNE. In
order to illustrate this structure, we take a game with 1000 miners

(R = 100) for example and plot each miner’s PNE hashrate level
in Fig 2. In detail, miner i falls into 1) inactivated group (top area),
if her mining price is higher than R

�⇤ , 2) all-out group (bottom-
left area), if her capacity is less than �⇤ � pi

R (�⇤)2, or otherwise 3)
half-hearted group (bottom-right area) with hashrate �⇤ � pi

R (�⇤)2.
Take Example 3.1 again, since only miner 1’s p1 is higher than
R
�⇤ =

150
76 = 1.97, it falls into the inactivated group alone, while the

others are either half-hearted or all-out.

Figure 2: Layering of miners’ hashrate level in PNE
(Each point re�ects one miner.)

Next we prove the above theorems. We� rst derive the form
of miners’ best response by the following lemma. From it we can
get that, for each miner t , h⇤i ,t = �t �

pi+�i��i ,t
rt �2t , where �i is a

constant indicating whether to be all-out or half-hearted and �i ,t
is a constant indicating whether to invest token t .

L���� 3.4 (B��� ��������). GivenH�i , the best response of miner
i is h⇤i ,t =

q
rt

pi+�i��i ,t
h�i ,t � h�i ,t , where �i � 0 and �i ,t � 0 for

each t 2 [T ]. It holds that �i ,t = 0 if and only if h⇤i ,t > 0; �i = 0 if
and only if

Õ
t 2[T ] h

⇤
i ,t < ci .

P���� ��L ����3.4. Miner i’s best response is the solution of
the following convex optimization problem:

max
hi ,t ,8t 2[T ]

ui =
’
t 2[T ]

hi ,t
hi ,t + h�i ,t

rt � pi
’
t 2[T ]

hi ,t (1)

s.t. hi ,t � 0,8t 2 [T ] (2)’
t 2[T ]

hi ,t  ci (3)

Introduce non-negative multipliers �i ,t for each of (2) and �i for (3).
We can derive h⇤i ,t =

1p
pi��i ,t+�i

p
rth�i ,t � h�i ,t from the KKT

stationarity condition @ui
@hi ,t

+�i ,t
@hi ,t
@hi ,t

��i
@hi ,t
@hi ,t

= 0. According to
the KKT complementary slackness condition, �i ,t = 0 if and only
if h⇤i ,t > 0; �i = 0 if and only if

Õ
t 2[T ] h

⇤
i ,t = ci . ⇤

Then the following lemma depicts the most basic structure of
PNE: all compatible tokens is invested by all activated miners.
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L����3.5. In PNE, each token is invested by each activated miner.

P���� ��L ����3.5. First, every token is invested, otherwise
anyone can earn the reward with in�nitesimal hashrate.

Then, before proving the whole lemma, we show the follow-
ing preliminary result: if miner i’s best response is to invest in
token a but not token b, it holds ra

�a
> rb

�b
. To prove it, from i’s

hashrate in token a, h⇤i ,a =
q

ra
pi+�i

h�i ,a � h�i ,a , we derive �a =q
ra

pi+�i
(�a � h⇤i ,a ), and thus h⇤i ,a = �a (1 �

pi+�i
ra �a ) > 0 , i.e. ra�a >

pi + �i . From j’s hashrate in token b, h⇤i ,b =
q

rb
pi+�i��i ,b

h�i ,b �

h�i ,b = 0 , we derive rb
�b
=

rb
h�i ,b

= pi + �i � �i ,b  pi + �i <
ra
�a
.

Therefore using the above conclusion, it is easy to show that at
least one token is invested by all activated miners.

Now we prove that each token is invested by all miners. Suppose
token a is invested by all miners, while b is not invested by miners
in set M , we have �⇤a

ra <
�⇤b
rb . For any miner i 2 [N ]/M , it holds

h⇤i ,a
�⇤a
= 1 � �⇤a

ra (pi + �i ), and
h⇤i ,b
�⇤b
= 1 �

�⇤b
rb (pi + �i ). Therefore

h⇤i ,a
�⇤a
>

h⇤i ,b
�⇤b

. Then it leads to the following contradiction:

1 =
’

i 2[N ]/M

h⇤i ,a
�⇤a
+

’
j 2M

h⇤j ,a
�⇤a
=

’
i 2[N ]/M

h⇤i ,b
�⇤b
.

