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ABSTRACT
Sparse reward problems present a challenge for reinforcement learn-
ing (RL) agents. Previous work has shown that choosing start states
according to a curriculum can significantly improve the learning
performance. We observe that many existing curriculum generation
algorithms rely on two key components: Performance measure esti-
mation and a start selection policy. Therefore, we propose a unifying
framework for performance-based start state curricula in RL, which
allows to analyze and compare the performance influence of the two
key components. Furthermore, a new start state selection policy
using spatial performance measure gradients is introduced. We con-
duct extensive empirical evaluations to compare performance-based
start state curricula and investigate the influence of performance
measure model choice and estimation. Benchmarking on difficult
robotic navigation tasks and a high-dimensional robotic manipu-
lation task, we demonstrate state-of-the-art performance of our
novel spatial gradient curriculum.
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1 INTRODUCTION
Although reinforcement learning (RL) has shown remarkable suc-
cess in playing games with super-human performance [13, 22, 36]
as well as mastering robotic locomotion [35] or manipulation tasks
[1, 21], sparse reward problems still present a challenge. Imagine
an autonomous agent, which has to solve a spatial navigation task.
The most simple and most precise objective definition for this task
is to only reward the agent once it has reached the goal. However,
this sparse reward definition comes at the cost of data-efficiency.
The agent needs to carry out many rollouts in order to experience
enough positively rewarded rollouts to improve its policy. Adding
reward components by prior knowledge or using shaping leads to
denser reward signals but carries a risk of resulting in undesired
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behaviors of the agent [28]. For example, a straight-line distance
reward signal may misguide an agent in a navigation task since it
does not consider obstacles like walls in a maze-like environment.
Ng et al. proposed potential-based reward shaping [25] to leave
the optimal policy invariant. However, a suitable potential function
might not always be obviously available: Reasonably rewarding in-
termediate configurations in real world robotic manipulation tasks
may be difficult, although the desired target configuration is clear.

Previous works have suggested a variety of ideas to improve data-
efficiency in sparse reward reinforcement learning [26]: Intrinsic
motivation [5, 12, 15, 27, 32], diversity [7, 14], return decomposi-
tion [2], auxiliary tasks [16, 30], use of demonstrations [29, 31], or
curriculum learning [8, 9, 19, 30].

Curriculum learning [6] is a general concept in machine learning.
It is motivated by the way humans or animals learn. The idea is to
accelerate learning by starting with simple problems and increasing
the difficulty according to the learner’s capabilities. In RL, curricula
can improve data-efficiency in sparse reward settings by deciding
which “context" to train on next, with contexts being start states
[9], goal states [8], or tasks [19, 30]. It is of specific interest not to
hand-design but automatically generate the sequence of contexts.

We focus on generating curricula of starting states for sparse
reward goal-based RL settings. This problem has already been stud-
ied in [9]. However, a unifying framework to gather the existing
performance-based curricula from the supervised and reinforce-
ment learning literature is missing. Furthermore, it is an open ques-
tion how the different context selection strategies compare with
respect to start state selection in RL using the same benchmark
tasks and agent performance models. Besides that, existing start
state curriculum generation algorithms make implicit assumptions
on agent-environment dynamics or require additional rollouts [9].

In this work, we investigate performance-based start state cur-
riculum generation using on-policy policy gradient methods, which
are state-of-the-art in robotic tasks [21, 35]. Start state curricula are
particularly appropriate for on-policy methods because changing
the context has a direct influence on the current learning perfor-
mance. Nevertheless, the presented curriculum ideas are potentially
more broadly applicable in the off-policy setting. Our main contri-
butions are:
• Introducing a formal framework for performance-based start
state curricula in RL that consists of a performance measure
model and a start state selection policy.
• Proposing a new, intuitive start state selection policy with
state-of-the art performance across different problem do-
mains that builds on spatial performance measure gradients.
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2 RELATEDWORK
Curriculum learning has been shown to accelerate learning progress
in supervised learning [6, 11, 17] as well as in reinforcement learn-
ing settings [8, 9, 19, 30]. A very general framework to propose
increasingly difficult problems can be found in [33, 37]. The SAGG-
RIAC framework [4, 5] pursues a similar direction by generating
“developmental trajectories" of increasingly difficult tasks by mak-
ing use of intrinsic motivation concepts.

Even before the term was established, curriculum learning ideas
have been considered in RL. Asada et al. [3] proposed with “Learn-
ing from Easy Missions (LEM)" an algorithm that schedules increas-
ingly difficult start states. Thereby, they assume an “axis" along
which states can be ordered by difficulty using prior knowledge
about the problem. Kakade and Langford [18] also consider the
possibility of modifying the start state distribution in RL.

