
Learning Context-aware Task Reasoning for Efficient
Meta-reinforcement Learning

Haozhe Wang
wanghzh@shanghaitech.edu.cn

ShanghaiTech University
Shanghai, china

Jiale Zhou
zhoujl@shanghaitech.edu.cn
ShanghaiTech University

Shanghai, china

Xuming He
hexm@shanghaitech.edu.cn
ShanghaiTech University

Shanghai, china

ABSTRACT
Despite recent success of deep network-based Reinforcement Learn-
ing (RL), it remains elusive to achieve human-level efficiency in
learning novel tasks. While previous efforts attempt to address
this challenge using meta-learning strategies, they typically suf-
fer from sampling inefficiency with on-policy RL algorithms or
meta-overfitting with off-policy learning. In this work, we propose
a novel meta-RL strategy to address those limitations. In partic-
ular, we decompose the meta-RL problem into three sub-tasks,
task-exploration, task-inference and task-fulfillment, instantiated
with two deep network agents and a task encoder. During meta-
training, our method learns a task-conditioned actor network for
task-fulfillment, an explorer network with a self-supervised re-
ward shaping that encourages task-informative experiences in task-
exploration, and a context-aware graph-based task encoder for task
inference. We validate our approach with extensive experiments
on several public benchmarks and the results show that our algo-
rithm effectively performs exploration for task inference, improves
sample efficiency during both training and testing, and mitigates
the meta-overfitting problem.

KEYWORDS
Multitask Learning; Deep Reinforcement Learning
ACM Reference Format:
Haozhe Wang, Jiale Zhou, and Xuming He. 2020. Learning Context-aware
Task Reasoning for Efficient Meta-reinforcement Learning . In Proc. of the
19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Modern reinforcement learning has achieved great successes in
solving certain complex tasks by utilizing deep neural networks,
which can even be trained from scratch [5, 28, 36]. Such successes,
however, require a large amount of training experiences for new
tasks. In contrast, human learners are able to exploit past experi-
ences when facing a novel problem and quickly learn skills for a
related task [17]. To achieve such fast adaptation is a critical step
towards building a general AI agent capable of solving multiple
tasks in real-world environments.

A principled way to tackling the problem of efficient adapta-
tion is the meta learning framework [8], which aims to capture
shared knowledge across tasks and hence enables an agent to learn
a similar task using only a few experiences. In the reinforcement

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

learning setting, however, as the learning agent also needs to ex-
plore in each novel task, it is particularly challenging to design an
efficient meta-RL algorithm. A majority of prior works adopt on-
policy RL algorithms [7, 8, 10, 26], which are data-inefficient during
meta-training [25]. To remedy this, Rakelly et al. [25] propose an
alternative strategy, PEARL, that relies on off-policy RL methods to
achieve sample efficiency in meta-training. By introducing a latent
variable to represent a task, their method decomposes the problem
into online task inference and task-conditioned policy learning that
uses experiences from a replay buffer (i.e., off-policy learning).

Nevertheless, such an off-policy strategy has several limitations
during meta-test stage, particularly for the few-shot setting. First,
it ignores the role of exploration in the task inference (cf. meta-
episodes in [7]), which is critical in efficient adaptation as the explo-
ration is responsible for collecting informative experiences within
the few episodes to infer tasks. In addition, the agent has to explore
in an online fashion for task inference during meta-test, which typ-
ically has a different sample distribution from the replay buffer that
provides adaptation data at meta-train stage. PEARL partially alle-
viates this problem of train-test mismatch [38] by adopting a replay
buffer of recently collected data. Such an in-between strategy [25],
however, still leads to severe “meta-overfitting”, particularly for
online task inference (cf. Sec 4.1&5.3). Furthermore, the adaptation
data acquired by exploration are simply aggregated by a weighted
average pooling for task inference. As the experience samples are
not iid, such aggregation fails to capture their dependency relations,
which is informative for task inference.

In this work, we propose a context-aware task reasoning strategy
formeta-reinforcement learning to address the aforementioned limi-
tations. Adopting a latent representation for tasks, we formulate the
meta-learning as a POMDP, which learns an approximate posterior
distribution of the latent task variable jointly with a task-dependent
action policy that maximizes the expected return for each task. Our
main focus is to develop an adaptive task inference strategy that is
able to effectively map from few-shot experiences of a task to its
representation without suffering from the meta-overfitting.

To achieve this, we design a novel task inference network that
consists of an exploration policy network and a structured task
encoder shared by all tasks. Learning an exploration policy allows
us to explore a task environment more efficiently and to introduce
regularization to bridge the gap between meta-train and meta-test,
leading to better generalization. The structured task encoder is built
on a context-aware graph network, which is input permutation-
invariant and size-agnostic in order to cope with variable number
of exploration episodes. Our graph network encodes task-related

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1440

dependency in experience data samples, capable of capturing com-
plex task statistics from exploration to achieve more data-efficient
task inference.

