
Can Agents Learn by Analogy? An Inferable Model for PAC
Reinforcement Learning

Yanchao Sun
University of Maryland

College Park, MD
ycs@cs.umd.edu

Furong Huang
University of Maryland

College Park, MD
furongh@cs.umd.edu

ABSTRACT
Model-based reinforcement learning algorithms make decisions by
building and utilizing a model of the environment. However, none
of the existing algorithms attempts to infer the dynamics of any
state-action pair from known state-action pairs before meeting it
for su�cient times. We propose a new model-based method called
Greedy Inference Model (GIM) that infers the unknown dynamics
from known dynamics based on the internal spectral properties
of the environment. In other words, GIM can “learn by analogy”.
We further introduce a new exploration strategy which ensures
that the agent rapidly and evenly visits unknown state-action pairs.
GIM is much more computationally e�cient than state-of-the-art
model-based algorithms, as the number of dynamic programming
operations is independent of the environment size. Lower sample
complexity could also be achieved under mild conditions compared
against methods without inferring. Experimental results demon-
strate the e�ectiveness and e�ciency of GIM in a variety of real-
world tasks.

KEYWORDS
Model-based reinforcement learning, Spectral method, Sample com-
plexity, Computational complexity

ACM Reference Format:
Yanchao Sun and Furong Huang. 2020. Can Agents Learn by Analogy?
An Inferable Model for PAC Reinforcement Learning. In Proc. of the 19th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 17 pages.

1 INTRODUCTION
In Reinforcement Learning (RL)[37], an agent interacts with the
environment by taking actions and receiving rewards or payo�s to
�gure out a policy that maximizes the total rewards. Recently, RL
has been successfully applied in many� elds such as robotics [27],
games [30], recommendation systems [44], etc. However, the high
sample complexity and cost of computational resources prevent RL
algorithms from being successfully deployed in many real-world
tasks.

We call the RL algorithms which explicitly learn a model from
experiences model-based, and algorithms that directly learn from
interactions without any model model-free. Although these two
types of algorithms are both e�ective in learning, they usually dif-
fer in terms of sample complexity, computational complexity and

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

space complexity, which respectively measure the amount of inter-
actions, computations, and memory an algorithm needs in RL tasks.
Model-based algorithms are more sample e�cient, but cost more
computations and space. In contrast, model-free algorithms save
computations and space, but usually need more samples/experience
to learn, and easily get trapped in local optima.

In this paper, we focus on model-based algorithms due to the
following two reasons. First, model-based algorithms make more
e�cient use of samples than model-free ones. Most existing PAC-
MDP algorithms1 are model-based. Second, the learned model is
an abstraction of the environment, and can be easily transferred to
other similar tasks [8]. For instance, if we change the reward of a
state, only the reward value of the state should be changed in the
learned model in model-based methods. However, for model-free
methods, many state and action values will be a�ected.

Our goal is to� nd a method that can reduce both the sample
and computational complexity of model-based methods. We focus
on the following challenges:

• High stochasticity. The transitions among states are usually
stochastic. The highly stochastic transitions require a large
number of trials and errors to reach the right decisions. Can
we avoid visiting the highly stochastic transitions and still
achieve a good policy?

• Dilemma between sample and computational complexity. Uti-
lizing samples in an e�cient manner requires more oper-
ations, while pursuing high speed may sacri�ce accuracy
and lead to more errors. Can we achieve both sample and
computational e�ciency?

• Interplay of exploration and exploitation. The trade-o� be-
tween exploration and exploitation is a crucial problem in
RL. Should we always iteratively alternate between explo-
ration and exploitation as implemented by most existing
algorithms?

Recent e�orts [20, 33, 38] improve the sample and computational
e�ciency of model-based RL algorithms from various perspectives.
However, the internal structure of the underlying Markov Decision
Process (MDP) is ignored. The internal structure of MDPs refers to
the spectral properties of the transition and reward distributions.
More explicitly, we observed that many MDPs have locally or glob-
ally interrelated dynamics, resulting from the existence of similar
states, actions or transitions. For example, consider a simple 2 ⇥ 3
grid world in Table 1(left) where the agent can go up, down, left and
right. The� oor is slippery so when it wants to go up, it may slip to
either left or right with probability 0.2. (Slipping also happens for
1An algorithm is PAC-MDP (Probably Approximately Correct in Markov Decision
Processes) if its sample complexity is polynomial in the environment size and approxi-
mation parameters with high probability.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1332

other actions). If there is a wall in the objective direction, it stays
in the current state. Table 1(right) is the transition table from other
states to state 2; the entries are the transition probabilities from
state-action pairs to state 2. The rows of state 4 and 6 are omitted
because state 2 is not immediately reachable from state 4 or 6. We
�nd that the rows of state 2 and 5 are exactly the same, and the rank
of this matrix is 3, smaller than the number of states or actions. This
phenomenon becomes more ubiquitous in larger environments.

1 2 3
4 5 6

up down left right
1 0.2 0.2 0 0.6
2 0.6 0 0.2 0.2
3 0.2 0.2 0.6 0
5 0.6 0 0.2 0.2

Table 1: A grid world example and the transition table to
state 2.

Due to the existence of such similar structures, we do not have
to learn every state and action thoroughly, and the exploration can
be much more e�cient. We propose to explore a subset of “essen-
tial” transition dynamics, then infer the remaining dynamics using
spectral methods, to achieve sample and computational e�ciency.

In this paper, we propose a novel model-based RL algorithm
called Greedy Inference Model (GIM), which utilizes the structural
and spectral characteristics of MDPs and thus expedites the learning
process. GIM introduces a novel exploration strategy to discover the
unknowns e�ciently, and a spectral method to estimate the entire
model with the knowledge of a fraction of the model. The core
idea of GIM can be applied to any model-based methods. We prove
that GIM is PAC-MDP, and it has signi�cantly lower computational
complexity and potentially lower sample complexity than state-
of-the-art model-based algorithms. Systematic empirical studies
demonstrate that GIM outperforms both model-based and model-
free state-of-the-art approaches on a wide variety of tasks.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the� rst to estimate
the model by utilizing the internal structure of the
MDPs with guaranteed accuracy. We avoid directly es-
timating the highly stochastic transitions, which is sample-
consuming.

• We show that GIM can signi�cantly reduce the computa-
tional cost, as the number of dynamic programming opera-
tions is independent of the environment size. We also prove
GIM could improve the sample e�ciency of model-based
algorithms.