Recent approaches automatically generate curricula for different
types of contexts such as tasks [19, 30], start states [9], or goal states
[8]. A common pattern is that Monte Carlo returns of past rollouts
are used for determining how suitable a context is for the agent’s
current learning process. To determine the next context, a continu-
ously re-estimated Boltzmann distribution [19, 30], a heuristic that
finds new contexts near previously “good" ones [9], or a trained
generator that outputs suitable contexts [8] were used.

Klink et al. [19] adapt the concept of self-paced curriculum learn-
ing [17, 20] to relative entropy policy search by allowing the agent
to control the intermediate task distribution with respect to its
capabilities, which are represented as a value function. The opti-
mization of the intermediate task distributions performs a trade-off
between intermediate reward maximization and shifting the task
distribution towards the desired target distribution.

The asymmetric self-play algorithm introduced in [38] puts two
agents, Alice and Bob, into competition to implicitly generate a
curriculum. During the self-supervised training, Alice starts in the
goal configuration of the MDP and takes actions until it takes the
STOP action. Then it is Bob’s turn to reset the MDP in its goal
configuration starting from Alice’ final configuration. The policies
of Alice and Bob are updated with intrinsic rewards. During the
rest of the training, Bob trains on the original MDP.

Narvekar et al. [23, 24] introduce curriculum MDPs (cMDPs)
to model the process of curriculum generation as an MDP itself.
This way, the context can vary arbitrarily. However, the set of
possible source tasks must be provided in advance. Furthermore,
the recursive Monte-Carlo algorithm for curriculum generation in
cMDPs [23] relies on hand-designed heuristics and lacks scalability
as well as data-efficiency by requiring to train on every source task
for some time in order to gauge it.

Several works have studied the important case of adaptively
choosing starting states as a curriculum in the RL setting [9, 29, 31].
In [31] and [29] start state curricula are generated from a single
demonstration. This assumes the availability of expert demonstra-
tions, which is a strong assumption we want to omit.

Closest to our work is the “Reverse Curriculum" generation
approach [9]. New start states are found nearby “good states" that
have an intermediate probability of reaching the goal. Any state
visited during random walks (“Brownian motion") starting from
these “good states" is a potential new start. This heuristic start state

generation implicitly assumes symmetry in the agent-environment
dynamics in the way that reaching A from B and B from A is
similarly difficult. Furthermore, additional rollouts are required for
the random walks and hyper-parameters have to be tuned. Similar
to our work, it is assumed that the agent can start in an arbitrary
state of the MDP although possibly only a sub-space of the state
space might be freely chosen.

In our work, we introduce a unifying framework for start state se-
lection based on a Monte-Carlo return-based performance measure
model. Our framework accomodates existing curriculum genera-
tion methods [9, 11, 19] and allows comparing them. Furthermore,
we introduce a novel start state selection policy, that is based on a
spatial gradient of the performance measure. This start state policy
tends to select start states at the boundary of the agent’s capabili-
ties. It neither requires additional policy rollouts nor does it assume
symmetry in the agent-environment dynamics.

3 BACKGROUND AND PROBLEM
STATEMENT

In this work, we consider sequential decision making problems that
are modeled by means of a discrete-time finite-horizon Markov
decision process (MDP) M = (S,A,P, r ,γ ,T ) with the set of
states S, the set of actions A, the state transition dynamics P :
S × A × S → [0, 1], the reward function r (s,a) : S × A → R, the
discount factor γ , and the time horizon T . Furthermore, there is an
initial state distribution p0 : S → [0, 1] which might be controlled
by a curriculum generation algorithm.

We address the standard setting of policy gradient methods for
RL which is the task of finding the parameters θ of a stochastic
policy πθ : S×A → [0, 1] that maximize the expected accumulated
discounted rewards

max
θ
E


T∑
t=0

γ t r (st ,at )
����P,πθ ,p0


. (1)

For this purpose, we define the value functionV πθ (s ) of the policy
πθ as

V πθ (s ) := E


T∑
t=0

γ t r (st ,at )
����s0 = s,P,πθ


. (2)

Goal-basedMarkov Decision Processes: Sparse reward tasks
are often studied in goal-basedMDPs [1, 9, 30]. Here, the objective is
to reach a pre-defined terminal goal state д ∈ S for all feasible start
states within the time horizonT . These MDPs are also important in
the field of robotics, for example for modeling robotic navigation
problems [9] or object reaching and manipulation tasks [1, 30].