To train our meta-learner, we develop a variational EM formu-
lation that alternately optimizes the exploration policy network
that collects experiences for a task, the context-aware graph net-
work that performs task inference based on the collected task data,
and an action policy network that aims to complete tasks towards
maximum rewards given the inferred task information. Our meta-
learning objective, formulated under the POMDP framework, is
composed of two state-action value functions for the two respective
policies. The state-action value for the exploration policy is guided
by a reward shaping strategy that encourages the policy to collect
task-informative experiences, and is learned with Soft Actor Critic
(SAC) [11] for randomized behavior to narrow the gap between
online rollouts and offline buffers. In essence, our method decom-
poses the meta-RL problem into three sub-tasks, task-exploration,
task-inference and task-fulfillment, in which we learn two separate
policies for different purposes and a task encoder for task inference.

We evaluate our meta-reinforcement learning framework on
four benchmarks with a diverse task distributions, in which our
approach outperforms prior works by improving training efficiency
(up to 400x) and testing efficiency with better asymptotic perfor-
mance (up to 300%) while effectively mitigating the meta-overfitting
by a large margin (up to 75%). Our contributions can be summarized
as follows:
• We propose a sample-efficient meta-RL algorithm that achieves
the state-of-the-art performances on multiple benchmarks with
diverse task distributions.
• We present a dual-agents design with a reward shaping strategy
that explicitly optimizes for the ability for task exploration and
mitigates meta-overfitting.
• We develop a context-aware graph network for task inference
that models the dependency relations between experience data
in order to efficiently infer task posterior.

2 RELATEDWORK
2.1 Meta-reinforcement Learning
Prior meta reinforcement learning methods can be categorized into
the following three lines of work.

The first line of work adopts a learning-to-learn strategy [8, 10,
26, 30, 41]. In particular, MAML [8] meta-learns a model initial-
ization from which to adapt the parameters with policy gradient
methods. To tackle issues in computing second-order derivatives
for MAML, ProMP [26] further proposes a low-variance curvature
estimator to perform proximal policy optimization that bounds the
policy changeRecently, MAESN [10] improves MAML with more
temporally coherent exploration by injecting structured noise via
a latent variable conditioned policy, and enables fast learning of
exploration strategies.

The second category of approaches uses recurrent or recursive
models to directly meta-learn a function that takes experiences as
input and generates a policy for an agent [7, 21, 39]. Among them,
RL2 [7] trains a recurrent agent with on-policy meta-episodes that
comprise a sequence of exploration and task-fulfillment episodes,
which aims to maximize the expected return of the task-fulfillment

episode. Their method essentially learns to extract task information
from the first few rounds of exploration, encoded in the latent states
of its RNN, and complete the task in the final episode based on the
known task information (latent states).

The first two groups of work often learn a single policy to per-
form exploration for policy adaptation and task-fulfillment, which
overloads the agent with two distinct objectives. By contrast, we
learn two separate policies, one focusing on exploration for policy
adaptation and the other for task-fulfillment.

In the third line of work, Rakelly et al. [25] and Humplik et al.
[14] propose to first infer task with task experiences and adapts
the agent according to the task knowledge. Framing meta-RL as a
POMDP problem with probabilistic inference, Humplik et al. [14]
formulate task inference as belief state in POMDP, and learn the
inference procedure in a supervised manner with privileged in-
formation as ground truth. PEARL [25] learns to infer tasks in an
unsupervised manner by introducing an extra reconstruction term
and incorporates off-policy learning to improve sample efficiency.
However, both approaches ignore the role of exploration in task
inference, and PEARL suffers from train-test mismatch in the data
distribution for task inference.

By contrast, we propose to further disentangle meta-RL into task-
exploration, task-inference and task-fulfillment, and introduce an
exploration policywithin a variational EM formulation. Ourmethod
enhances the inference procedure via active task exploration and
effective task inference, achieves data-efficiency both in meta-train
and meta-test, and mitigates meta-overfitting.

2.2 Relational Modeling on Sets
The problem of inference on a set of samples has been widely
explored in literature [2, 6, 9, 12, 15, 19], and here we focus on
those approaches that learn a permutation-invariant and input
size-agnostic model.

DeepSets [42] proposes a general design principles for permuta-
tion invariant functions on sets. As an instantiation, Sets2Sets [37]
encodes a set using an attention mechanism, which retrieves vec-
tors in a manner immune to the shuffle of memory and accepts
variable size of inputs. However, they typically do not consider re-
lations among input elements, which is critical for modeling short
experiences for task inference.

Self-attention module [1, 13, 27, 40] is commonly used to model
pairwise relationships between entities of a set. Among them, Non-
local Neural Networks [40] are capable of capturing global context
using the scaled dot product attention [34]. Along this direction,
graph networks [2, 9] provide a flexible framework that can model
arbitrary relationships among entities and is invariant to graph iso-
morphism. Self-attention on sets, a special case of graphs, can nat-
urally be assimilated into the graph network framework [2, 35, 43].
Recently, LatentGNN [43] develops a novel undirected graph model
to encode non-local relationships through a shared latent space
and admits efficient message passing due to its sparse connection.
In this work, the design of our graph-based inference network is
inspired by LatentGNN and DeepSets, aiming to efficiently model
the dependency relationship in experience data.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1441

3 VARIATIONAL META-REINFORCEMENT
LEARNING

We aim to address the fast adaptation problem in reinforcement
learning, which allows the learned agent to explore a new task (up
to a budget) and adapts its policy to the new task. We adopt the
meta-learning framework to enable fast learning, incorporating a
prior of past experiences in structurally similar tasks.