⇤

Finally, we prove the basic PNE structure as follows.

P���� ��T ������3.2. Denote the activated miners by setMA,
for any token t , we can obtain

�⇤t =
’
i 2MA

= �⇤t (|MA | �
�⇤t
rt

’
i 2MA

(pi + �i )),

i.e. �⇤t =
|MA |�1Õ

i2MA (pi+�i )
rt . So we have

h⇤i ,t
rt
=

|MA | � 1Õ
i 2MA (pi + �i )

(1 �
(|MA | � 1)(pi + �i )Õ

j 2MA (pj + �j )
),

which is irrelevant with token t . ⇤

P���� ��T ������3.3. For any miner i in PNE, being inacti-
vated is equivalent with �i ,t � 0. Since h⇤i ,t =

q
rt

pi��i ,t �
⇤
t � �

⇤
t = 0

, we have �i ,t = pi �
rt
�⇤t
� 0, i.e. pi � rt

�⇤t
= R

�⇤ . Being half-
hearted is equivalent with �i = 0 and �i ,t = 0. Therefore h⇤i =Õ
t 2[T ] hi ,t =

Õ
t 2[T ] �

⇤
t � pi

Õ
t 2[T ]

(�⇤t )
2

rt = �⇤ � pi
R (�⇤)2. Be-

ing all-out is equivalent with �i � 0 and �i ,t = 0. Therefore
ci = hi = �⇤ � pi+�i

R (�⇤)2  �⇤ � pi
R (�⇤)2. ⇤

3.2 PNE with Uniform Price
Before discussing general cases, we analyze games with uniform
price and show the closed-form PNE by the following theorem.

T������ 3.6 (PNE ���� ������� �����). With uniform price,
the mining game has a PNE, with nethash �⇤ = Qk . Miners [k] are

half-hearted, with hashrate h⇤i = Qk �
Q2
k
R , while the remaining are

all-out, where k is the smallest integer such that Qk =mini 2[N ]Qi
and

Qi ,
(i � 1)R +

q
4iR

Õ
j 2[i+1,N ] c j + (i � 1)2R2

2i
.

Specially, Q0 ,
Õ
i 2[N ] ci and QN , N�1

N R.

In PNE with uniform price, the 3-layer structure degenerates
into 2 layers: no miner is inactivated and, as miners are ordered
by capacity, the�rst k (last N � k) of them are half-hearted (all-
out). As an example, suppose the original miner 1 is removed from
Example 3.1 and the remaining 3 miners are reindexed. Then Q0 =

151,Q1 =
(1�1)⇥150+

p
4⇥1⇥(50+1)+(1�1)2⇥1502

2⇥1 = 87.5. Similarly,Q2 =
76 andQ3 = 100. Thus �⇤ = Q2 = 76 and the largest 2miners, 1 and
2, are half-hearted miners, both investing 76 � 762/150 = 37.5. The
smallest miner is all-out. Although doing her best, she still invests
the least hashrate.

To prove the theorem, we� rst� gure out the structure of PNE.
Among these miners, due to the same �⇤� (�⇤)2

R , their behaviors only
depend on capacity: those with higher capacities are half-hearted,
while the remaining are all-out. Besides, all half-hearted miners
invest the same hashrate, i.e. �⇤ � (�⇤)2

R , which is higher than any
all-out miner.

Then denote Si = Qi�
Q2
i
R andWi =

Õ
j 2[i+1,N ] c j . The following

lemma explains the meaning of Si and Qi .

L����3.7. With uniform price, if there are i half-hearted miners
in PNE, their hashrate is Si , and the total hashrate is Qi .

P����. Let the hashrate of a half-heartedminer be x , the nethash
is �⇤ = ix +Wi , and it holds x = �⇤ � (�⇤)2

R . Solving the equation6,

we get x = (i�1)R+
p
4iWiR+(i�1)2R2

2i = Si and �⇤ = Qi . ⇤

Then Theorem 3.6 can be easily proved with the following two
lemmas.