• Wepropose anewmechanism to address the exploration
and exploitation dilemma. By using a new exploration
strategy (�-curious walking), GIM takes fewer exploration
steps in total than existing methods.

2 RELATEDWORK
2.1 RL Algorithms
Model-based algorithms. Model-based algorithms like E3 [24],
RMax [6] and MBIE [35] construct a model from interactions, stor-
ing the transition probabilities and rewards of every state and ac-
tion pair, and then make predictions with the model. Followup

works improve the e�ciency of aforementioned model-based al-
gorithms. RTDP-RMAX and RTDP-MBIE [33] reduce the number
of updates and achieve lower computational complexity, with mi-
nor performance loss on the accumulated rewards achieved. MOR-
MAX [38] modi�es RMax algorithm and reduces the sample com-
plexity [12, 23] by maintaining an imperfect model, but the model
estimation is not accurate which prevents accurate rewards pre-
dictions for some state-action pairs. [20] proposes a method with
no dependence on the size of the state-action space, but it assumes
that an approximate imperfect model is given.
Model-free algorithms.Model-free algorithms [18, 40, 41] decide
what actions to take based on the trajectory/history. Delayed Q-
learning [34] is a special model-free algorithm as it is PAC-MDP,
whose sample complexity depends linearly on the state and the ac-
tion number. However Delayed Q-learning has higher dependence
on the discount factor � and the error tolerance � than RMax.
Deep RL algorithms. Recently, researchers have made signi�cant
progress by combining deep learning with both model-based or
model-free RL [30, 39] and achieving impressive empirical perfor-
mance. However theoretical understanding of deep learning , and
thus deep RL, remains unsettled. Deep RL, usually applied for large-
scale decision-making problems, requires large number of training
examples, which are not practical for tasks with limited training
examples.
PAC RL. A key goal of RL algorithms is to maximize the reward
with as few samples as possible. The sample-e�ciency of RL algo-
rithms can be measured by the PAC performance metric (sample
complexity)� rst formally de�ned in [23]. [12] derives a tighter PAC
upper bound for episodic� xed-horizon RL tasks. Recently, more
strict metrics like Uniform-PAC and IPOC [13, 14] are proposed
to measure the performance of RL algorithms. And by comput-
ing certi�cates for optimistic RL algorithms [14], minimax-optimal
PAC bounds up to lower-order terms are achieved under certain
conditions.
2.2 Spectral Methods
Matrix completion. The spectral method we will use in this paper
is mainly the well-studied matrix completion. It is proved that we
can recover a matrix with only a fraction of its (noisy) entries [9, 26].
Spectral methods and RL. Spectral methods have been applied
in RL in the learning of POMDP (Partially Observable Markov Deci-
sion Process) [4] and ROMDP (Rich-Observation Markov Decision
Process) [3], where a multi-view model [2] is used. Researchers
discover that knowledge can be transferred between tasks, domains
or agents [7, 16, 28] using spectral methods. Moreover, some recent
works propose new learning algorithms by constructing certain
low-rank models [5, 21, 31], where spectral methods are involved.
Low-rank transition model. There is a line of works learning
the low-rank structure of the transition models [15, 22, 29, 42, 43],
although we focus on di�erent low-rank objects and use di�erent
models as well as assumptions.

3 NOTATIONS AND PROBLEM SETUP
3.1 Notations for RL
In this paper, we focus on episodic, discrete-time, and� xed horizon
MDPswith� nite state and action spaces. AMarkov decision process
(MDP) is de�ned as a tuple < S,A,p(·|·, ·), r (·, ·), µ >, where S is

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1333

the state space (with cardinality S); A is the action space (with
cardinality A); p(·|·, ·) is the transition probability function with
p(sk |si ,aj) representing the probability of transiting to state sk
from state si by taking action aj ; r (·, ·) is the reward function with
r (si ,aj) recording the reward one can get by taking action aj in
state si ; µ is the initial state distribution. p(·|·, ·) and r (·, ·) together
are called the dynamics of the MDP.We useH to denote the horizon
(number of steps one can take in an episode) of an MDP.

De�nition 3.1 (Dynamic Matrices). Given an MDPM denoted by
tuple < S,A,p(·|·, ·), r (·, ·), µ >, we de�ne S + 1 dynamic matrices
{Ms

}s 2S andMr . {Ms
}s 2S are called transition dynamic matrices,

whereMs
i j = p(s |si ,aj) for all s 2 S.M

r is called reward dynamic
matrix in whichMr

i j = r (si ,aj).

The empirical estimations of the dynamic matrices are:

M̂
s
i j =

n(s |si ,aj)

n(si ,aj)
8s and M̂r

i j =
R(si ,aj)

n(si ,aj)
, (1)

where n(si ,aj) is the total number of visits to state-action pair
(si ,aj), n(s |si ,aj) the total number of transitions from si to s by
taking action aj and R(si ,aj) the total rewards 2 for (si ,aj). The
empirical dynamic matrix M̂ is an approximation of the correspond-
ing dynamic matrixM , so we have M̂ = M + Z where Z is a noise
matrix. The more observations we have, the more accurate the
approximation is.

Our main goal is to recover everyM based on M̂ . More explicitly,
given the empirical dynamic matrix M̂ , the algorithm should return
a matrix eM that is �-close to the originalM , i.e., keM �M k  � .

The value function of a policy � for a given MDPM with horizon
H is the expected average rewardV �

M = Es0⇠µ [
1
H
ÕH�1
h=0 r (sh ,� (sh))].

The optimal policy �⇤ is the policy that achieves the largest possible
valueV ⇤M . In an RL task, an agent searches for the optimal policy by
interacting with the MDP. The general goal of RL algorithms is to
learn the optimal policy for any given MDPwith as few interactions
as possible. A widely-used framework to evaluate the performance
of RL algorithms is sample complexity of exploration [23], or sample
complexity for short.

De�nition 3.2 (Sample complexity of exploration). For any � > 0
and 0 < � < 1, and at any episode t , if the policy �t generated by
an RL algorithm L satis�es V ⇤ �V �t  � , we say L is near-optimal
at episode t . If with probability at least 1 � � , the total number of
episodes that L is not near-optimal is upper bounded by a function
� (�,�), then � is called the sample complexity of L.

Intuitively, sample complexity illustrates the number of steps in
which the agent does not act near-optimally.