Formally, we assume a task distribution p(T) from which multi-
ple tasks are i.i.d sampled for meta-training and testing. Any task
T ∼ p(T) can naturally be defined by its MDP (S,A, ρ(s0), P,γ , r)
in RL, where S is the state space, A is the action space, ρ(s0) is the
distribution of the initial states, P(s ′ |s,a) is the transition distribu-
tion, γ is the discount in rewards which we will omit for clarity, and
r (s,a) is the reward function. Here the task distribution is typically
defined by the distribution of the reward function and the transition
function, which can vary due to some underlying parameters. We
introduce a latent variable z ∼ p(z) = N(0, 1) to represent the cause
of task variations, and formulate the meta RL problem as a POMDP
in which z serves as the unobserved part of the state space.

We first introduce two policies, including an action policy π that
aims to maximize expected reward under a given task z and an
exploration policy ξ for generating task-informative samples by
interacting with the environment. We then adopt the off-policy
Actor-Critic framework [29], and learn two Q-functions Qπ ,Qξ

for the action and exploration policy respectively. To achieve this,
we define the following learning objective, which maximizes the
expected log likelihood of returns under two policies (we omit the
expectation over tasks for clarity):

E
β (s ,a)
E(s ′,r | ·)

[
log P(R = yπ |s,a)

]
+ E

ρ(s ,a)
E(s ′ | ·),r ξ

[
log P(R = yξ |s,a)

]
(1)

where β, ρ denotes the (s,a) distribution visited by the two be-
havior policies for π , ξ , E denotes the environment, and r ξ is the
reshaped reward for ξ (Sec. 4.1). Typically, β, ρ is approximated
by the experience replay buffers of π , ξ , denoted as B,X respec-
tively [11, 20, 22]. We will slightly abuse the notation β, ρ to denote
the joint distribution of (s,a, s ′, r) for brievity.

Here P(R |s,a) denotes the likelihood of return R given a state-
action pair, and y = r + γ maxa′ Q(s ′,a′) is the target value esti-
mated using the optimal Bellman Equation. Note that by assuming
P(R |s,a) = N(R; µ,σ)where µ = Q(s,a) andσ a constant, thenmax-
imizing the likelihood P(R = y |s,a) is equivalent to the Temporal
Difference learning objective [16, 22, 32]:

max
Q

log P(R = y |s,a) = max
Q

log
[
α exp

(
−β (Q(s,a) − y)2

)]
⇔ min

Q
(Q(s,a) − y)2 (2)

where σ leads to the constants α, β > 0.
We utilize the variational EM learning strategy [3] to maximize

the objective. Denoting the sampled experiences as x , we introduce
a variational distribution q(z |x) to approximate the intractable pos-
terior p(z |x), in which we alternate between optimizing for q(z |x)
and for other parameterized functions Qπ ,Qξ , π , ξ . We refer to
q(z |x) as the task encoder in our model.

Figure 1: Context-aware task reasoning for RL adaptation. We
separate the task into task-exploration, task inference and task-
fulfillment. The explorer interacts with the environment to collect
experiences for the task encoder to update the belif of task. After
an iterative process of K − 1 rounds, the task encoder takes all the
collections and gives the final task hypothesis to adapt the actor.

For E-step, we maximize a variational lower bound derived from
(1) to find the optimal q(z |x). In order to decouple the action and
exploration policy, we also introduce an auxiliary experience distri-
bution p(x) and minimize the following free energy:

E
p(x),β (s ,a,s ′,r)

z∼q(z |x)

[(
Qπ (s,a, z) − yπ

)2
+ KL(q(z |x)∥p(z))

]
+ c (3)

where in the first term the TD Error derives from log
∫
Z P(R =

yπ |s,a, z)p(z)dz, and the constant term c comes from the second
term in (1) which is irrelevant to z. For the auxiliary distribution
p(x), we adopt the exploration policy’s sample distribution ρ(·), as
ξ aims to sample task-informative experiences for task inference.
Hence the E-step objective Je (q) has the following form:

E
x ∈X,z∼q(z |x)
(s ,a,s ′,r)∈B

[(
Qπ (s,a, z) − yπ

)2
+ KL(q(z |x)∥p(z))

]
(4)

For M-step, given q(z |x), we minimize the following free-energy
objective Jm (π , ξ ,Qπ ,Qξ) derived from (1) :

E
x ∈X

z∼q(z |x)
(s ,a,s ′)∼B

[(
Qπ (s,a, z) − yπ

)2]
+ E

x ∈X
z∼q(z |x)
(s ,a,s ′)∼X

[(
Qξ (s,a, z) − yξ

)2]
(5)

Based on this variational EM algorithm, our approach learns dual
agents for task-exploration and task-fulfillment respectively. The
meta-training process interleaves the data collection process with
the alternating EM optimization process, as shown in Alg. 1.

In contrast to [14, 25], our variational EM formulation derives
from a unified learning objective and enables fast learning of dual
agents with different roles. The explorer learns the ability of task-
exploration that targets at efficient exploration to (actively) collect
sufficient task information for task inference, while the actor learns
for task-fulfillment that accomplishes the task towards high re-
wards. Both the explorer and the actor are task-conditioned, so
that they are able to perform temporally-coherent exploration for
different goals, given the current task hypothesis [10].