L����3.8. For i 2 [N ], Qi �
i�1
i R, the equality only holds for

Wi = 0;
For i 2 [N � 1], if Si � ci+1, Qi 

N�1
N R, the equality only holds

for ci+1 = · · · = cN = Si .

P���� ��L ����3.8. We� rst prove the lower bound of Qi . Be-
causeWi � 0,

Qi =
(i � 1)R +

p
4iWi + (i � 1)2R2

2i

�
(i � 1)R +

p
(i � 1)2R2

2i
=

i � 1
i

R

The equality only holds withWi = 0.
Then we prove the upper bound. Note that for any t 2 [T ],

Si = Qi �
Q2
i
R
.

Since Si � ci+1 � · · · � cN , it holds

Si �

Õ
i 2[i ,N ] ci

N � i
=

Wi
N � i

) Wi  (N � i)Si ,

6The other solution is always negative and thus is ruled out.
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and

Qi = iSi +Wi  NSi = N (Qi �
Q2
i
R

).

Therefore

Qi 
N � 1
N

R.

The equality only holds forWi = (N � i)Si , i.e. ci+1 = · · · =

cN = Si . ⇤

L����3.9. For any i 2 [N � 1], the following 3 propositions are
equivalent:

1) ci+1 � Si+1
2) ci+1 � Si
3) Qi � Qi+1

It also holds if the above “�”s are all changed into “”s.

P����. We denote the inverse of 1), 2), and 3) as 1)’, 2)’, and 3)’.
First we prove 3), 1). Suppose Qi � Qi+1, it holds

Qi+1 
(i � 1)R +

p
R
p
(i � 1)2R + 4i(Wi+1 + ci+1)

2i
,

ci+1 �
(2iQi+1�(i�1)R)2

R � (i � 1)2R
4i

�Wi+1

=
(2iQi+1 � (i � 1)R)2 � (i � 1)2R2

4iR
�Wi+1

=
(2iQi+1)2 � 2(i � 1)R(2iQi+1)

4iR
�Wi+1

=
iQ2

i+1
R
� (i � 1)Qi+1 �Wi+1

=
i

R

i2R2 + 2iR
p
R
p
i2R + 4(i + 1)Wi+1

+ R(i2R + 4(i + 1)Wi+1)

4(i + 1)2

� (i � 1)
iR + 2

p
R
p
i2R + 4(i + 1)Wi+1
2(i + 1)

�Wi+1

=i

i2R + 2i
p
R
p
i2R + 4(i + 1)Wi+1
+ i2R + 4(i + 1)Wi+1
4(i + 1)2

� (i � 1)
iR +
p
R
p
i2R + 4(i + 1)Wi+1
2(i + 1)

�Wi+1

=
i3R + i2

p
R
p
i2R + 4(i + 1)Wi+1 + 2i(i + 1)Wi+1

2(i + 1)2

� (i2 � 1)
iR +
p
R
p
i2R + 4(i + 1)Wi+1
2(i + 1)2

�Wi+1

=
iR � 2(i + 1)Wi+1 +

p
R
p
i2R + 4(i + 1)Wi+1

2(i + 1)2
=Si+1

Similarly, if Qi  Qi+1, it also holds ci+1  Si+1, i.e. 3)0 , 1)0.
Then we show 1), 2) and 1)0 , 2)0 by disproving 1)^ 2)0 and

1)0 ^ 2).

When i � 2, 1) ^ 2)0 , Si+1  ci+1  Si ) Si+1  Si . Since
Si+1 = Qi+1 �

1
RQ

2
i+1 and Si = Qi �

1
RQ

2
i , it holds

Qi+1 �
1
R
Q2
i+1  Qi �

1
R
Q2
i

,

(Qi+1 �Qi )(
Qi+1 +Qi

R
� 1) � 0.

According to Lemma 3.8, it holds

Qi+1 +Qi �
i � 1
i

R +
i

i + 1
R =

2i2 � 1
i2 + i

R �
7
6
R � R.