3.2 Notations for Spectral Methods
Incoherence [26] of a matrix is an important property that demon-
strates the “sparsity” of the singular vectors of the matrix: all coordi-
nates of each singular vector are of comparable magnitude (a.k.a., a
dense singular vector) vs just a few coordinates having signi�cantly
larger magnitudes (a.k.a., a sparse singular vector).

2R(si , aj) is the empirical total rewards gained by visiting (si , aj) in the history, and
is di�erent from r (si , aj).

De�nition 3.3 ((µ0,µ1)-incoherence). A matrix M 2 Rm⇥n with
rank r has SVDM = U�VT, whereU and V are orthonormal. We
say M is (µ0, µ1)-incoherent if (1) for all i 2 [m], j 2 [n] we haveÕr
k=1U

2
ik  µ0r , and

Õr
k=1V

2
jk  µ0r ; (2) There exist µ1 such that

|
Õr
k=1Uik (�k/�1)Vjk |  µ1

p
r , where �k is thek-th singular value

ofM .

The smaller µ0 and µ1 are, the more spread-out the singular vec-
tors are. As a result, matrix completion methods require a smaller
number of known entries to con�dently recover the entire matrix.
See Appendix3 A for details about matrix completion and incoher-
ence.

4 MOTIVATIONS
Before the formal introduction of our proposed learning algorithm,
we consider two questions:
Is it necessary to learn every state-action pair from scratch?
The key to RL is to evaluate the value of every state and action, with
or without a model. The agent makes observations of each state-
action pair, accumulates experience, and estimates the model or the
values. It knows nothing about a state-action pair before meeting it.
However, is it necessary to learn every new state-action pair from
scratch? As humans, we can learn by analogy. For example, if one
has jumped out of a window on the second� oor and got injured,
he will learn never to jump from another window on the third� oor,
because he accumulates knowledge from his previous experience
and� nds the internal connections between these two situations.
But existing RL agents, which are not able to analyze new states,
tend to make the same mistakes in similar situations.

Therefore, in this work, we extract and use the internal con-
nections of the environment via spectral methods to reduce the
unnecessary trials and errors for the agent.
Should we always interleave exploration and exploitation?
The exploration-exploitation dilemma has been intensively studied
for decades and remains unsolved. In RL, exploration is to try the
unknowns, while exploitation maximizes rewards based on the
current knowledge. Most RL algorithms interleave (or alternate
between) exploration and exploitation. An example is the widely-
used �-greedy exploration method, which chooses actions greedily
with respect to the action values with probability 1�� (exploit), and
randomly chooses actions with probability � (explore). Moreover,
manymodel-based algorithms, such as E3 and RMax, choose actions
with the maximum value in known states, and execute the action
that has been tried the fewest times in unknown states. However,
is this interleaving the only manner to get the optimal results? If
the agent “greedily” chooses the most rewarding action when it
knows little about the whole environment, it usually misses the
largest possible reward in the long run. Can the agent ignore the
short-term bene�ts in the beginning, and keep exploring before it
gains enough knowledge?

In this work, we implement a two-phase algorithm in which
exploitation follows after exploration, instead of interleaving the
two. And we prove that our new method requires fewer samples
and computations.

3The Appendix of this paper is in https://arxiv.org/abs/1912.10329

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1334

https://arxiv.org/abs/1912.10329

5 GREEDY INFERENCE MODEL
In this section, we present a novel model-based RL algorithm called
Greedy Inference Model (GIM) that considers the structural prop-
erties of MDPs and separates exploration from exploitation. More
explicitly, two main ideas of GIM are (1) using matrix completion to
recover/complete the dynamic matrices, and (2) greedily exploring
the unknowns.

5.1 Complete Unknowns with Knowns
As in many model-based algorithms [6, 24], we distinguish all state-
action pairs as “m-known” or “m-unknown” (we will say known
and unknown for short) pairs: a state-action pair is known if we
have visited it for over m times, so that the estimations for its
transition probabilities and average reward are guaranteed to be
nearly accurate with high probability. We use K to denote the set
of all known state-action pairs, and K̄ for unknowns.

De�nition 5.1 (Known-ness Mask). For an MDPM with S states
andA actions, the known-ness mask PK

2 RS⇥A is a binary matrix
de�ned as

P
K

i, j =

⇢1 if (si ,aj) ism-known
0 otherwise (2)

Remark. The summation of all entries of the known-ness mask
is the total number of known state-action pairs in the MDP. Row
sums and column sums are the numbers of known state-action
pairs related to every state or action respectively.

As discussed in Motivations, unlike previous model-based meth-
ods such as RMax, we avoid the necessity of observing and gaining
knowledge on every single state-action pair as the MDPs usually
have some internal structure/pattern. We use matrix completion,
a widely used spectral method, to estimate the missing values in
partially observed matrices. We now introduce how to complete
the “unknowns” with “knowns” in an MDP.

5.1.1 Estimate Unknowns via Matrix Completion. Matrix com-
pletion is the problem of recovering unknown entries in the matrix
from a small fraction of its known (noisy) entries, which are ran-
domly sampled from the matrix. When the matrix satis�es some
assumptions that we will discuss later, the recovery is guaranteed
to be accurate, even under noisy known entries. Based on matrix
completion theory, GIM needs only a fraction of state-action pairs
to be known to recover the unknown state-action pairs. Now we
formally de�ne the matrix completion problem as the optimization
problem: for every dynamic matrixM

minimizefM kPK
� (eM � M̂)k

subject to rank(eM)  r
(3)

where PK is the known-ness mask de�ned in De�nition 5.1, �
denotes element-wise product, and r is the rank ofM or the upper
bound of the rank.

5.1.2 Requirements for Accurate Completion. Matrix comple-
tion makes it possible to know all the dynamics from some known
state-action pairs, but the accuracy of completed dynamics is de-
termined by the structure of the matrix, as well as the number and
the locations of known entries. In general, matrix completion with
noisy observations requires (1) the number of known entries be

greater than some threshold, and (2) the known entries be spread
out randomly. We propose the following exploration strategy that
conforms to the two requirements above.

5.2 Greedily Explore the Environment
To satisfy the two requirements on the known state-action pairs
and guarantee the success of matrix completion, we propose a new
exploration strategy called �-curious walking.

Let � denote the fraction of known state-action pairs over all
state-action pairs. Therefore �SA = |K |. We introduce the concept
of �-known state below.

De�nition 5.2 (�-known state). A state s is �-known if there exist
�A distinct actions such that the corresponding state-action pair
(s,a) is known.