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1442

input :Meta-train tasks T = {Ti }1:M ,∼ p(T), training
steps N , E-step e , M-stepm, meta-batch size B,
task sample size C for buffer update, learning
rate λ.

output :q(z |x), π , ξ ,Qπ ,Qξ .
1 Initialize q, π , ξ ,Qπ ,Qξ with network parameters θ,ϕ,

buffer B for π , buffer X for ξ .
2 for each task Ti ∈ T do
3 collect episodes into buffers B,X with the policies

π , ξ respectively.
4 end
5 while not converged do
6 randomly sample C tasks from T to form a set TC .
7 for task Ti ∈ TC do
8 add episodes into buffers B,X with the policies.
9 end

10 for each step in N training steps do
11 randomly sample B tasks from T to form a set TB .
12 if step mod (e +m) < e then
13 get the inputs (E-step):
14

{
xq

}
1:B ∼ X, {(s,a, s

′, r)π }1:B ∼ B.
15 compute the loss: L(q;θ) ← Je (q).
16 update the model: θ ← θ − λ∇θL(q;θ)
17 else
18 get the inputs (M-step):

{
xq

}
1:B ∼ X,

{(s,a, s ′, r)π }1:B ∼ B, {(s,a, s ′, r)π }1:B ∼ X.
19 compute the loss:

L(π , ξ ,Qπ ,Qξ ;ϕ) ← Jm (π , ξ ,Qπ ,Qξ).
20 update the model:

ϕ ← ϕ − λ∇ϕL(π , ξ ,Q
π ,Qξ ;ϕ)

21 end
22 end
23 end

Algorithm 1: The Meta-training algorithm

With such a formulation, we need to answer the following ques-
tions to achieve efficient and effective task inference to solve the
meta-RL problem:
• How to guide the explorer towards active exploration for suffi-
cient task information that is crucial in task inference with few
experiences?
• How to achieve effective task inference that captures the rela-
tionships between experiences and reduce task uncertainty?
• Since we incorporate off-policy learning algorithms, how to
mitigate the train-test mismatch issue due to the use of replay
buffer v.s. online rollouts during testing?

We will address the above three questions in Sec. 4, which intro-
duces our task inference strategy in detail.

Meta-test. At the meta-test time, we apply the same data col-
lection procedure as in the meta-training stage. For each task, the
explorer ξ (a |s, z) first samples a hypothesis z from the posterior
(initialized asN(0, 1)), and then explores optimally according to the
hypothesis. The collected experiences x during the exploration are

used by the task encoder q(z |x) to update the posterior of z. This
process iterates until the explorer uses up the maximum number of
rollouts. All the experiences are fed to the task encoder to produce
a final posterior representing the belief of MDPs. We then sample
from the posterior to generate a task-conditioned action policy
π (a |s, z), which interacts with the environment in an attempt to
fulfill the task. This process is shown in Fig. 1.

4 TASK INFERENCE STRATEGY
We now introduce our task reasoning strategy for meta-RL with
limited data. Our goal is to use the limited exploration to generate
experiences with sufficient information for task inference and to
effectively infer the task posterior from the given task experiences.
In Sec. 4.1, we explain how we learn an explorer that pursues task-
informative experiences with randomized behavior and mitigates
train-test mismatch. In Sec. 4.2, we elaborate on the network design
of the task encoder, which enables relational modeling between
task experiences.

4.1 Learning the Exploration Policy
Our exploration policy aims to enrich the task-related information
of experiences within limited episodes. To this end, below we intro-
duce two reward shaping methods: first, we increase the coverage
of task experiences to obtain task-informative experiences; second,
we improve the quality of each sample to have as much information
gain as possible.

4.1.1 Increasing Coverage. The first idea of improving explo-
ration is to increase its coverage of task experiences by adding
stochasity into the agent’s behavior, which is motivated by the em-
pirical observations of the performance obtain with replay buffer
(see the off-policy curve in Fig. 9). Off-policy data have more cov-
erage of experiences as the samples are uniformly drawn from
multiple different trajectories, compared to samples in online roll-
outs with smaller variations.

To this end, we encourage the randomized behavior of the ex-
plorer by leveraging SAC [11]. SAC derives from the entropy-
regularized RL objective [18], which essentially adds entropy to the
reward (and value) functions. Note that we optimize both π and
ξ with SAC, but for different purposes. SAC favors exploration in
policy learning for the actor π , which will run deterministically at
meta-test time. In contrast, here SAC is used to guide the explorer
towards randomized task-exploration, which is a stochastic policy
during deployment.

It is worth noting that training an exploration policy with ran-
domized behavior also helps mitigate train-test mismatch, which
is caused by the different data distributions for policy adaptation
(buffer data v.s. online rollouts). Our task-exploration explicitly
learns the ability for randomized exploration that (empirically)
brings the online rollout data distribution closer to the off-policy
buffer data.