Thus Qi+1 � Qi and 3)0 ) 1)0, which leads to contradiction.
Similarly, 1)0 ^ 2), Si+1 � ci+1 � Si ) Si+1 � Si , and then we
can obtain 3)) 1), which is also contradiction.

Finally we disprove S2  c2  S1 and S2 � c2 � S1. On one
hand,

S1 � c2 ,
p
R
p
c2 +W2 � c2 �W2 � c2

, R �
(W2 + 2c2)2

W2 + c2

On the other hand,

S2  c2 ,
1
8
(
p
R
p
R + 8W2 + R � 4W2)  c2

, R(R + 8W2)  (4(W2 + 2c2) � R)2

, 16RW2  16(W2 + 2c2)2 � 16Rc2
, RW2  (W2 + 2c2)2 � Rc2)

, R 
(W2 + 2c2)2

W2 + c2
.

They contradicts with each other and it cannot be S2  c2  S1.
Similarly, S2 � c2 � S1 does not hold, either. ⇤

3.3 PNE in General Cases
Finally we discuss the PNE in general cases. Combining the total
hashrate and its distribution, which are uncovered in § 3.1, Theo-
rem 3.10 discloses the overall form of general PNE while declaring
its existence and uniqueness. Along with that, we propose Algo-
rithm 1 to compute nethash e�ciently, which is equivalent with a
complicated closed-form expression.

T������ 3.10 (G������PNE). The mining game has a unique
PNE, the nethash of which, �⇤, can be computed within O(Nlo�N )

time by Algorithm 1. Miner i’s hashrate in token t is h⇤i ,t =
rt
R h
⇤
i ,

where h⇤i =max{0,min{ci , �⇤ �
pi
rt (�

⇤
)
2
}}.

P����. Let miners of set MI , MH , MA be inactivated, half-
hearted, and all-out, respectively. The total hashrate in PNE is the
solution7 of equation � = f (�), where f (�) =

Õ
i 2MH (� �

pi
R �2)+Õ

i 2MA ci . Thus we have

� =
(B � 1) +

p
(B � 1)2 + 4AC
2A

if A > 0 or � = C,

where A =
Õ
i 2MH

pi
R , B = |MH |, C =

Õ
i 2MA ci .

7The other solution is always negative and thus is ruled out.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1327



Algorithm 1: Compute total hashrate in PNE
Result: Total hashrate in PNE, �⇤.

1 Build a empty list L;
2 for miner i  1 to N do
3 Add the following 3 tuples into L:

(
1�
p
max {0,1�4cipi /R }

2pi /R ,�
pi
R ,�1, ci ) ,

(
1+
p
max {0,1�4cipi /R }

2pi /R ,
pi
R , 1,�ci ), (

R
pi ,�

pi
R ,�1, 0) ;

4 end
5 Sort L in ascending order of tuples’� rst elements ;
6 ��  0;
7 for i  1 to 3N do
8 �+  L[i][1] ;
9 A,B,C  

Õ
j 2[i] L[j][2],

Õ
j 2[i] L[j][3],

Õ
j 2[i] L[j][4] ;

10 �0  
(B�1)+

p
(B�1)2+4AC
2A if A > 0 else C ;

11 if ��  �0  �+ then
12 return �0 as �⇤;
13 end
14 ��  �+ ;
15 end

Forminer i , starting from 0, when � exceeds 0, 1�
p
max {0,1�4cipi /R }

2pi /R ,
1+
p
max {0,1�4cipi /R }

2pi /R , R
pi , it holds ci > � � pi �2

R , ci  � � pi �2
R ,

ci > � � pi �2
R , pi � R

� , and equivalently, miner i 2MH ,MA,MH ,
MI , respectively. The� rst elements of list L in Algorithm 1 re�ect
the above thresholds of �, and the remaining elements of L repre-
sent the addition operation onA, B, andC when a miners enters (or
leaves) the sets (Line 3). After sorting L (Line 5), we can simulate
� increases from 0 to a segment [L[i � 1][0], L[i][0]], denoted by
[��, �+] (Line 8, 14), and the corresponding A, B, andC are the sum
of 2nd, 3rd, and 4th elements of the�rst i tuples (Line 9). Then we
can compute a solution �0 (Line 10), which is quali�ed if it is inside
the segment (Line 11 - 12).

