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ABSTRACT
We develop a methodology for comparing two or more agent-based

models that are developed for the same domain, but may differ in

the particular data sets (e.g., geographical regions) to which they

are applied, and in the structure of the model. Our approach is to

learn a response surface in the common parameter space of the

models and compare the regions corresponding to qualitatively

different behaviors in the models. As an example, we develop an

active learning algorithm to learn phase transition boundaries in

contagion processes in order to compare two agent-based models

of rooftop solar panel adoption.

KEYWORDS
agent-based modeling; active learning; response surface methods;

model comparison

ACM Reference Format:
Swapna Thorve

1
, Zhihao Hu

2
, Kiran Lakkaraju

3
, Joshua Letchford

3
, Anil

Vullikanti
1
, and Achla Marathe

1
, Samarth Swarup

1
. 2020. An Active Learn-

ing Method for the Comparison of Agent-based Models. In Proc. of the 19th
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar
(eds.), Auckland, New Zealand, May 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Complex large-scale agent-based models (ABM) are becoming in-

creasingly common, in a huge number of application areas, such

as public health, infrastructure systems such as transportation and

power, disaster evacuation, and technology adoption. ABMs are

designed to answer specific questions within an application, and

their design is data-driven. As a result, there can be multiple ABMs

with a similar overall structure, but differences in the specific model

components, their interactions and parameters. This raises the gen-

eral question of how to compare such models [2, 6]. Axtell et al. [2]

were the first to address this question, and developed the “docking”

technique, which involves verifying whether or not the dynamical

properties of one ABM can be regenerated by another. However,

this is computationally intractable as ABMs become complex, and

a very restrictive notion. Other notions of validation and equiva-

lence of ABMs have also been explored [e.g., 4, 22]. However, these

only allow restricted forms of comparison between ABMs, and do
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not provide efficient computational tools for comparison based on

specific characteristics in the phase space.

At an abstract level, these questions are analogous to the many

notions of phase space equivalence of dynamical systems [1, 18].

The approach of [2] attempts to compare precise structural prop-

erties in the phase space, which is NP-hard, in general [1]. In this

paper, we present a general and more scalable framework to make

these types of comparisons between ABMs, based on comparing ap-

proximate representations of the phase spaces of the ABMs; specif-

ically, we consider the structure of the region which correspond

to “phase transitions”, i.e., where the system has very different

behavior by small change in parameters. While this does not corre-

spond to exact phase space equivalence, this notion can give useful

insights in many applications where the ABMs work on different

domains.

As a specific example, we consider ABMs for adoption of rooftop

solar panels by households in three different regions of the United

States. A question of interest for local governments and utilities is

to understand who will adopt solar, and how to increase adoption.

We compare two different ABMs, one developed for California [24],

and the other for Virginia that we present here, based on a model

presented earlier by Hu et al. [11]. The probability of adoption by a

household depends on a number of factors, including demographics

and characteristics of the house, as well as peer effects, captured
by the number of households who have adopted within a 1-4 mile

range. The two models have a large fraction of common factors,

but some which are distinct, e.g., pool ownership, which is a factor

in the ABM of [24], but not in that of [11]. The datasets used in the

calibration of these two ABMs have different characteristics, with a

much larger adoption rate in California. In order to compare these

two ABMs, we study whether it is somehow easier to have a large

number of adoptions in one region than another, or whether it is

just a chance difference. Our contributions are summarized below.

• We design a general methodological framework based on

the response surface method. We introduce a notion of char-
acteristic distribution of an ABM in terms of phase space

properties as the probability distribution of the ABM out-

comes within some range. A specific example we consider

is a range within which the dynamics exhibits a phase tran-

sition. We quantify the disagreement between two ABMs

through the differences in these probability distributions.

• We design a machine learning approach based on active

learning for estimating the characteristic distribution. Active

learning helps us reduce the number of times the simulation
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has to be run. Thus, this is a much more scalable approach

for complex ABMs.

• We illustrate our approach on the two ABMs for comparing

solar adoption. Our results show that it is indeed easier to see

large numbers of adopters in the San Diego model, but that

there are significant differences between the two regions of

Virginia that we study also.