Intuitively, the idea of our proposed �-curious walking is: if the
current state s is not �-known, choose an action a that the agent
has taken the most but (s,a) is still unknown; if the current state
is �-known, select the action which most likely leads to a non-�-
known state. The agent also chooses actions randomly with a small
probability � to avoid being trapped in local optima.

Algorithm 1 shows the procedure of �-curious walking, where
Random() generates a random number from a uniform distribution
in [0, 1]; n(s,a) is the total number of visits to state-action pair (s,a);
n(s
0
|s,a) is the total number of transitions from s to s 0 by taking

action a; the indicator function I(s 0 is non-�-known) is 1 if s 0 is not
�-known, and 0 otherwise.

Algorithm 1: �-CuriousWalking
Input: The current state s , a hyper-parameter �
Output: The chosen action a

⇤

1 if Random() < � then
2 return a

⇤
 a random action

3 if s is non-�-known then
4 Ã A

5 foreach a 2 Ã do
6 Ã Ã/{a} if (s,a) is known
7 a

⇤
 argmaxa n(s,a),a 2 Ã

8 else
9 foreach a 2 A do
10 t(a) =

Õ
s 0

n(s 0 |s,a)
n(s,a) I(s

0 is non-�-known)
11 a

⇤
 argmaxa t(a),a 2 A

12 return a
⇤

Compared with the balanced walking method used in both E
3

and RMax, �-curious walking:
• Encourages the agent to choose the actions it has the most
experience with, until the action is known for the current
state. So the agent rapidly knows �SA state-action pairs.

• Spreads the knowledge evenly, i.e., the agent attempts to
know every state with �A actions instead of attempting to
know all A actions for some states but nothing for other
states.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1335

5.3 GIM Algorithm
The proposed GIM algorithm is described in Algorithm 2. When
there are less than �SAm-known state-action pairs, the agent keeps
exploring with �-curious walking (see lines 7-14). As long as �SA
pairs are m-known, the algorithm performs matrix completion
for all dynamic matrices (see lines 15-20).MatComp could be any
o�-the-shelf matrix completion algorithm that solves the problem
de�ned in Equation (3). Note that matrix completion algorithms
implicitly estimate the rank r of the input matrix, so there is no
need to specify the rank as an input to Algorithm 2.
Known threshold. m is the least number of visits to one state-
action pair to make the estimation and the completion accurate.
The choice ofm is speci�ed in Theorem 6.3.
Fraction of known state-action pairs. � controls the fraction of
known state-action pairs, based onwhich thematrix completion can
get convincing results for unknowns. The value of � is determined
by the structure of the underlying MDP. The more the states and
actions in the MDP are interrelated, the smaller � can be. If the
underlying MDP has completely unrelated dynamics, then � is set
to be 1, and matrix completion does nothing but returning the
empirical transition model itself.

Wewill further discuss parametersm and � in theory and practice
in the next two sections. More importantly, we will show that the
advantage of our proposed algorithm over previous model-based
algorithms is larger for smaller �. Even under the worst scenario
of � = 1, our �-curious walking improves learning e�ciency under
certain conditions.

Algorithm 2: Greedy Inference Algorithm
Input: T ,H , �,m, �, �
Output: Near-optimal policy �̃ such that V �̃

� V
⇤
� �

1 Initialize dynamic matrices {M̂s
}s 2S , M̂

r

2 Initialize n(s,a),n(s 0 |s,a),R(s,a) for all s, s 0 2 S,a 2 A
3 Initialize PK as all zeros
4 for episode t 1 to T do
5 s1 initial state
6 for step h 1 to H do
7 if sum(PK

) < �SA then
8 ah �-CuriousWalking(sh , �)
9 Execute ah , get sh+1 and rh+1

10 n(sh ,ah) n(sh ,ah) + 1
11 n(sh+1 |sh ,ah) n(sh+1 |sh ,ah) + 1
12 R(sh ,ah) R(sh ,ah) + rh+1
13 Update M̂sh+1 and M̂r by Equation (1)
14 if n(sh ,ah) � m then Update PK

15 if sum(PK
) � �SA then

16 for s 2 S do
17 eMs

 MatComp(M̂s
,PK)

18 eMr
 MatComp(M̂r

,PK)
19 Set all state-action pairs as known
20 Compute the optimal policy �̃

21 else
22 Choose ah with optimal policy �̃

5.4 GIM As a Framework
Although Algorithm 2 estimates the dynamics by directly averaging
collected samples, which is similar to the classic RMax algorithm,
GIM can also be regarded as a framework and can be combined with
other model-based methods. The simple RMax-style structure in
Algorithm 2 is an illustration of how GIM could be combined with
a model-based method; the analysis we will provide in Section 6
exhibits how GIM could improve a model-based method.

The key ideas of GIM are to infer the unknown dynamics as well
as to know the environment greedily and evenly, which improve the
model-based method combined. For example, in algorithms driven
by con�dence interval estimation, such as MBIE [35], UCRL2 [19]
and etc, we can also use matrix completion to recover the “uncertain
dynamics” using the “dynamics with high con�dence”. This extra
operation will not a�ect what has been learned, but rather make
a guaranteed estimation of the unlearned parts. Therefore, the
learning process is boosted by utilizing the internal structures of
the environment, and as a result, samples are saved.

Overall, it is not our goal to propose a speci�c algorithm with the
best complexity. Instead, we attempt to improve any model-based
algorithm by inferring the dynamics.

6 THEORETICAL ANALYSIS ON
COMPLEXITIES

In this section, we analyze the computational complexity, sample
complexity and space complexity of GIM. By comparing with ex-
isting model-based methods, we show that GIM achieves a much
better computational complexity and improves the sample com-
plexity under mild conditions.

6.1 Computational Complexity
Theorem 6.1 states the computational complexity of GIM.

T������ 6.1 (C������������C ��������� ��GIM). Given an
MDP M with S states and A actions, if GIM is executed for N steps,
then the total computational complexity of GIM is

eO(� + S max{S,A} +N), (4)

where� be the number of computations for one dynamic programming
operation, i.e., updating the policy by solving Bellman equations.

Remark. � depends on the environment size. More speci�cally, if
the maximum number of iterations for dynamic programming is
set asU, then � = O(SAU).

Proof. During the execution of GIM, both dynamic programming
and matrix completion are implemented only once, which lead to
O(�) and eO(S max{S,A}) [17] computations. For every time step,
GIM updates n(s,a),n(s 0 |s,a) and R(s,a), which can be done in con-
stant time. Although �-curious walking in Algorithm 1 performs a
loop over all the actions, in practice we are able to� nd the best ac-
tion within constant time or logarithmic time through maintaining
the known-ness table. These constant-time per step computations
together lead to the eO(N) term.