For the equation � = f (�), the existence of solution can be
proved by showing f (x) is continuously concave with f (0) = 0,
f ( R

mini2[N ] {pi }
) = 0, and f 0(0) = N > 1.

Now we prove the solution of � = f (�) is unique. Suppose x is
the smallest solution, when � = x , the hashrate of miner i is hi ,
and miners sets are still denoted by MH , MA, MI , with A, B, and
C correspondingly induced from them. Assume x 0 > x is also a
solution, when � = x 0, the hashrate of miner i is h0i . Then it can be
proved that h0i  hi for each i 2 [N ]/MH and h0i  x 0 � pi

R (x 0)2

for each i 2MH . Thus it holds

x =
’

i 2MH

(x �
pi
R
x2) +

’
i 2[N ]/MA

hi

<x 0 
’

i 2MH

(x 0 �
pi
R
(x 0)2) +

’
i 2[N ]/MA

h0i



’
i 2MH

(x 0 �
pi
R
(x 0)2) +

’
i 2[N ]/MA

hi ,

which leads tox+x 0  B
A ! x < B

2A . Sincex =
(B�1)+

p
(B�1)2+4AC
2A ,

if B � 2, it holds x > B+B�2
2A �

B
2A , which contradicts with the

above result. If B = 0, it holds x 0 < 0, which also causes contra-
diction. If B = 1, there is only one miner inMH and suppose this

miner’s mining price is p. Then it can be proved that x 0 
q

C
A = x ,

also contradicts with assumption. ⇤

4 STACKELBERG EQUILIBRIUM
In this section we discuss SE. The� rst motivation is that SE can
characterize the competition between big miners and small miners
in reality. As a preliminary knowledge, a Cournot miner always
has the incentive to become the Stackelberg leader, since being
the leader, at least she can get the PNE utility by committing PNE
best response. However, the leader must be wealthy to tolerate
the risk that others do not follow SE, and she also needs to be
well-known to e�ectively publish a commitment. In practice, such
powerful miners indeed exist and is public. For example, there was
a time that Bitmain is known for holding nearly 51% of Bitcoin
mining market [46]. Therefore, if a miner is notably bigger than
others, she probably plays SE. Our second motivation is that SE
can better capture the “benevolent” miners in some new tokens.
Usually, in order to prevent a new token from losing mining power,
as well as reserving some rewards, its supporters will invest some
“benevolent” hashrate in this token. Nomatter how other miners act,
the benevolent miners keep unchanged, which is similar with the
behavior of Stackelberg leader. In order to maximize the reserved
reward, the benevolent miners might play SE.

With single-token and uniform-price, Theorem 4.1 suggests the
game has a unique SE, and given the best commitment of leader,
the closed-form of followers’ hashrate is also derived.

T������4.1. A single-token uniform-price mining game has a
unique Stackelberg-equilibrium:

h⇤x = �k

8i 2 [N ],h⇤i =min{Qk (�k ) �
(Qk (�k ))

2

R
, ci }

where

k , argmax
i 2[k0,N ]^�i 2[0,cx ]

{
�i

Qk (�i ) + �i
R � �i },

k0 , argmin
i 2[0,N ]

Qi (0);

�i ,min{max{max{0,�i },�i },min{�i+1, cx }};

�i ,
R +

p
R2 � 4ciR
2

� (ici +Wi );

�i ,
�2
i + (2i � 1)R�i + (2i � 1)

2R2

� 12iWi (�i + 2iR(i � 2))
12i�i

;
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�i ,
 
(2i � 1)3R3 + 36i2(4i2 � 7i + 4)R2Wi + 216i4RW 2

i

+ 12
p
3

s
i2R2Wi ((i � 1)R + 2i2Wi )2

((2i � 1)3R + 27i2Wi )

!1/3
;

Qi (x) ,
(i � 1)R +

p
4i(Wi + x)R + (i � 1)2R2

2i
; (4)

and

Wi ,
’

j 2[i+1,N ]

c j . (5)

Specially, �N+1 = R, �0 = 0, �0 =
p
RW0 �W0, Q0(x) =W0 + x

andWN = 0.