4.1.2 Improving Quality. To improve the quality of exploration,
we also design a reward shaping that guides the explorer towards
highly informative experiences. However, it is non-trivial to quan-
tify the informativeness in a sample. In our case, the explorer col-
lects experiences given a task hypothesis, so we are more interested

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1443

in evaluating the mutual information as the reward for the explorer,

r̃i = I(z |x̃ ;xi) = H(q(z |x̃)) − H(q(ẑ |x̃, xi)) (6)

where we differentiate the new task hypothesis ẑ against previously
hypothesized task z ∼ q(z |x̃), x̃ = {x j }1:K denotes the repository
of collected experiences and xi < x̃ is the sample for assessment.
Intuitively, we expect the credit r̃i to reflect the information gain
from the sample xi given the current hypothesis of task z ∼ q(z |x̃).

However, directly computing the mutual information is imprac-
tical, as it involves evaluating the new posterior after incorporating
each new sample xi . Instead, we adopt the following proxy for the
mutual information:

I(z |x̃ ;xi) ∝ log
1

p(ẑ = z |xi , x̃)
(7)

This proxy implies that we believe a sample xi brings larger infor-
mation gain if the new hypothesis ẑ is less likely to be the same as
the prior belief z. To compute p(ẑ = z |xi , x̃), we apply the Bayes
Rule:

p(ẑ = z |xi , x̃) =
p(R = y(x̃), ẑ = z |xi , x̃)

P(R = y(x̃)|ẑ = z, xi , x̃)
(8)

As the joint distribution of (ẑ,R) is constant given (xi , x̃), the pos-
terior of ẑ is proportional to the inverse of the likelihood. Similar
to Sec. 3, we use the state-action value function to compute the
likelihood P(R = y(x̃)|xi , x̃), but we instead assume a laplace distri-
bution as we empirically find it is more stable to use the L1-norm
than the L2-norm induced by a Gaussian. As a result, we have the
following score function that gives the shaped reward r̃i :

r̃i = λ log P (R = y(x̃)|ẑ = z, xi , x̃) (9)

= λ

Q (si ,ai , z) −
(
ri + γ max

a′i
Q

(
s ′i ,a

′
i
))

L1

(10)

where the hyperparameter λ is the reward scale, and the greedy
policy π (a |s) is learned to compute maxa Q(s,a) [11, 20, 29].

4.2 Context-aware Task Encoder
Our task inference network computes the posterior of latent vari-
able z given a set of experience data, aiming to extract task infor-
mation from experiences. To this end, we design a network module
with the following properties:
(1) Permutation-invariant, as the output should not vary with the

order of the inputs.
(2) Input size-agnostic, as the network would encounter variable

size of inputs within the arbitrary number of rollouts.
(3) Context-aware, as extracting cues from a single sample should

incorporate the context formed by other samples1.
Specifically, we adopt a latent Graph Neural Network architec-

ture [43], which integrates self-attention with learned weighted-
sum aggregation layers. Formally, we introduce a set of latent node
features H = [h1, · · · ,hd]T where hi ∈ Rc is a c-channel feature
vector same as the set of input node features X = [xi , · · · , xn]T .
Note that n can be arbitrary number while d should be a fixed
1Imagine in a 2d-navigation task where the agent aims to navigate to a goal location,
a sample may indicate the possible location of the goal due to the high rewards, and
can further eliminate possibilities by another sample that shows what locations are
not possible by its low rewards.

Figure 2: The task encoder.The first aggregation constructs a bipar-
tite graph with full connections from the n nodes in V i to the c
latent nodes inV h . Self-attention operates onV h , which are assem-
bled to one latent node in the second aggregation.

hyperparameter. We construct a graph G = (V, E) with the n + d
nodes and full connections from all of the input nodes to each of
the latent nodes, i.e., (vi ,vj) ∈ E,vi ∈ Vi ,vj ∈ V

h whereVi ,Vh

refers to the set of input nodes and latent nodes respectively. The
graph network module is illustrated in Fig. 2.

The output of the aggregation layer fAGG is the latent node
features H , which are computed as follows:

hk =
n∑
j=1

ψ (x j ,ϕk)x j , 1 ≤ k ≤ d

whereψ (x,ϕk) is a learned affinity function parameterized by ϕk
that encodes the affinity between any input node x and the kth
latent node. In practice, we instantiate this function as the dot
product followed with normalization, i.e., softmaxj (ϕkxTj).

We then combine the above aggregation layer with the following
self-attention layer fATN:

x̃ j =
n∑
i=1

f (xi , x j)x j , 1 ≤ i ≤ n

where we use the the scaled dot product attention [34].
Following [43], we propagate messages through a shared space

with full-connections between latent nodes. We first pass the input
nodes through an aggregation layer with d latent nodes, where
d << n, then perform self-attention on the latent nodes (for multi-
ple iterations), and finally pass the latent nodes through another
aggregation layer with 1 final latent node to obtain the final out-
put, i.e., fAGG ◦ fATN ◦ fAGG : Rn×c 7→ Rd×c 7→ Rd×c 7→ R1×c .
The final output provides the parameters for q(z |x) which is a
Gaussian distribution. The network can be viewed as a multi-stage
summarization process, in which we group the inputs into several
summaries, and operate on these summaries to compute the re-
lationships between entities, and produce a final summary of the
entities and relationships.