Comparison with RMax and RTDP-RMAX[33]. We� rst compare
the cost of dynamic programming, the major computational burden
for most RL algorithms. Since within each dynamic programming,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1336

the amount of computation required is the same for GIM and other
model-basedmethods, we use the number of dynamic programming
operations as the metric for computation complexity comparison.

L����6.2. The number of dynamic programming operations re-
quired by GIM is O(1), whereas the number of dynamic programming
operations required by RMax and RTDP-RMAX are O(S) and O(

SA�
Vmax

).

RMax’s computational complexity is O(S�), as RMax computes
the action values every time a new state is known. RTDP-RMAX
is proposed to reduce the computational complexity of RMax. It
initializes all action values to beVmax, the maximum possible value
for an episode, and only updates the value of one state-action pair
when the value decreases more than some threshold � . So it requires
at most O(

SA�
Vmax

�) computations for the dynamic programming,
where � is the error tolerance of action-value estimation. Thus in
terms of dynamic programming computation complexity, GIM is
much faster than RMax and RTDP-RMAX.

Besides the dynamic programming, as shown in Theorem 6.1,
GIM requires some constant-time operations per step, which is
inevitable for all algorithms, and an extra matrix completion com-
putation, which is a one-time cost and is negligible in a long learning
process. Experiments in Section 7.1.4 veri�es this fact.

6.2 Sample Complexity
As stated in Section 5.4, what we propose is a new exploration and
estimation approach, that could be combined with model-based
PAC algorithms [12, 36, 38] to get lower sample complexity. In
this section, we analyze the sample complexity of Algorithm 2
by adapting the analysis of RMax [23]. RMax is chosen due to its
simplicity and versatility.

We now introduce a few notations that are essential in our anal-
ysis. (1) Denote the upper bounds of the condition number and the
rank of every dynamic matrix by � and r . (2) All dynamic matri-
ces are at least (µ0, µ1)-incoherent. (3) Let Min = min{S,A}, and
Max = max{S,A}.

We also make the following two mild assumptions.

A���������1. There is a known diameter D, such that any state
s
0 is reachable from any state s in at most D steps on average. Assume
that the diameter D is smaller than the horizon H .

The assumption about diameter is commonly used in RL [19],
and it ensures the reachability of all states from any state on average.
It is mild to assume D < H as the horizon is often set large.

A���������2. The distribution of the estimation noise, p(·|·, ·)�
p̂(·|·, ·) and r (·, ·)� r̂ (·, ·), is sub-Gaussian with 0 mean. And the
estimation noises for di�erent state-action pairs are independent.

This modeling of di�erence between the ground-truth probabil-
ity and empirical estimation using sub-Gaussian variables is widely
used.

The sample complexity of GIM is in Theorem 6.3.

T������ 6.3 (S�����C ��������� ��GIM). Given an MDPM
with� xed horizon H and diameter D, suppose the upper bounds of
the condition number, rank and incoherence parameters of dynamic
matrices are �, r , µ0 and µ1, for any 0 < � < 1, 0  � < 1, with

completion fraction

� � �(
1
p
SA

�
2 max{µ0r

r
Max
Min

logMin ,

µ
2
0r

2Max
Min

�
4, µ21r

2Max
Min

�
4
}),

(5)

and the known threshold

m � O(
�
4
rSH

2
Max

�A�2
), (6)

algorithm 2 produces a policy �̂ , which satis�es V �̂
M � V

⇤

M � � for all

but O(
�4rS2MaxHD

(1��)� 2 log 1
�) episodes, with probability at least 1� � �

1/M3
in .

Remark. For low-rank dynamicmatrices,� tends to be small. In our
experiments, � is typically less than 2. If we regard �4D

(1��) as a con-

stant, the sample complexity of GIM becomes O(
rS2MaxH

� 2 log 1
�).

Proof Sketch. We� rst setm to be the least number of visits to a
state-action pair tomake it known (see Condition 1 in Appendix B.1).
Then, we prove with at most O(

�mSAD
(1��)H log 1

�) episodes, we know
�SA pairs as Lemma B.1. Finally, we prove the value ofm should
be O(

�4rSH 2Max
�A� 2) by Lemma B.2, Lemma B.4 and Lemma B.3. The

full proof and the lemmas are in Appendix B.

Comparison with RMax. The sample complexity of RMax, in our
settings, is O(

S2AH 2

� 3 log 1
� log SA

�)[23]. We compare the sample
complexity of GIM and RMax in the following scenarios.
(1) When A � S . GIM has lower sample complexity than RMax if
r < O(

H
� log SA

�).
(2) When S > A. GIM has lower sample complexity than RMax if
r < O(

AH
S� log SA

�).
(3) Worst Scenario (� = 1). We deactivate the matrix completion
steps by simply setting � = 1 andm = O(

SH 2

� 2 log SA
�), when the un-

derlyingMDP does not have any inner-related structure. Thismakes
GIM follow �-curious walking until all the state-actions are known.
In this case, the sample complexity becomesO(

S2AHD
(1��)� 2 log

1
� log SA

�).
Because H � D and 1 � � is close to 1, GIM generates less non-�-
optimal episodes than RMax does. So �-curious walking strategy
itself saves samples.

Note that r  min{S,A}, so the conditions in (1) and (2) are
satis�ed for most tasks.

Achieve Lower Sample Complexity. One may note that the sample
complexity bound in Theorem 6.3 is not optimal in terms of the
dependency on S and A. When A > S , GIM needs Õ(S

2
A) samples

to learn a near-optimal policy. However, the best known bounds of
model-based algorithms are of order Õ(SA) [13, 14, 38]. The saved
factor of S results from the direct analysis of the value function (and
an imperfect model approximation). Since we claim that GIM can
work as a framework, can GIM also achieve linear dependency? In
our analysis and the original analysis of RMax, the known thresh-
old is at leastm = O(S ln S), but as indicated by [25], with speci�c
updating strategies,m = O(ln S) samples might be enough to maxi-
mize the rewards. So it is possible for GIM to avoid an S factor by

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1337

incorporating re-estimating methods, although this is out of the
scope of this paper.