Formally, the goal is reached once d (s,д) ≤ ϵ for some distance
measure d : S × S → R+ and a tolerance ϵ ∈ R+. We define the
goal-reaching-probability Ω (πθ ,p0) with respect to the policy πθ
and the start-state distribution p0 as

Ω (πθ ,p0) = Es∼p0

[
I∃t ≤T : d (st ,д)≤ϵ |s0 = s,P,πθ

]
. (3)

To approximately solve the goal-based MDP, we search for policy
parameters θ that maximize the goal-reaching probability under the
uniform distribution over feasible states Ω (πθ ,U (S)). This can be
cast in the previously defined formalism of (1) by defining a goal-
based binary reward function rд (s,a) = Id (s,д)≤ϵ and assuming a
discount of γ = 1.
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Start State Curricula: Curriculum learning can be applied to
RL for selecting the start states of the policy rollouts. This way, the
start state distribution may depend on the training iteration i: p0,i .
The objective of start state curriculum generation is to improve the
learning progress over the course of the training as well as the final
goal-reaching-probability compared to training with the uniform
start state distribution p0 = U (S) by adapting p0,i .

4 PERFORMANCE-BASED START STATE
CURRICULUM FRAMEWORK

In the following, we propose a general framework for performance-
based start state curriculum generation in reinforcement learning.
The framework consists of two key components: A state-dependent
performance measure (PM) J

(
πθi , s

)
that asseses the agent’s ca-

pabilities and a start state selection policy, which is a distribution
over start states that depends on the PM values.

Similar to earlier work on start state curriculum generation [9],
we assume that the agent can reset to an arbitrary start configu-
ration at any point in time and allow for the case that only the
start state component s̄ in a sub-space S̄ ⊂ S is freely choosable1.
For example, in robotic navigation tasks, the agent can start at any
feasible x-, y-position whereas the initial velocity is always zero.

Given estimates of the performance measure J
(
πθi , s

)
over the

entire state space S for potentially the entire history of training
iterationsHi , the start state selection policy π s0 chooses start states
s0 for the environment rollouts during the RL training:

π s0
(
s0
����
(
J
(
πθ j , s

))
s ∈S, j ∈Hi

)
. (4)

As a result, the probability of sampling a state s as start state s0,i
in iteration i is proportional to the value of a function G that is
applied to the performance measure J

(
πθi , s

)
:

P J
(
s0,i = s

)
∝ G
((
J
(
πθ j , s

))
s ∈S, j ∈Hi

)
. (5)

This start state curriculum framework can accomodate existing cur-
riculum generation approaches like [9], [19], or [11]. It furthermore
allows us to formulate a novel start state curriculum generation
algorithm utilizing spatial performance measure gradients.

Possible performance measure choices are discussed in Sec. 4.1.
While Sec. 4.2 shows how existing curriculum generation approaches
fit our framework, section 4.3 introduces our spatial gradient start
state curriculum generation approach. Details regarding the algo-
rithmic implementation of our framework are given in Sec. 4.4.

4.1 Performance Measure
In reinforcement learning, the typical measure of performance of a
policy starting in a certain state s is its expected return, which is
equivalent to the value-functionV πθ (s ) at state s (see Eq. 2). In the
setting of goal-based MDPs, we can also express this performance
measure using the goal-reaching probability:

J
(
πθi , s

)
= V πθi (s ) = Ω

(
πθi , Is0=s

)
. (6)

In contrast to supervised learning, the reinforcement learning per-
formance measure J

(
πθi , s

)
of the policy πθ j with respect to the

1To improve readability, the equations in this section are stated with s and S instead
of s̄ and S̄, wherever it is sensible. A notable exception are implementations.

reward function r (s,a) given a start state s is not readily available
for all states s ∈ S. Instead, the performance must be estimated by
means of policy evaluation.

4.1.1 Performance Measure Estimation. A simple approach for
estimating the performance measure is to roll out the policy πθ
several times starting in the states of interest and averaging the
Monte Carlo returns of the resulting trajectories (see [9, 30]). How-
ever, this requires many interactions with the environment. For
this reason, RL algorithms usually learn an estimate of the return
of a policy given a state. Historically, tabular representations of the
value function were used [39]. With increasingly large state spaces,
function approximation techniques keep learning manageable [40].
Recently, neural networks have become a popular tool to model
the complex shape of value functions in difficult tasks [10, 35].