Organization. The rest of this paper is organized as follows. First

we present the general methodological framework (Section 2). Then

we describe the two models we are comparing (Section 3). After

describing this method in detail (Section 4), we present results from

computational experiments with the two models (Section 5). We

end with a discussion of related work and future directions.

2 FRAMEWORK
Response surface methodology [5, 7], also known as metamodel-

based methods [3] for stochastic simulations is generally used for

optimization [19] and calibration [9, 13]. The general idea is to

approximate the stochastic objective function (the “response”) by a

low order polynomial function of the independent variables over a

part of the domain. RSM typically runs in phases. The process starts

with a screening experiment, which identifies a subset of candidate

variables, which are most significant in the region of interest. Next,

a first-order model is used to approximate the response, and a line

search is used to find an improving direction for the objective. In

the second phase, a second-order model is used to approximate the

objective, since usually a response surface has curvature near the

optimum.

We denote the agent-based simulation model as a stochastic

function, F (ξ1, ξ2, ..., ξk ), of its parameters, assuming a fixed initial

condition. In response surface methodology, we generally fit the

expected value of this function,

f (ξ1, ξ2, ..., ξk ) = E(F (ξ1, ξ2, ..., ξk )), (1)

where F is the stochastic output, given parameters ξ1, ξ2, ..., ξk ,
and E denotes expectation. This is appropriate when the goal is

optimization or calibration.

However, when we are using the ABM to model a specific ob-

served phenomenon, as is the case in the scenarios described in

Section 3, the real-world data represent only one stochastic realiza-

tion of the model. Therefore, instead of taking the expectation, we

characterize the behavior of the ABM in terms of the probability

of seeing a particular output given a particular parameter setting.

For ease of exposition, we assume that the simulation outputs one

continuous variable, y, though the formalism generalizes straight-

forwardly to multiple outputs. We relate y to the parameters as

follows.

P(ylow < y < yhiдh ) =

∫
P(ylow < F < yhiдh |Ξ)P(Ξ), (2)

where Ξ = [ξ1, ξ2, ..., ξk ], and P(Ξ) is a prior probability over the

parameter space. Thus, the ABM can be characterized as a dis-

cretized probability distribution, using a set of bins denoted by

their bin boundaries, {[y0,y1], [y1,y2], ..., [yn−1,yn ]}. The choice
of bins depends on the domain of the model. For example, models of

contagion processes exhibit sharp transitions, which are a natural

choice for bin boundaries in that case, as we will see in the exper-

iments section. We refer to this distribution as the characteristic
distribution for the ABM.

We define the characteristic distance between two ABMs as the

distance between their characteristic distributions.

d(F1, F2) := D(P1(y), P2(y)). (3)

There are multiple valid choices for D, such as the (symmetric)

KL-divergence, mean-squared distance, total variation distance,

earth-mover’s distance, etc. Note that this distance is well-defined

even if the two ABMs have entirely different parameter spaces,

since it is defined only over the output space. Thus it is a fairly

general method of comparison. For a given observed value, yobs ,
we can also directly compare the probabilities assigned by the two

models to the corresponding bin.

dobs (F1, F2) := P1(Bobs ) − P2(Bobs ), (4)

where Bobs is the bin within which yobs lies. This directly tells us

how much more likely it is to see yobs in one model versus the

other.

For a general comparison of the two ABMs in the case where

the two ABMs have an overlap in their parameter space (i.e., they

have some parameters in common), we can have a more detailed

comparison. Let Ξc be the parameters that the two ABMs have in

common. We can partition this subspace of the parameter space

into regions based on the most likely bin for y for each parameter

setting.

B(Ξc ) = argmax

B

∫
Ξ\Ξc

P(B |Ξ)P(Ξ \ Ξc ), (5)

where B denotes a bin, corresponding to the bin boundaries defined

earlier, and Ξ \ Ξc denotes the parameters other than the common

parameters. The equation above assigns to each point in the com-

mon parameter subspace, a bin corresponding to the most likely

output at that point.

Now we define the disagreement, ∆, between the two ABMs as

the probability of choosing a parameter setting, according to the

prior distribution, that results in a difference in the outputs of the

two models.