6.3 Space Complexity
The memory GIM needs is mainly for the storage of dynamic ma-
trices. Similar with other model-based RL algorithms, the space
complexity of GIM is �(S2A), as we have S + 2 matrices with size
S ⇥ A. In contrast, the space complexity of model-free algorithm
such as Delayed Q-learning could be as low as O(SA). Although a
large space complexity seems to be unavoidable for model-based
methods, one can consider storing the sparse dynamics in a sparse
format where only non-zero elements are stored if the dynamic
matrices are sparse. Then the space complexity will be reduced to
�(nnz), where nnz is the number of non-zero entries.

7 EXPERIMENTS
7.1 Performance on Multiple Tasks

7.1.1 Tasks. To exhibit the universal applicability of GIM, we
conduct experiments onmultiple tasks of varying levels of hardness:
(1) Synthetic. We create various MDPs by randomly generating the
dynamicmatrices with varying numbers of states, actions and ranks.
(2) GridWorld. A classic grid world task, with world size 4 ⇥ 4, slip
probability 0.4 and step cost 0.2. (3) CasinoLand. A challenging
task constructed by [32], which consists of six rooms and three
levers. Pulling some levers may lead to a large reward with a small
probability. (4) RiverSwim. Another challenging task constructed
by [32], where a chain of 6 states represents a river, and an agent
needs to “swim” from the� rst state to the last one to get a large
reward. See Appendix C.1 for detailed description of CasinoLand
and RiverSwim.

7.1.2 Baselines. To verify the e�ectiveness and e�ciency of
GIM, it is compared against popular model-based and model-free
methods: RMax, Q-learning, Delayed Q-learning, and Double Q-
learning [18] methods. We select RMax among all model-based
methods, because Algorithm 2 is designed on the basis of RMax.
So the e�ectiveness of our proposed strategies can be justi�ed by
comparing with RMax. Note that it is also possible to apply similar
strategies to other existing model-based algorithms, as claimed in
Section 5.4.

Moreover, we implement an “optimal” agent which knows all the
dynamics and deploys the optimal policy from the beginning, as
well as a “random” agent which chooses action randomly. The “op-
timal” agent is the best any agent could achieve, while the “random”
agent is the worst any agent could perform. We use the simple_rl
framework provided by Abel [1] to conduct the experiments.

7.1.3 Reward Comparison. We demonstrate the average cumu-
lative reward over 20 runs of GIM and baselines on various tasks in
Figure 1. The plots are smoothed out by plotting every few hundred
epochs for better illustration. Note that a line of reward increases
linearly after it� nds the best policy. Agents whose sample com-
plexities are lower converge to the best policy earlier. For hyper-
parameters, we set the known thresholdm for both RMax and GIM
to be 40, and set the completion fraction threshold � for GIM to be
0.8. We will discuss the in�uence of di�erent settings on RMax and
GIM later. Among all these methods, GIM achieves the highest total

0 2 4 6 8

·104

0

0.5

1

·105

Episode Number

Cu
m
ul
at
iv
e
Re

w
ar
d

(a) Synthetic Task (S=20 A=10)

Optimal
GIM
RMax
Q-learning
Delayed-Q
Double-Q
Random

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

�1

0

1

2

·104

Episode Number

Cu
m
ul
at
iv
e
Re

w
ar
d

(b) GridWorld (Height=4 Width=4)

0 1,000 2,000 3,000 4,000

0

1

2

·106

Episode Number

Cu
m
ul
at
iv
e
Re

w
ar
d

(c) CasinoLand

0 1,000 2,000 3,000 4,000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

·107

Episode Number

Cu
m
ul
at
iv
e
Re

w
ar
d

(d) RiverSwim

Figure 1: Comparison of the mean cumulative reward over
20 runs of GIM and baselines on various tasks.

reward. Although Q-learning, Delayed-Q and Double-Q converge to
a good policy quickly, they are sometimes trapped in local-optima
and cannot win in the long run. On the contrary, RMax� gures
out a policy that is near-optimal, but it often takes more episodes
to converge to that policy. GIM avoids these two drawbacks; it
converges quickly and the returned policy is near-optimal.

Model-based Model-free
GIM RMax Q Delayed-Q Double-Q

Synthetic 539.19 694.15 364.83 530.47 619.41
Gridworld 11.75 13.94 12.68 11.2 13.7
Casinoland 7.21 8.18 3.61 3.00 3.93
RiverSwim 7.62 6.06 5.87 4.88 6.33
Table 2: Comparison of running times in seconds.

7.1.4 Running Time Comparison. Table 2 provides the average
running times of each agent on various tasks. In general, our model-
based GIM is faster thanmodel-based RMax, and is even comparable
to the model-free methods which are generally faster as there is no
need to maintain a model. For RiverSwim, GIM is slightly slower
than RMax as the one-time cost of computation of matrix comple-
tion slows down the GIM agent. This one-time cost is less signi�cant
for time-consuming tasks where running time is the bottleneck.

7.1.5 Scale Up to Larger Environments. Although many model-
based algorithms perform well in small environments, it is usu-
ally not easy for them to work on large-scale problems. However,
GIM avoids exhaustedly visiting and estimating the whole environ-
ment by inferring some dynamics. When the environment is highly
internal-dependent, only the knowledge of a small fraction of the
space is needed. Thus fewer samples and computations are con-
sumed. To evaluate the scalability of GIM compared with baselines,
we gradually enlarge the size of the synthetic task and show the
cumulative rewards in Figure 2. GIM performs well compared with
baselines, while RMax fails to converge to the optima within the

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1338

given number of episodes. We set the known thresholds for both
GIM and RMax to be 100. As a result, the performance of learned
policy by GIM is slightly worse than Q-learning, sincem = 100 is
not adequate for estimating the large environments. But one can
anticipate higher rewards by GIM, oncem is set higher.

The running times corresponding to Figure 2, are shown in
Table 3, where one can� nd GIM is much faster than RMax and
Double Q-learning. As the environment size gets larger, GIM takes
slightly longer to run, while RMax spends much more time due to
the increased computation requirements.