4.1.2 Performance Measure Models. In principle, all models and
architectures employed for expected return estimation can be em-
ployed as performance measure (PM) model. For our robotic evalu-
ation tasks, we specifically use two different PM models V̂ϕ (s̄ ):

• Performance Measure Map (PMM): For robotic naviga-
tion tasks, we use a tabular model as experimentally justified
in Sec. 5.2.1. We discretize the controllable 2D x-, y-position
sub-space by applying a uniform grid. The performance mea-
sure estimate of a specific cell is the average of the undis-
counted returns of all policy rollout trajectory states of the
last l training iterations that fall into this cell. A major draw-
back of this model is that it suffers the curse of dimension-
ality, not scaling to higher-dimensional subspaces S̄ as e.g.
encountered in robotic manipulation tasks.
• Performance Measure Network (PMN): This parametric
neural network PMmodel scales better to higher dimensions.
It is trained similar to a value function critic network in actor-
critic RL but learns amodel of the undiscounted returns given
only the controllable component s̄ of the state as input.

The terms PMM and PMN indicate that these return prediction
models are specifically estimated for the start state curricula. For
policy optimization, an additional value function model using the
full state and potentially employing discounting might be estimated.

4.2 Adapting Existing Curriculum Generation
Approaches

In this section, we show how the previously introduced framework
accommodates existing curriculum generation methods.

4.2.1 Good Starts/States (GS). Florensa et al. [9] propose to
ideally draw start states uniformly from a set of “good” states that
have a probability for reaching the goal that is neither too low
nor too high. This serves the goal of collecting a set of rollouts
with a good balance between trajectories that reached the goal and
trajectories that failed to do so. In terms of start state sampling
probability, the selection mechanism can be written as

P J (s0 = s ) ∝ Ia< J (πθ ,s )<b . (7)

with a and b denoting the lower and upper threshold on the perfor-
mance measure, respectively.
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4.2.2 Self-Paced Contextual RL (SPCRL). The RL adaption of
self-paced curriculum learning [17] of Klink et al. [19] can be rep-
resented in our framework of start state curricula for RL:

P J (s0 = s ) ∝ e
1
η J (πθ ,s ) . (8)

The temperature parameter η is increased towards infinity over the
course of the training in order to recover the original objective of
uniform start sampling, in the limit.

4.2.3 Temporal Prediction Gain (TPG). Graves et al. [11] inves-
tigated curriculum generation for supervised learning based on
maximizing the log-likelihood L (x ,θ ). In their study, the gain in
prediction performance L (x ,θ ′) − L (x ,θ ), where θ and θ ′ are the
network parameters before and after training on x , turned out to be
the best criterion to select the next training sample x . This curricu-
lum generation approach translates to the RL setting by choosing
starting states proportional to the temporal improvement of the
performance measure J

(
πθi , s

)
across the last l training iterations

with a subsequently applied Boltzmann distribution:

P J (s0 = s ) ∝ e
1
η

(
J
(
πθi ,s

)
−J
(
πθi−l ,s

))
. (9)

4.3 Spatial Gradient Curriculum
We introduce a novel criterion for selecting start states, which we
term the spatial gradient (SG) curriculum. First, we assume that:

• The sub-space S̄ is a Euclidean vector space.
• States that are close in the Euclidean norm are easily reach-
able from one another.

Given the assumptions, we propose to sample start states pro-
portional to the Euclidean norm of the gradient of the performance
measure J (πθ , s ) with respect to the state s:

P J (s0 = s ) ∝ ||∇s J (πθ , s ) | |2 (10)

The SG curriculum can bemotivated by spatial navigation problems:
Imagine two neighboring states whereby the probability to reach
the goal state if starting in the state is high for one of the states
and low for the other. Once the policy learns how to reach the state
with the high probability from the state with the low probability,
the latter state will also have a high goal-reaching probability. This
procedure casts the task of improving the global goal-reaching
capabilities of the policy to a much easier local improvement task.

The spatial gradient exhibits large values at states that lie close
to the boundary of the policy’s goal-reaching capabilities. An ex-
emplary visualization is given in Fig. 1: Figure 1b shows the goal-
reaching probabilities for every state (tile) after training an RL
agent using the SG curriculum for 1000 iterations in the discrete
gridworld depicted in Fig. 1a. The corresponding spatial gradient
values for every state are shown in Fig. 1c.