∆(F1, F2) =

∫
Ξc
(1 − 1(B1(Ξc ),B2(Ξc )))P1(Ξc ), (6)

where 1(B1(Ξc ),B2(Ξc )) is an indicator function that is 1 ifB1(Ξc ) =
B2(Ξc ) and 0 otherwise. ∆ gives the total probability, over the sub-

space Ξc , that the outputs of the two ABMs will fall into different

bins. Note that ∆ is a directed measure, since ∆(F1, F2) , ∆(F2, F1).
There are various ways to compute the integral in equation 5.

The typical approach in simulation science is to use adaptive exper-

iment designs [21]. Here we propose a machine learning approach

based on active learning. The general idea is to train a multi-class

classifier, where a class corresponds to a bin, for each model. Since

the simulations can often be expensive to run, an active learning

approach can help minimize the number of times the simulation

has to be run. The classifiers are used to estimate B(Ξc ) for each
ABM. Once the classifiers have been trained, we can use them to

estimate ∆.
The active learning approach to training the classifier involves

running the simulation in a loop with the classifier. In each round,

the simulation is run to generate additional labeled points for the

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1378



Figure 1: Overview of the presented methodology - A com-
mon set of parameters is chosen from both ABMs and an
active learning framework is implemented to learn the deci-
sion boundary that separates the bins.

classifier. Then the classifier is trained on the updated data set

and we do uncertainty sampling [14] in the parameter space to

generate new parameter settings where the simulation is to be

evaluated in the next round. The process stops when the labels

generated by the simulation agree with the labels generated by

the classifier, as illustrated in Figure 1. In the particular scenario

we study below, we will see that we can exploit domain semantics

to generate multiple useful labeled points from one query. We

continue below by first describing the models that we built for

studying rooftop solar panel adoption in rural Virginia, USA, and

the model we compare with, which was built to study solar panel

adoption in San Diego, California, USA. Then we will describe how

this framework is instantiated for these models.

3 ROOFTOP SOLAR PANEL ADOPTION
We compare two ABMs for rooftop solar adoption, one built by

Zhang et al. for San Diego, California [24] and the other for Shenan-

doah Valley region in Virginia, as described below in Section 3.1.

They both use a set of demographic, social, economic and geo-

graphical variables to assess the probability of adoption for each

household in respective study areas. A logistic regression model is

built in each case to identify important factors that influence solar

adoption. These factors are then used by their respective ABMs

to study the diffusion of adoption. Since the solar penetration rate

in Virginia is much smaller compared to California, a decision-

adjusted logistic regression model was used to handle the issue of

class imbalance in Virginia.

3.1 The Virginia Model
We build a statistical model to identify features that contribute to a

household’s decision to adopt rooftop solar panels. However, due to

low penetration of solar adopters in rural regions, the data on solar

adopters is sparse, whichmakes it difficult to build a good prediction

model. Given highly imbalanced training data, traditional statistical

methods tend to predict most households to be non-adopters in

Table 1: Virginia model coefficients.

Feature Description Coefficient
acreage Acreage of the house. -0.123

area_type Rural (0) or urban (1). -1.79

asrYear Year house was built. 0.00184

bedrooms Num of bedrooms. 0.0881

PubCold/Very

Cold

Type of climate. -1.09

Hot-Humid Type of climate. 0.00883

daily Consump-

tion

Avg. energy used in Wh 5.65e-07

edu2 High school diploma -0.0117

edu3 Some college or Associate’s de-

gree

0.332

Propane Type of fuel used for heat. -0.528

Fuel oil or

kerosene

Type of fuel used for heat. 0.269

Wood Type of fuel used for heat. 0.472

numCarStorage Num. of car storage in the

house.

0.331

swimpool Pool present or not. 0.169

totalVal Estimated house value. -3.66e-07

totalValI Indicator value for totalVal -1.12

Single-family

detached house

House type 0.00162

Single-family

attached house

House type -0.479

householdSize Family size. 0.123

Mile1 Adopters within 1 mile. 0.399

Mile2 Adopters within 2 mile. 0

Mile3 Adopters within 3 mile. 0.0299

Mile4 Adopters within 4 mile. 0.0376

order to minimize the mis-classification error and provide high

overall prediction accuracy.