0 0.5 1 1.5

·105

0

0.5

1

1.5

·105

Episode Number

Cu
m
ul
ai
ve

Re
w
ar
d

(a) S=20 A=10

Optimal
GIM
RMax
Q-learning
Delayed-Q
Double-Q
Random

0 0.5 1 1.5

·105

0

0.5

1

1.5

·105

Episode Number

Cu
m
ul
ai
ve

Re
w
ar
d

(b) S=30 A=20

Optimal
GIM
RMax
Q-learning
Delayed-Q
Double-Q
Random

0 0.5 1 1.5

·105

0

0.5

1

1.5

·105

Episode Number

Cu
m
ul
ai
ve

Re
w
ar
d

(c) S=40 A=30

Optimal
GIM
RMax
Q-learning
Delayed-Q
Double-Q
Random

0 0.5 1 1.5

·105

0

0.5

1

1.5

·105

Episode Number

Cu
m
ul
ai
ve

Re
w
ar
d

(d) S=50 A=40

Optimal
GIM
RMax
Q-learning
Delayed-Q
Double-Q
Random

Figure 2: Comparison of the mean cumulative reward of
GIM and baselines on synthetic tasks with various environ-
ment size.

Model-based Model-free
GIM RMax Q Delayed-Q Double-Q

S=20, A=10 2165 2410 1386 2244 2465
S=30, A=20 2296 4581 1635 2541 3107
S=40, A=30 2304 9778 2007 2477 3413
S=50, A=40 2423 19870 2287 2399 3424

Table 3: Comparison of running times (in seconds) on syn-
thetic tasks with various environment size. The number of
episodes are all set to be 2 ⇥ 105.

7.2 Experiments on Parameters
In practice, it is important to select an appropriate known threshold
m for GIM and RMax. GIM also requires a completion fraction
�. Although we can choose � based on experience, it is related
to the properties of the dynamic matrices (�, r , µ0, µ1) as proved
in Theorem 6.3. So, we design and conduct a series of systematic
tests to study howm,�, r , µ0, µ1 (for� xed �) in�uence the learning
e�ectiveness and e�ciency of GIM, in comparison with RMax.

The following three measurements are evaluated. (1) AvgRe-
ward: average reward per episode; (2)TotalEps: number of episodes
needed to know all states and actions; and (3) PostAvgReward: av-
erage reward after knowing all states and actions (after exploration),
which re�ects accurateness of the learned dynamics.

7.2.1 Values of the Known Thresholdm. We run experiments
on synthetic and GridWorld tasks with di�erent known threshold
m. Figure 3 shows the AvgReward, PostAvgReward and TotalEps
of RMax and GIM with di�erent values ofm. For the samem, GIM
gains more rewards (Figure 3a), and completes exploration faster
than RMax (Figure 3b), with a slightly worse returned policy (Fig-
ure 3c). When m varies, RMax requires much more episodes to
explore, while GIM is more robust to the changingm as shown in
Figure 3b. We present the results on higher-rank synthetic tasks
and the GridWorld task in Appendix C.2.

40 60 80 100 120

0.75

0.80

0.85

0.90

0.95

1.00

Known Thresholdm

Av
gR

ew
ar
d

(a) AvgReward versusm

RMax
GIM

40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

·106

Known Thresholdm

To
ta
lE
ps

(b) TotalEps versusm

RMax
GIM

40 60 80 100 120

0.98

0.99

1

Known Thresholdm

Po
st
Av

gR
ew

ar
d

(c) PostAvgReward versusm

RMax
GIM

Figure 3: Comparison of AvgReward, TotalEps, and
PostAvgReward of RMax and GIM on synthetic task
with di�erent known thresholds. S=20, A=10 and rank=2.

7.2.2 Properties of Dynamic Matrices. We visualize the AvgRe-
ward of GIM and RMax under varying dynamic matrix ranks r ’s,
incoherence parameter µ0’s and condition number �’s in Figure 4.
(1) In�uence of r . As Figure 4a shows, the average rewards of both
GIM and RMax drop slightly when rank becomes higher. Even if
the dynamic matrix is full-rank, the policy returned by GIM still
obtains a high reward.
(2) In�uence of µ0 and �.We see from Figure 4b and Figure 4c that
GIM outperforms RMax, and does not change much with varying
µ0 or �.

Experiments of matrix properties are conducted on synthetic
tasks because it is easy to control the properties of their underlying
MDPs. But the observed connections between studied properties
and learning results can be extended to any other tasks. Additional
experimental results including PostAvgReward, TotalEps are shown
in Appendix C.3, as well as the results for µ1.

2 4 6 8 10
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Rank

Av
gR

ew
ar
d

(a) AvgReward versus Rank

RMax
GIM

3 3.5 4 4.5 5

0.8

0.85

0.9

0.95

1

Incoherence Parameter µ0

Av
gR

ew
ar
d

(b) AvgReward versus µ0

RMax
GIM

6 8 10 12 14 16

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Condition Number �

Av
gR

ew
ar
d

(c) AvgReward versus �

RMax
GIM

Figure 4: Comparison of AvgReward of GIM and RMax with
varying ranks, µ0 and �. S = 20, A = 10 and m = 40. The
generated ranks for (b) and (c) are 2 and 4 respectively.

8 CONCLUSION
This paper proposes a model-based RL algorithm called GIM. GIM
utilizes the internal structures of MDPs to infer the unknown dy-
namics, and uses a novel exploration strategy to e�ciently explore
the environment. Theoretical analysis and empirical results show
that GIM can reduce both sample complexity and computational
complexity when combined with classic model-based algorithms.
We envision incorporating our proposed techniques for multi-task
RL where internal structures of MDPs can connect di�erent tasks.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1339

REFERENCES
[1] David Abel. 2019. simple_rl: Reproducible Reinforcement Learning in Python.

(2019).
[2] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus

Telgarsky. 2014. Tensor decompositions for learning latent variable models. The
Journal of Machine Learning Research 15, 1 (2014), 2773–2832.

[3] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar.
2016. Reinforcement learning in rich-observation MDPs using spectral methods.
arXiv preprint arXiv:1611.03907 (2016).

[4] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar.
2016. Reinforcement learning of POMDPs using spectral methods. arXiv preprint
arXiv:1602.07764 (2016).

[5] Byron Boots, Sajid M Siddiqi, and Geo�rey J Gordon. 2011. Closing the learning-
planning loop with predictive state representations. The International Journal of
Robotics Research 30, 7 (2011), 954–966.

[6] Ronen I. Brafman and Moshe Tennenholtz. 2003. R-max - a General Polynomial
Time Algorithm for Near-optimal Reinforcement Learning. J. Mach. Learn. Res. 3
(March 2003), 213–231. https://doi.org/10.1162/153244303765208377

[7] Stefano Bromuri. 2012. A Tensor Factorization Approach to Generalization
in Multi-Agent Reinforcement Learning. In 2012 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology, Vol. 2. IEEE,
274–281.