5 EXPERIMENTS
In this section, we demonstrate the efficacy of our design and the
behavior of our method, termed CASTER (shorthand for Context-
Aware task encoder with Self-supervised Task ExploRation for efficient
meta-reinforcement learning), through a series of experiments. We
first introduce our experimental setup in Sec. 5.1. In Sec. 5.2, we
evaluate our CASTER against three meta-RL algorithms in terms of
sample efficiency. We then compare the behavior of CASTER with
PEARL regarding overfitting and exploration in Sec. 5.3. Finally, in

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1444

Figure 3: Training efficiency. The test-task performance versus the number of interactions with the environment during meta-training. The
dash lines represent the asymptotic performance of each method.

Figure 4: Testing efficiency. The x-axis denotes the number of trajectories used as adaptation data.

Sec. 5.4, we conduct ablation study on our design of the exploration
strategy and the task encoder.

5.1 Experiemtal Setup
We evaluate our method on four benchmarks proposed in [26]2 and
an environment introduced in [25] for ablation. They are imple-
mented on the OpenAI Gym [4] with the MuJoCo simulator [33].
All of the experiments characterize locomotion tasks, which may
vary either in the reward function or the transition function. We
briefly describe the environments as follows.
• Half-cheetah-velocity. Each task requires the agent to reach
a different target velocity.
• Ant-goal. Each task requires the agent to reach a goal location
on a 2D plane .
• Humanoid-direction. Each task requires the agent to keep
high velocity without falling off in a specified direction.
• Walker-random-params. Each task requires the agent to keep
high velocity without falling off in different system configura-
tions.
• Point-robot. Each task requires a point-mass robot to navigate
to a different goal location on a 2D plane.

2Two experiments “cheetah-forward-backward” and “ant-forward-backward” are not
used because they only include two tasks (the goal of going forward and backward), and
do not match the meta-learning assumption that there is a task distribution from which
we sample the meta-train task set and a held-out meta-test task set. Such benchmark
does not provide convincing evidence for the efficacy of meta-learning algorithms.

We adopt the following evaluation protocol throughout this section:
first, the estimated per-episode performance on each task is aver-
aged over (at least) three trials with different random seeds; second,
the test-task performance is evaluated on the held-out meta-test
tasks and is an average of the estimated per-episode performance
over all tasks with at least three trials. More details about the ex-
periments can be found at our Github repository.

5.2 Performance
In this section, we compare with three meta-RL algorithms that
are the representatives of the three lines of works mentioned in
Sec. 2.1: 1) inference-based method, PEARL [25]; 2) optimization-
based method, ProMP [26]; 3) black-box method, RL2 [7].

For those baselines, we reproduce the experimental results via
their officially released code, following their proposedmeta-training
and testing pipelines. We note that prior works [7, 26] are not
designed to optimize for sample efficiency but we keep their default
hyperparameter settings in order to reproduce their results.

To demonstrate the training efficiency and testing efficiency,
we plot the test-task performance as a function of the number
of samples. Fig. 3 shows the comparison results on the training
efficiency. Here the x-axis indicates the number of interactions
with the environment used to collect buffer data. At each x-tick, we
evaluate the test-task performance with 2 episodes for all methods.
While for testing efficiency, the x-axis refers to the number of

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1445

https://github.com/HazekiahWon/CASTER

Figure 5: Overfitting in off-policy meta-RL. Each column in the plot corresponds to a different environment. We pick three environments
most prone to meta-overfitting, i.e., ‘cheetah-vel’, ‘ant-goal’ and ‘point-robot’ from left to right.

adaptation episodes used by different methods to perform policy
adaptation (or task inference).

We can see CASTER outperforms other methods by a sizable mar-
gin: CASTER achieves the same status of performance with much
fewer environmental interactions (up to 400%) while being able to
reach higher performance (up to 300%). PEARL and CASTER incor-
porate off-policy learning and naturally enjoy an advantage in train-
ing sample efficiency. Our CASTER achieves better performances
due to two reasons. On the one hand, efficient exploration poten-
tially offers CASTER richer information within limited episodes
(two in Fig. 3), and pushes higher the upper bound of accurate task
inference. On the other hand, context-aware relational reasoning
extracts information effectively from the task experiences, and thus
improves the ability of task inference.

Testing efficiency is shown in Fig. 4, and CASTER still stands
out against other methods. Notably, CASTER achieves large per-
formance boost with the first several episodes, indicating that the
learned exploration policy is critical in task inference. By contrast,
other models either fail to improve from zero-shot performance
(e.g. flat lines of RL2, PEARL in humanoid-dir, ProMP in walker-
rand-params) via exploration or have unstable performance that
drops after improvement (e.g., PEARL in cheetah-vel and ant-goal).

5.3 Understanding CASTER’s Behavior
5.3.1 Meta-overfitting. As mentioned in 4.1, meta-overfitting

arises due to train-test mismatch, an issue particular for meta-RL
methods that incorporate off-policy learning. We compare the test-
task performance obtained with different adaptation data distribu-
tion, i.e., the off-policy buffer data v.s. the on-policy exploration
data, to see the performance gap when the data distribution shifts.
We pick three environments that we find most prone to train-test
mismatch, i.e., cheetah-vel, ant-goal, point-robot. Note that in the
experiments, the number of transitions in the off-policy data equals
the number of transitions in two episodes of the on-policy data.