In our study, we are more interested in identifying potential

adopters so we apply a decision-adjusted modeling approach from

Mao et al. [16], and Hu et al. [11]. The decision-adjusted approach

optimizes the prediction model with respect to a user-stated eval-

uation criterion. We set this criteria to maximize the sum of True

Positive Rate and True Negative Rate. The decision-adjusted ap-

proach can be applied to different statistical models, here we choose

logistic regression model as our baseline model.

The decision-adjusted solar adopter prediction model is as fol-

lows. Suppose a prediction model is obtained from the data set

{Xi , Ii (δ ),Yi }
n
i=1, where Xi are the demographic features as shown

in Table 1. Yi is the response, Yi = 1means household is an adopter

and Yi = 0 means non-adopter, Ii (δ ) are the indicator features for
corresponding demographic features, which is defined as,

Ii (δ ) =

{
1, if Xi > δ ;
0, if Xi ≤ δ ,

The indicator features are introduced when the coefficients of

linear combination are not able to capture all information in the

model. For example, if the coefficient of a feature is positive, then a
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larger value of the feature will increase the likelihood of adoption.

However, this positive relationship may not be constant; it may

be strong when the value of the feature is small, and weak when

the value of the feature is large. The indicator features address this

issue.

The logistic regression model has the link function below,

Pr(Y = 1|X , I (δ )) =
exp

( (
X , I (δ )

)T
β
)

1 + exp
( (
X , I (δ )

)T
β
)

Where β is the regression coefficient. For the logistic regression

with elastic net, β is estimated through maximizing a penalized

log-likelihood l(β) − P(β,α , λ), where

P(β ,α , λ) = λ
(
(1 − α)

1

2

| |β | |2
2
+ α | |β | |1

)
The predicted label for this household is determined by the

following, where τ is the threshold probability for determining

whether a household is adopter or not.

Ŷi = Ŷi (Xi , Ii (δ ),α , λ,τ ) =

{
1, if Pr(Yi = 1) ≥ τ
0, if Pr(Yi = 1) < τ

Then the optimization problem for our decision-adjusted model is

max

δ,α,λ,τ
Ω
(
Ŷi (Xi , Ii (δ ),α , λ,τ ),Y

)
Where Ω(·) is a function of predicted label Ŷi (Xi , Ii (δ ),α , λ,τ ), and
true label Y . It is determined by the specific goals of the study, as

defined by the user.

In the decision adjusted model, we want to maximize (Ω =
TPR+TNR) given τ and δ . Here ‘TPR’ refers to true positive rate,

‘TNR’ refers to true negative rate, ‘FP’ refers to false positives, and

‘FN’ refers to false negatives. The TPR+TNR is defined as:

Ω =
TP

TP + FN
+

TN

TN + FP
=

TP

Condition positives
+

TN

Condition neдatives
,

This is an improvement over accuracy as the performance metric,

which is given by:

ACCURACY =
TP +TN

TP + FN +TN + FP
=
TP +TN

n
.

The tuning paraments selected from the decision-adjusted ap-

proach are:

• τ = 0.0022, a household with predicted probability greater than

0.0022 is classified as an adopter.

• λ = 0.000303, α = 0.4, which are values of tuning parameters in

enet penalty.

• δ (totalVal) = 75000, if the value of feature totalVal is greater than

75000, then the value of the corresponding indicator feature is 1.

3.2 The San Diego Model
The San Diego model was developed by Zhang et al. [24]. The

model was trained on extensive data collected to the California

Solar Initiative https://www.gosolarcalifornia.ca.gov/about/csi.php.

In addition, property assessment data for San Diegor county and

electricity utilization data for participants in the rebate program

was collect (energy utilization data as limited to the 12 months

Table 2: List of features in the San Diego model

Feature Description
ownerocc Owner occupied (binary)

Ls Lease option available (binary)

wt Winter (binary)

st Spring (binary)

sm Summer (binary)

fracInstall Installation density in zipcode

NPV NPV (Purchase)

Mile1 Installations within 1 mile radius.

Mile1/4 Installations within one fourth mile radius.

before adoption). The data set spanned 6 years and 8500 adopters

and included detailed information about the solar panel purchas-

ing decision, including the system size, reported cost, incentive,

whether the system was purchased or leased and date of adoption.