[8] Emma Brunskill and Lihong Li. 2013. Sample complexity of multi-task reinforce-
ment learning. arXiv preprint arXiv:1309.6821 (2013).

[9] Emmanuel J Candes and Yaniv Plan. 2010. Matrix completion with noise. Proc.
IEEE 98, 6 (2010), 925–936.

[10] Emmanuel J Candes and Terence Tao. 2009. The power of convex relaxation:
Near-optimal matrix completion. arXiv preprint arXiv:0903.1476 (2009).

[11] Yudong Chen. 2013. Incoherence-Optimal Matrix Completion. Information
Theory IEEE Transactions on 61, 5 (2013), 2909–2923.

[12] Christoph Dann and Emma Brunskill. 2015. Sample Complexity of Episodic
Fixed-Horizon Reinforcement Learning. In Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (Eds.). Curran Associates, Inc., 2818–2826. http://papers.nips.cc/paper/
5827-sample-complexity-of-episodic-�xed-horizon-reinforcement-learning.
pdf

[13] Christoph Dann, Tor Lattimore, and Emma Brunskill. 2017. Unifying PAC and
regret: Uniform PAC bounds for episodic reinforcement learning. In Advances in
Neural Information Processing Systems. 5713–5723.

[14] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. 2018. Policy
certi�cates: Towards accountable reinforcement learning. arXiv preprint
arXiv:1811.03056 (2018).

[15] Yaqi Duan, Mengdi Wang, Zaiwen Wen, and Yaxiang Yuan. 2018. Adaptive
Low-Nonnegative-Rank Approximation for State Aggregation of Markov Chains.
arXiv preprint arXiv:1810.06032 (2018).

[16] Kimberly Ferguson and Sridhar Mahadevan. 2006. Proto-transfer learning in
markov decision processes using spectral methods. Computer Science Department
Faculty Publication Series (2006), 151.

[17] David Gamarnik, Quan Li, and Hongyi Zhang. 2017. Matrix Completion from
O (n) Samples in Linear Time. arXiv preprint arXiv:1702.02267 (2017).

[18] Hado V. Hasselt. 2010. Double Q-learning. In Advances in Neural Information
Processing Systems 23, J. D. La�erty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta (Eds.). Curran Associates, Inc., 2613–2621. http://papers.nips.cc/
paper/3964-double-q-learning.pdf

[19] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal regret bounds
for reinforcement learning. Journal of Machine Learning Research 11, Apr (2010),
1563–1600.

[20] Nan Jiang. 2018. PAC reinforcement learning with an imperfect model. In Thirty-
Second AAAI Conference on Arti�cial Intelligence.

[21] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. 2017. Contextual decision processes with low Bellman rank are PAC-
learnable. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 1704–1713.

[22] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. 2019. Provably e�-
cient reinforcement learning with linear function approximation. arXiv preprint
arXiv:1907.05388 (2019).

[23] Sham Machandranath Kakade et al. 2003. On the sample complexity of reinforce-
ment learning. Ph.D. Dissertation. University of London London, England.

[24] Michael Kearns and Satinder Singh. 2002. Near-optimal reinforcement learning
in polynomial time. Machine learning 49, 2-3 (2002), 209–232.

[25] Michael J Kearns and Satinder P Singh. 1999. Finite-sample convergence rates for
Q-learning and indirect algorithms. In Advances in neural information processing
systems. 996–1002.

[26] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. 2010. Matrix
completion from noisy entries. Journal of Machine Learning Research 11, Jul
(2010), 2057–2078.

[27] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),
1238–1274.

[28] Alessandro Lazaric, Emma Brunskill, et al. 2013. Sequential transfer in multi-
armed bandit with� nite set of models. In Advances in Neural Information Pro-
cessing Systems. 2220–2228.

[29] Xudong Li, Mengdi Wang, and Anru Zhang. 2018. Estimation of Markov chain
via rank-constrained likelihood. arXiv preprint arXiv:1804.00795 (2018).

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[31] Hao Yi Ong. 2015. Value function approximation via low-rank models. arXiv
preprint arXiv:1509.00061 (2015).

[32] A Strehl and M Littman. 2004. Exploration via model based interval estimation.
In International Conference on Machine Learning. Citeseer.

[33] Alexander L Strehl, Lihong Li, and Michael L Littman. 2012. Incremental
model-based learners with formal learning-time guarantees. arXiv preprint
arXiv:1206.6870 (2012).

[34] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L.
Littman. 2006. PAC Model-free Reinforcement Learning. In Proceedings of the
23rd International Conference on Machine Learning (ICML ’06). ACM, New York,
NY, USA, 881–888. https://doi.org/10.1145/1143844.1143955

[35] Alexander L. Strehl andMichael L. Littman. 2005. A Theoretical Analysis ofModel-
Based Interval Estimation. In Proceedings of the 22Nd International Conference
on Machine Learning (ICML ’05). ACM, New York, NY, USA, 856–863. https:
//doi.org/10.1145/1102351.1102459

[36] Alexander L Strehl and Michael L Littman. 2008. An analysis of model-based
interval estimation for Markov decision processes. J. Comput. System Sci. 74, 8
(2008), 1309–1331.

[37] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[38] István Szita and Csaba Szepesvári. 2010. Model-based reinforcement learning
with nearly tight exploration complexity bounds. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10). 1031–1038.

[39] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI conference on arti�cial intelli-
gence.

[40] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[41] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[42] Lin F Yang and Mengdi Wang. 2019. Reinforcement Leaning in Feature Space:
Matrix Bandit, Kernels, and Regret Bound. arXiv preprint arXiv:1905.10389 (2019).

[43] Lin F Yang and Mengdi Wang. 2019. Sample-optimal parametric q-learning with
linear transition models. arXiv preprint arXiv:1902.04779 (2019).

[44] Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sund. 2019.
Hierarchical Reinforcement Learning for Course Recommendation in MOOCs.
Psychology 5, 4.64 (2019), 5–65.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1340

https://doi.org/10.1162/153244303765208377
http://papers.nips.cc/paper/5827-sample-complexity-of-episodic-fixed-horizon-reinforcement-learning.pdf
http://papers.nips.cc/paper/5827-sample-complexity-of-episodic-fixed-horizon-reinforcement-learning.pdf
http://papers.nips.cc/paper/5827-sample-complexity-of-episodic-fixed-horizon-reinforcement-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf
https://doi.org/10.1145/1143844.1143955
https://doi.org/10.1145/1102351.1102459
https://doi.org/10.1145/1102351.1102459