Fig. 5 shows the results on the three environments3. CASTER
takes a large leap towards bridging the gap between train and test
sample distribution, reducing up to 75% performance drop as com-
pared to PEARL. This can be credited to better stochasity inherent
in the explorer’s episodes (Sec. 5.3.2) and better task inference of
CASTER. The stochasity in the online rollouts brings its distribution

3The ant-goal curve reproduced with PEARL’s public repo has a discrepancy from
the result reported in [25], which we suspect to be the train-task performance with
off-policy data. We recommend the reader to check with the publicly available code.

Figure 6: Learned exploration behavior in ant-goal. The reward
histogram consists of 3 consecutive trajectories. Left: CASTER and
Right: PEARL. Different color denotes different trajectories.

closer to the off-policy data distribution, since at meta-train time
data is randomly sampled from the buffer. Task inference that is
aware of relations between samples better extracts the information
in the few trajectories, which also narrow the gap by improving
task inference.

5.3.2 The Learned Exploration Strategy. We investigate the ex-
ploration process by visualizing the histogram of the rewards in
the collected trajectories. We take three consecutive trajectories
rolled out by the explorer on two benchmarks : 1) the reward-
varying environment ant-goal, 2) the transition-varying environ-
ment walker-rand-params. We compare with PEARL since it also
resorts to posterior sampling for exploration [23, 24, 31].

In Fig. 6, it is shown that CASTER’s exploration spans a large
reward region of [−25, 0], while PEARL ranges from−7 to−3. This is
consistent with our goal to increase the coverage of task experiences
within few episodes, which potentially increases the chances to
reach the goal and enables the task encoder to reason with both
high rewards and low rewards, i.e., what region of state space might
be the goal and might not. By contrast, PEARL tends to exploit the
higher extreme values at the risk of following a wrong direction
(e.g., in the second plot, PEARL proceeds to explore in a narrow
region of relatively lower reward than the preceding episode).

In Fig. 7, the two methods are evaluated in the transition-varying
environment ant-goal in which higher rewards do not necessarily
carry the information of the system parameters. In this case, PEARL
clings to higher reward regions as expected, while CASTER favors
lower reward region. Supported by the results in Fig. 3,4, PEARL’s
exploration is sub-optimal. CASTER performs better because the

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1446

Figure 7: Learned exploration behavior in walker-rand-params.

Figure 8: Ablation study of the task encoder.We show the test-task
performance with on-policy data (left) and off-policy data (right).

exploration is powered by information gain, and the explorer dis-
covers task-discriminative experiences that happen to be around
lower reward region.

5.4 Ablations
In this section, we investigate our design choices of the exploration
strategy and the task encoder via a set of ablative experiments on
the point-robot environment. We also provide the test-task perfor-
mance with off-policy data (adaptation data from a buffer collected
beforehand) to eliminate the effect of insufficient data source for
task inference that induces train-test mismatch.

5.4.1 The Task Encoder. PEARL [25] builds its task encoder
by stacking a Gaussian product (Gp) aggregator on top of an MLP,
while we propose to combine self-attentionwith a learnedweighted-
sum aggregator for better relational modeling. We examine the
following models: 1) Enc(Gp)-Exp(None) that uses the Gp task en-
coder, 3) Enc(WS)-Exp(None) that uses a learned weighted-sum
aggregator without self-attention for graph message-passing, 3)
Enc(GNN)-Exp(None) that uses the proposed GNN encoder, 4) and
Enc(GNN)-Exp(RS) the proposed model. Note that for the first three
baselines, the explorer is disabled to eliminate the impact of the
exploration policy.

In Fig. 8, all models tend to converge to similar asymptotic per-
formance with off-policy data. However Enc(WS)-Exp(None) learns
much slower than its counterparts, while Enc(Gp)-Exp(None) seems
a reasonable design w.r.t. the off-policy performance. We conjec-
ture that it can be hard for Enc(Gp)-Exp(None) to learn a weighting
strategy as Gp, in which the weights are determined by the relative
importance of a sample w.r.t. the whole pool of samples (σ 2i /

∑
σ 2j),

and Enc(Gp)-Exp(None) has no access to other samples when com-
puting the weight of each sample. By contrast, Enc(GNN)-Exp(None)

Figure 9: Ablation study of exploration. We show the test-task per-
formance with on-policy data (left) and off-policy data (right).

provides more flexibility for the final weighted average pooling, by
incorporating the interactions between samples. Such relational
modeling enables it to extract more task statistics within the few
episodes, superior to Gp in the on-policy performance.

5.4.2 The Exploration Strategy. We aim to show the efficacy of
the proposed reward shaping for task-exploration. The baseline
models are: 1) Enc(Gp)-Exp(None) that uses no exploration policy,
2) Enc(Gp)-Exp(Rand) that uses a (uniformly) random explorer, 3)
Enc(Gp)-Exp(RS) that uses an explorer guided by the proposed re-
ward shaping. Here the Gp task encoder is used by default.

As shown in Fig. 9, all models perform equally in terms of asymp-
totic performance with off-policy data, since sufficient coverage
of experiences are inherent in the data randomly sampled from
buffers. This demonstrates the significance of improving coverage
of task experiences for task inference.