Comparing the form of Qi and Qi (.), we� nd that, followers’
behavior in SE is similar with PNE, except that they take the leader
as a group of all-out miners whose capacity is the best commitment.
The leader’s best commitment is more complicated, here we show
a counter-intuitive behavior of the leader. Recall in PNE, there is a
threshold such that as long as the capacity is higher (lower) than it,
the miner is half-hearted (all-out). However, such threshold might
not exist in SE. In other words, if we provide some extra capacity
to the leader, it could make no di�erence to her best commitment.
Interestingly, if provided with even more, the best commitment
suddenly increases, like a “phase change”. Example 4.2 illustrates
this insight.

Example 4.2. Consider a single-token uniform-price game with
R = 100. There are 15 miners with c1 = 10 and c2 = · · · = c15 = 5.

First we add a miner and study her PNE behavior given di�erent
capacity. As shown at the left of Fig 3), provided with more capacity,
the PNE best response also increases, until reaching 9.6, when the
utility also saturates at 1.2.

Figure 3: Behavior vs. Capacity (Example 4.2)

Then we take her as the Stackelberg leader but� nd such satu-
ration point does not exist. As shown at the right of Fig 3, when
capacity is less than 14, the best commitment is all-out. When it ex-
ceeds 14, however, the utility of being all-out drops until it reaches
20. Meanwhile, the best commitment stays as 14, being half-hearted.
Interestingly, a phase change happens when capacity is around 24.5:
the best commitment increases to 24.5 abruptly (all-out again).

Finally the following corollary discloses one e�ect of one miner
playing SE instead of PNE.

C��������4.3. In single-token uniform-price mining game, the
nethash in SE is no less than the nethash in PNE.

This actually matches the aim of “benevolent” forces — raising
the total hashrate of speci�c token.

5 SECURITY AND ENERGY-EFFICIENCY
In this section, we analyze the e�ect of various factors on security
and energy-e�ciency. First we consider the attacker as an “outsider”
while honest miners play PNE (see § 5.1). Then suppose the attacker
is the Stackelberg leader, we study her action (see § 5.2).

5.1 Security and Energy-E�ciency in PNE
Assume honest miners are not aware of the attacker and play PNE,
we show the in�uence of capacity distribution and multi-token.
Since mining price and the total capacity are not relevant here, we
assume uniform-price setting and the total capacity is C .

First we show how capacity can a�ect the security indirectly by
the following corollary.

C��������5.1. In PNE with uniform-price, given C =
Õ
i 2[N ] ci ,

it holds Ener�� = Saf et� ⇥C . If there are k half-hearted miners and
k � 1, it holds R

C (1 � 1
k )  Saf et�  R

C (1 � 1
N ), The equality only

holds for k = N .

Following di�erent distribution, the capacity produces di�erent
k and a lower bound of Saf et�, i.e. RC (1 � 1/k). If the capacity of
an attacker is xC , in order to prevent her from launching �-ATK, k
should be at least d�/(� �Cx/R)e. For the two most famous attacks,
50%-ATK (majority attack [31]) and 25%-ATK (sel�sh mining [10]),
k should be at least d1/(1 � 2Cx/R)e. and d1/(1 � 4Cx/R)e, respec-
tively. With higher x , k also needs to be bigger. Note that while
raising Saf et� makes a more robust system, the value of Ener��
also increases, which is less environmental-friendly.

Next we show the relation between capacity disparity and se-
curity by simulation. To quantify the disparity, we adopt Gini in-
dex [19]:

Gini , (

’
i 2[N ]

’
j 2[N ]

|ci � c j |)/(2N
’
i 2[N ]

ci ).

Note that Gini 2 [0, 1], and a higher (or lower) value of it implies
the capacity is more (or less) equally distributed.

We generate games following 3 kinds of capacity distributions8
(500 games for each). In every game, N = 100, R = 100, and total
capacity is normalized into 100.