The ABM developed from this data used machine learning tech-

niques to train an individual model of solar panel adoption behavior.

Individual agents changed their behaviors based on household char-

acteristics, seasons and peer-effects. [24] provides details on the

specific variables used and the results. Table 2 summarizes the

variables of the model.

For this work we used the model provided here: https://github.

com/haifeng-zhang/ddabm-solar which focused on modeling a sin-

gle zip code within the San Diego region.

4 MODEL COMPARISON METHOD
In this section, we instantiate the framework described in Section 2

to compare the models described in Section 3. Both the Virginia

model and the San Diego model are network contagion models,

where a contagion (in this case a technology: rooftop solar panels)

spreads through a network. Both models belong to the general

class of SI contagion models, drawn from mathematical epidemi-

ology, where S stands for Susceptible and I stands for In f ectious .
In our case, In f ectious corresponds to adopter. Once a household

has adopted solar panels, their peer influence on their neighbors

is assumed to persist indefinitely. This means that, in the limit, all

households in both models will be adopters, as long as the param-

eters are set in such a way that the probability of adoption if at

least one neighbor has adopted is non-zero. However, depending

on the parameter settings, it can be the case that the probabilities of

adoption are so low that we see very few adoptions in the duration

for which the simulations are run. Network structure can also play

a role in speeding up or slowing down the spread of the contagion

through the network.

As the probability of adoption increases, the SI model undergoes

a phase transition, where the simulation shows a sharp qualitative

change in its behavior. As the probability of adoption crosses a

threshold, the simulation quickly changes from only a few nodes

being adopters to a lot (or most) of the nodes becoming adopters in

a short amount of time. Due to this qualitative behavior, we choose

just two bins to describe each simulation in Section 3, which we

refer to as B0 and B1, corresponding to small and large numbers

of adopters, respectively. The actual values chosen are listed in

Section 5.
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Figure 2: A schematic illustration of the binary search pro-
cess. Blue points are in B0, red are in B1, and the green point
is a boundary point.

Another nice aspect of this scenario is that the variance (or stan-

dard deviation) in the output of the simulation shows a sharp peak

at the phase transition boundary, and tends to be low away from the

boundary. This is illustrated in Figure 3. Thus, by running multiple

runs of the simulation for any chosen point in parameter space,

we get a clear signal if the point is close to the phase transition

boundary. This scenario is unique in the sense that we can actually

know where the decision boundary is for the classification algo-

rithm, which is not the case in typical machine learning scenarios.

We make use of this fact in our active learning algorithm below.

With a slight abuse of notation, we write Ξ ∈ B0 if, for the point
Ξ in the parameter space, B(Ξ) = B0. The basic idea of the algorithm
is that if we have two points, Ξ0 ∈ B0,Ξ1 ∈ B1, we can do a binary

search in the parameter space along the line between Ξ0 and Ξ1 to

find a point on the phase transition boundary (a “boundary point”)

by observing where the standard deviation peaks. This requires

doing multiple runs of the simulation for each evaluated point in

the parameter space, but these runs can be done in parallel to save

time. This binary search process is given in Algorithm 1.

Since the phase transition boundary is quite sharp, once we find

a boundary point, we can generate k other nearby points randomly

around it at a small distance, ϵ , and label them using the simulation.

Some of these will fall in B0 and some in B1. Since they are close

to each other, they will strongly constrain the decision boundary

for the classifier. Thus, given two initially labeled points Ξ0 and Ξ1,

we can generate k useful labeled points for the classifier. Figure 2

schematically illustrates this process.

We follow this by training the classifier on the labeled points

generated so far. At the end of r rounds, we have rk labeled points

in the training set. In order to start round r + 1, we do uncertainty

sampling with the trained classifier at the end of round r , by gener-

ating a point on the classifier decision boundary that is far from the

training set. This represents a point in the parameter space about

which we have a high degree of uncertainty. We run the simulation

to label this point. If it falls within B0, we choose an already labeled

point in B1 (typically the farthest one), or vice versa, to initialize

the binary search in round r + 1.
We can define two different stopping criteria. First, if we have

a budget on the total number of runs of the simulation, K , then
we stop after round r if going to round r + 1 would cause the