For the on-policy performance, we can see Enc(Gp)-Exp(Rand)
suffers from significant overfitting, as the coverage brought by
the randomness doesn’t suffice to benefit it within few episodes.
Enc(Gp)-Exp(RS) performs much better than Enc(Gp)-Exp(Rand) be-
cause high rewards is an informative guidance in a reward-varying
environment. Our approach combines the merits of both broad
coverage over task experiences and informative guidance regarding
task relevance, and hence achieves the best performance.

6 CONCLUSION
We divide the problem of meta-RL into three sub-tasks, and take on
probabilistic inference via variational EM learning. We thus present
CASTER, a novel meta-RL method that learns dual agents with a
task encoder for task inference. CASTER performs efficient task-
exploration via a curiosity-driven exploration policy, from which
the collected experiences are exploited by a context-aware task
encoder. The encoder is equipped with the capacity for relational
reasoning, with which the action policy adapts to complete the
current task. Through extensive experiments, we show the supe-
riority of CASTER over prior methods in sample efficiency, and
empirically reveal that the learned exploration strategy efficiently
acquires task-informative experiences with randomized behavior,
which effectively helps mitigate meta-overfitting.

7 ACKNOWLEDGEMENT
This work is supported by Shanghai NSF Grant (No. 18ZR1425100)
and NSFC Grant (No. 61703195).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1447

REFERENCES
[1] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.

2016. Interaction networks for learning about objects, relations and physics. In
Advances in neural information processing systems. 4502–4510.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[3] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[5] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science 359, 6374 (2018), 418–424.

[6] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[7] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. 2016. Rl2: Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779 (2016).

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 1126–1135.

[9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
1263–1272.

[10] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey
Levine. 2018. Meta-reinforcement learning of structured exploration strategies.
In Advances in Neural Information Processing Systems. 5302–5311.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[13] Yedid Hoshen. 2017. Vain: Attentional multi-agent predictive modeling. In Ad-
vances in Neural Information Processing Systems. 2701–2711.

[14] Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega,
Yee Whye Teh, and Nicolas Heess. 2019. Meta reinforcement learning as task
inference. arXiv preprint arXiv:1905.06424 (2019).

[15] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Vijay R Konda and John N Tsitsiklis. 2000. Actor-critic algorithms. In Advances
in neural information processing systems. 1008–1014.

[17] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.
2017. Building machines that learn and think like people. Behavioral and brain
sciences 40 (2017).

[18] Sergey Levine. 2018. Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review. arXiv preprint arXiv:1805.00909 (2018).

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[21] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2017. A simple
neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017).

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[23] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. In Advances in neural information

processing systems. 4026–4034.
[24] Ian Osband, Daniel Russo, and Benjamin Van Roy. 2013. (More) efficient rein-

forcement learning via posterior sampling. In Advances in Neural Information
Processing Systems. 3003–3011.

[25] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine.
2019. Efficient off-policy meta-reinforcement learning via probabilistic context
variables. arXiv preprint arXiv:1903.08254 (2019).

[26] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel.
2018. Promp: Proximal meta-policy search. arXiv preprint arXiv:1810.06784
(2018).

[27] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. 2017. A simple neural network
module for relational reasoning. In Advances in neural information processing
systems. 4967–4976.

[28] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[29] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms.

[30] Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter
Abbeel, and Ilya Sutskever. 2018. Some considerations on learning to explore via
meta-reinforcement learning. arXiv preprint arXiv:1803.01118 (2018).

[31] Malcolm Strens. 2000. A Bayesian framework for reinforcement learning. In
ICML, Vol. 2000. 943–950.

[32] Gerald Tesauro. 1995. Temporal difference learning and TD-Gammon. Commun.
ACM 38, 3 (1995), 58–68.

[33] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 5026–5033.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[36] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg,WojciechMCzarnecki, AndrewDudzik, AjaHuang, PetkoGeorgiev, Richard
Powell, et al. 2019. AlphaStar: Mastering the real-time strategy game StarCraft II.
DeepMind Blog (2019).

[37] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2015. Order matters: Se-
quence to sequence for sets. arXiv preprint arXiv:1511.06391 (2015).

[38] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In Advances in neural information
processing systems. 3630–3638.

[39] Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo,
Rémi Munos, Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. 2016.
Learning to reinforcement learn. CoRR abs/1611.05763 (2016). arXiv:1611.05763
http://arxiv.org/abs/1611.05763

[40] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local
neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 7794–7803.

[41] Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. 2018. Learning to explore
via meta-policy gradient. In International Conference on Machine Learning. 5459–
5468.

[42] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. In Advances in neural
information processing systems. 3391–3401.

[43] Songyang Zhang, Shipeng Yan, and Xuming He. 2019. LatentGNN: Learning Effi-
cient Non-local Relations for Visual Recognition. arXiv preprint arXiv:1905.11634
(2019).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1448

http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1611.05763

	Abstract
	1 Introduction
	2 Related work
	2.1 Meta-reinforcement Learning
	2.2 Relational Modeling on Sets

	3 Variational Meta-Reinforcement Learning
	4 Task Inference Strategy
	4.1 Learning the Exploration Policy
	4.2 Context-aware Task Encoder

	5 Experiments
	5.1 Experiemtal Setup
	5.2 Performance
	5.3 Understanding CASTER's Behavior
	5.4 Ablations

	6 Conclusion
	7 Acknowledgement
	References