For each game, the security (Saf et�) is evaluated, which is rep-
resented by each point in Fig 4: (a) - (c). With all distributions, if the
capacity is more disparate (larger Gini), the blockchain is less se-
cure (lower Saf et�). Such trend is most signi�cant with power-law
distribution, since it produces extremely unequal capacity.

Finally, we discuss the e�ect of multiple tokens. Speci�cally, by
raising reward value, a token can gain more hashrate. However, the
gained hashrate is less than raised reward, and when the reward
is higher, this e�ect is weaker. The intuition is that since dQi

dR > 0

and d2Qi
dR2 < 0, according to Theorem 3.6, the nethash, i.e. minimum

8Exponential is exponential distribution with parameter � = 2, and power-law is
Pareto type II distribution with parameter � = 1
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Figure 4: Simulation results in § 5
(a-c: disparity vs. security. d: token reward vs. nethash)

Figure 5: Capacity to attack in SE vs. fully-powered mining

Qi , is also concave with R. We illustrate this insight by an example
with 20 randomly generated miners (C = 100). Suppose token t
increases its reward from 0 to 100, while the total reward of other
tokens remain 50. As shown in Fig 4: (d), �⇤t increases concavely
with rt , but is always smaller than rt /pi .

5.2 Security in SE
When the attacker is the Stackelberg leader, she can launch an �-
ATK only if her capacity is large enough, the closed-form condition
of which is given by the following corollary, using Qi andWi from
(4) and (5) in Theorem 4.1.

C��������5.2. In a mining game, with single-token and uniform-
price setting, the Stackelberg leader is able to launch an �-ATK if
cx > �min{W0 + cx ,mini 2[N ]Qi (cx )}.

Compared with fully-powered mining (all miners exerting full
capacity), the system in SE are more vulnerable, which is illustrated
by the following simulation. With the same pro�le as Example 4.2,
suppose the leader tries to launch an �-ATK, we compute the mini-
mum required capacity (the values in SE can be computed by binary
search.). The results are shown by Fig 5, when honest miners are
fully-powered , compared with SE, it is more di�cult, i.e. demands
higher capacity, for the attacker to succeed, and the gap increases
with � .

6 THEORY VS. REALITY
In this section, we show realistic statistics to support a key pattern
of our theoretical result: Take a pair of tokens sharing the same
cryptographic puzzle, sayA and B, their ratio of reward and nethash
should be the same, i.e. RARB =

�A
�B

(by Theorem 3.10).

(a) BTC vs. BCH
(� = 0.86, p-value: 4e�56)

(b) BTC vs. BSV
(� = 0.80, p-value: 5e�41)

(c) ETH vs. ETC
(� = 0.90, p-value: 4e�202)

(d) LTC vs. EMC2
(� = 0.82, p-value: 1e�30)

Figure 6: History Ratio of Reward and Nethash
(� is Pearson correlation coe�cient of RA

RB and �A
�B
)

We collect reward and gross hashrate of 4 quali�ed token-pairs:
BTC-BCH, BTC-BSV, ETH-ETC and LTC-EMC2.9 Their daily RA

RB
and �A

�B
are compared in Fig 6. We observe that, indeed, the two

ratios are close with each other.
For each pair, Fig 6 shows the Pearson correlation coe�cient

of the two ratios, all of which are signi�cantly high, ranging from
0.8 to 0.9, with p-value less than 0.001. We also compute their
average daily RA

RB /
�A
�B
, denoted by �A,B , the results of which are

�BTC ,BCH = 0.95, �BTC ,BCH = 1.19, �ETH ,ETC = 0.92, and
�LTC ,EMC2 = 0.74. Usually they should be close to 1, while two of
them slightly deviates. One is BTC-BSV, with too much hashrate
in BSV. We conjecture it comes from the “benevolent” hashrate
during the famous “mining war” recently [23]. In order to promote
BSV, its supporters invested a lot hashrate without caring about
the token price. According to Corollary 4.3, this actually causes
disproportionality between nethash and reward value. The other is
LTC-EMC2 with too less hashrate in EMC2. It might because EMC2
is a lesser-known token, and miners would avoid mining it.
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