Algorithm 1 Binary search to find a boundary point

1: procedure BinarySearch(pt1,pt2)
2: [pt1Mean,pt1Stdev] = RunDiffusionModel(pt1)
3: if pt1Stdev ≥ θsd then
4: Add pt1 to boundaryPoints
5: return [pt1,pt1Mean,pt1Stdev]
6: else
7: Add [pt1,pt1Mean,pt1Label] to evaluatedPoints
8: end if
9: [pt2Mean,pt2Stdev] = RunDiffusionModel(pt2)
10: if pt2Stdev >= θsd then
11: Add pt2 to boundaryPoints
12: return [pt2,pt2Mean,pt2Stdev]
13: else
14: Add [pt2,pt2Mean,pt2Label] to evaluatedPoints
15: end if
16: m = (pt1 + pt2)/2.0
17: while m < boundaryPoints and pt1Label , pt2Label do
18: [mMean,mStdev] = RunDiffusionModel(m)

19: if mStdev >= θsd then
20: Addm to boundaryPoints
21: return [m,mMean,mStdev]
22: else
23: Add [m,mMean,mLabel] to evaluatedPoints
24: end if
25: Assign m to pt1 or pt2, s.t. pt1 and pt2 have different

labels

26: m = (pt1 + pt2)/2.0
27: end while
28: end procedure

number of simulation runs to exceed K , i.e., if (r + 1)k > K > rk .
Alternatively, as the active learning proceeds, we should find that

when we choose points on the decision boundary of the classifier

using uncertainty sampling, they actually turn out to fall on the

phase transition boundary according to the simulation. This means

that the classifier is approximating the phase transition boundary

well, and we can stop training. The overall algorithm for the active

learning procedure is given in Algorithm 2.

Once training is complete, we compute the characteristic distance

and the disagreement between themodels by sampling.We generate

a large number of points according to the prior distribution, P(Ξ),
in the parameter space and label them using the trained classifier.

If N is the total number of points generated, and N0 is the number

that are labeled as being in B0, the characteristic distribution is

(N0/N , (N − N0)/N ). To calculate the disagreement, we have to

count the number of points, N ′
that are labeled differently by two

models. Then the disagreement is, ∆ = N ′/N .

5 EXPERIMENTS
Experiments are done with two agent based models in three re-

gions with different population sizes. Numbers of agents in each of

the regions are as follows: Rappahannock county has 2495 agents,

San Diego has 12925 agents, Shenandoah Valley Region (SVR) has

138043 agents.
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Algorithm 2 Active learning for predicting decision boundary

1: Input :Di f f usionModel , 2D search space for parametersp1,p2
2: Output : evaluatedPoints , boundaryPoints
3: procedure LearnDecisionBoundary
4: start = [p1Min,p2Min]
5: end = [p1Max ,p2Max]
6: [bPt ,bMean,bStdev] = BinarySearch(start , end)
7: EvaluateNearbyPoints(bPt ) Add these points to

evaluatedPoints
8: noRounds = 1

9: while noRounds <= 5 do
10: nPt = GetNextPointViaActiveLearning

11: [nPt ,nMean,nStdev] =RunDiffusionModel(nPt )
12: if nStdev >= θsd then
13: Add nPt to boundaryPoints
14: else
15: Add [nPt ,nMean,nLabel] to evaluatedPoints
16: end if
17: oppPt = Another point with label opposite to nLabel

and farthest from nPt
18: [bPt ,bMean,bStdev] = BinarySearch(nPt ,oppPt)
19: EvaluateNearbyPoints(bPt ) Add these points to

evaluatedPoints
20: noRounds + +
21: end while
22: return evaluatedPoints , boundaryPoints
23: end procedure

Both the agent-based diffusion models simulate the number of

households adopting rooftop solar. The model presented in Section

3.1 is used for Rappahannock county in Virginia and Shenandoah

Valley Region in Virginia. Themodel presented in Section 3.2 is used

for San Diego. In order to facilitate comparison between the 2 ABMs,

we choose to explore the common parameters in both the models:

Mile1 and NPV (see Tables 1 and 2). All experiments are conducted

in 2D space using Mile1 and NPV. This makes it easy to visualize the

results, as we show in Section 6. Thus, our prior distribution, P(Ξc ),
is chosen to be a uniform distribution over a rectangular region

of the common parameter space defined by the chosen ranges for

Mile1 and NPV. In order to simplify calculations, we also assume

fixed values for the other parameters in each model, as given by

the regression coefficients in Section 3, instead of integrating over

them, as defined in the framework in Section 2.

We define a point in the parameter space to be a boundary point

if the standard deviation of the number of adopters generated by

the simulation for that parameter point is higher than a threshold,

θsd . If the point is not a boundary point, then it is labeled as being

in B1 if the mean number of adopters is greater than a threshold,

θm . Otherwise it is assumed to be in B0. In order to choose the

thresholds, θsd and θm , we do a preliminary set of runs along the

main diagonal of the chosen rectangular region in parameter space.

Figure 3 shows the output of the Virginia model on Rappahannock

data in terms of mean and standard deviation. Based on this, we

set θsd to 100 and θm is set to 1000 for Rappahannock. Similar

experiments are performed for SVR and San Diego regions to set

Figure 3: Mean and standard deviation of the number of
adopters generated by the Virginia model for Rappahan-
nock county along the diagonal of the chosen parameter
space.

the thresholds. In all the experiment settings and results shown,

the ABM results are averaged over 20 replicates to calculate mean

and standard deviation. Table 3 shows the chosen thresholds for

the three regions.

Table 3: Thresholds for evaluating unlabeled instances.

Regions mean-threshold, θm std-threshold, θsd
Rappahannock 1000 100

SVR 12000 3500

San Diego 120 12

Once the thresholds are set, we conduct three sets of experiments

using the active learning method described above:

(1) Model 3.1 for Rappahannock county

(2) Model 3.1 for SVR region

(3) Model 3.2 for a zipcode in San Diego

We use random forest classifiers to learn the phase transition

boundaries. Results are presented next.

6 RESULTS
The learned decision boundaries are shown in Figure 4 for each

of the three regions. All the evaluated points are plotted as well.

The blue points show small numbers of adopters, the red ones

show large numbers of adopters, and the green points are boundary

points. We see that there are significant differences between the

three regions. The blue area is largest in Rappahannock and smallest

in San Diego.

This is made precise in Figure 6, which shows the characteristic

distributions of the models for the different regions. Since we chose

a uniform prior distribution, the heights of the bars correspond to

the blue and red areas in Figure 4. B0 (blue) represents small num-

ber of adopters and B1 (red) represents large number of adopters.
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(a) Rappahannock (b) SVR (c) San Diego

Figure 4: Decision boundary discovered by the active learning algorithm in the 2D parameter search space for Rappahannock,
SVR and San Diego regions. The blue region (labeled as 0) represents a small number of adoptions and the red region (labeled
as 1) represents a large adoptions. The x-axis is the range of mile1 feature coefficient and y-axis represents range of the NPV
feature coefficient.

(a) Rappahannock and San Diego (b) Rappahannock and SVR (c) SVR and San Diego

Figure 5: Disagreement between ABMs

Figure 6: Characteristic Distributions of ABMs for Rappa-
hannock, SVR and San Diego regions.

We see that small numbers of adopters are much more likely in

Rappahannock than in San Diego, while SVR lies inbetween. In

order to calculate the distance between characteristic distributions

of the models, we will use Equation 3, where D is the total variation

distance. Table 4 shows the pairwise distances between the models.

Next we compute the pairwise disagreement values for the mod-

els. As described earlier, this is done by generating a large grid of

points (since we chose a uniform prior) and counting the number of

points for which the two models disagree on the label. The results

are shown in Table 5. We see that Rappahannock and San Diego

have the largest disagreement, and SVR has a smaller disagreement

with each of them. This matches what we find for characteristic

distance, though it is possible for the two measures not to agree.

The disagreement plots are shown in Figure 5. They show the re-

gion in the parameter space where the models produce different

results, which gives a much more precise picture of the differences

between the models. Note that, although we refer to the disgree-

ment between the models, these differences are due to the data for

Rappahannock and SVR, since the model is the same for those two

regions. Whereas when we compare either of those with the San

Diego model, the differences are due to a combination of data and

model.

If two models have exactly the same parameters and model

structure, then this method can be used to isolate the differences

in outputs due to the differences in the data, which may be due

to differences in the distributions of various features or due to
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Table 4: Characteristic distance: Pairwise distances between
the characteristic distributions, using total variation dis-
tance.

u v TVD
Rappahannock San Diego 0.3338

Rappahannock SVR 0.1269

San Diego SVR 0.2069

differences in network structure. However, even if two models

don’t have exactly the same parameters and structure, we can still

do a meaningful comparison, as we do for San Diego in comparison

with either Rappahannock or SVR, though we cannot isolate the

effects of the data alone.

Table 5: Disagreement: Rappahannock and SVR have the
least disagreement whereas Rappahannock and San Diego
have the largest disagreement.

Pair % of disagreement
Rappahannock and San Diego 32.4%

Rappahannock and SVR 17%

San Diego and SVR 18.6%

7 RELATEDWORK
Earlier researchers have considered comparison of models and sim-

ulations to increase confidence in results and in interpretation of

the models, e.g. [2, 6, 23]. Work by [23] compares RePast [8] and

Swarm [17] based simulations of four different social network mod-

els, i.e. random graphs, preferential attachment, and preference

attachment with constant fitness, and with dynamic fitness. Struc-

tural properties of these networks were used to dock RePast and

Swarm simulations. The results showed that docking could help val-

idate a simulation and help migrate a simulation from one software

package to another. Authors in [20] used Mathematica, Swarm and

RePast to simulate a Beer distribution game. Louie et al. [15] show

how model comparison and model alignment can help compare

and contrast models, clarify assumptions and understand semantic

differences in data usage.

8 CONCLUSION
We have presented a new methodology for comparing agent-based

models. In fact, our approach applies to simulations in general,

since we are not making explicit use of the fact that these are agent-

based.We treat the simulation as a black box with a given parameter

space, a given output, and a fixed input. We created a framework

for comparison based on two new quantities we have defined: the

characteristic distance and the disagreement.

We also presented a new agent-based model of rooftop solar

panel adoption in rural Virginia, USA, and compared this model

with an earlier model of rooftop solar panel adoption in San Diego,

California, USA. We instantiated our framework to compare these

models using an active learningmethod to learn the phase transition

boundary in these models. We used random forest classifiers, but

any other classifier can be used. We have also tried using support

vector machines with linear kernels, and the results are similar.

There are multiple uses for this kind of analysis. Modeling the

response surface puts the focus on the parameters instead of the

features themselves. For example, a regression analysis might show

that the Mile1 feature is highly significant for prediction solar panel

adoption. However, analyzing the response surface might show

that increasing the coefficient for Net Present Value would also

be a way to cross the phase transition boundary and increase the

number of adopters. The first insight (about Mile1) suggests that

one way to increase adoption is to give away solar panels to some

households in such a way that other households also start adopting.

This is a version of the influence maximization problem [12] and

has been studied in this domain [10]. However, this might be quite

expensive. The second insight suggests that another way to increase

adoption might be to make people more aware of the Net Present

Value to them, thereby increasing the weight they attach to it. This

informational campaign would be much cheaper.

Comparing two regions, even if models are made by different

researchers with different data sources and assumptions about

model structure can be very instructive. It can help to answer the

question of how likely is the observed difference between the two

regions. This can offer fundamental insight into whether different

policy approaches are needed for different regions.

There are multiple avenues for further research. The robustness

of the method needs further study. In the case of contagion models,

since we are able to exploit the property that model variance in-

creases sharply at the phase transition boundary, we can find actual

boundary points. This allows us to start the active learning with

very few points but avoid the problems associated with limited data.

If the boundary is not so well-defined, we might need to do more

simulation runs, even with active learning, to characterize the re-

gions properly. In general, we don’t have a way of determining how

many points are needed to learn the boundaries between regions.

An important direction of research is to determine that, or at least

come up with an explainable heuristic.

Another important direction of research is to ask, what are the

changes necessary to minimize the characteristic distance or dis-

agreement between two models? We might wish to come up with

succinct explanations for the reasons twomodels disagree. As agent-

based simulations are getting larger and more complex, this kind of

explainability is becoming increasingly important. Hopefully, the

present work will motivate further work along these lines.
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