While the assumptions of the SG curriculum may seem restric-
tive, the empirical evaluation in Sec. 5 demonstrates that the ap-
proach suits a variety of robotic tasks, achieving state-of-the-art
performance. Our method seems to work well in practice if one
can easily transition between pairs of states that are within a small
distance of ∆ from each other. For our robotic insertion task, this is
the case for the angle components of the non-Euclidean joint space.

(a) Gridworld Layout

(b) PMM, Iter=1000 (c) SG, Iter=1000

Figure 1: PMM and Corresponding Spatial Gradients

4.4 Algorithmic Implementation Details
Alg. 1 shows the combination of our framework with on-policy RL.

Algorithm 1: PM Based Start State Selection for On-Policy RL
Input: On-policy RL algorithm A, initial policy πθ0 , start state

selection policy π s0 , model of performance measure
(PM) V̂ϕ (s̄ ), empty set of trajectory data D

1 for i = 1 to imax do
2 Calculate start state selection policy based on PM model

π s0,i
(
s0, i

���
(
V̂ϕj

)
j ∈Hi

)
3 Collect policy rollout data τ and update policy πθ

πθi ,τ ← A
(
πθi−1 ,π

s0,i
)

4 D ← D ∪ τ

5 if i mod l = 0 then
6 Update parameters ϕ of PM model V̂ϕ (s̄ ) using D
7 D ← ∅

We implement our SG start state selection policy as a finite-
difference approximation of Eq. 10. For training iteration i , it de-
notes

π s̄0,i
(
s̄0
����
(
J
(
πθ j , s̄

))
s̄ ∈S̄, j ∈Hi

)
=√∑dim(S̄)

d=1

(
J
(
πθi , s̄d,+

)
− J
(
πθi , s̄d,−

))2
∑
ŝ ∈S̄

√∑dim(S̄)
d=1

(
J
(
πθi , ŝd,+

)
− J
(
πθi , ŝd,−

))2 (11)

where s̄d,− and s̄d,+ denote the state s̄ where the d-th (dimension)
entry is decremented or incremented by a chosen scalar ∆. In case
of the PMM model, ∆ is chosen such that s̄d,− and s̄d,+ fall into the
respective neighboring grid cells. In case of the PMN model, ∆ is
a hyper-parameter and start states are sampled from a number of
proposal states which are uniformly pre-sampled from S̄.
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5 EMPIRICAL EVALUATION
In Sec. 5.1 we analyze the two key components of our start state
curriculum framework, the performance measure (PM) and the
start state selection policies, while eliminating the influence of state
space discretization and PM estimation. Afterwards, we benchmark
the presented performance-based start state curricula, including our
spatial gradient (SG) curriculum, on different continuous dynamics
spatial navigation tasks, in Sec. 5.2. Finally, we demonstrate that
our SG curriculum generalizes to a high-dimensional robotic key
insertion task while outperforming previous approaches.

Since all of our benchmark tasks are goal-based MDPs with a
binary reward for reaching the goal, our evaluation metric is the
agent’s goal-reaching probability with respect to a uniform start
distribution: Ω

(
πθi ,U (S)

)
. Every l training iterations, 10 (100 in

case of robotic key insertion task) rollouts starting in uniformly
sampled feasible states are carried out using the current policy πθi
to obtain an estimate Ω̂

(
πθi ,U (S)

)
. Performance metric values

are reported as mean (solid line in plots) ± standard error (shaded
area) across the indicated number of random seeds. Throughout all
experiments, we use TRPO [34] for policy optimization.

5.1 Curriculum Generation Components
We presented a unified formulation of start state selection policies
in Sec. 4. The important scientific question that naturally arises
is: Which of the presented policies is most effective? Since the
effectiveness of the start state selection policies depends on the
accuracy of the PM, we answer this question in the first part of the
section using a very accurate estimate of the PM. Afterwards, we
quantify the effects of PM estimation on the learning performance.

5.1.1 Start State Selection Policy Comparison. In order to mini-
mize effects of PM estimation errors, we use a specific experimental
set-up: A discrete state and action space navigation scenario in
a 30 × 20 discrete gridworld (see Fig. 1a). The state space has 10
dimensions: Agent x- and y-coordinate and 8 binary features indi-
cating wall (1) or free space (0) for the neighboring tiles. The agent
can take 4 actions: Up, right, down, or left. We combine the grid
environment with a PMM-type PM model. The PMM grid cells cor-
respond to the discrete environment states. Using rollouts starting
10 times from each state for PMM fitting results in very accurate
goal-reaching probability estimates for all states.

The start state selection policy comparison is visualized in Fig. 2a.
The GS, TPG2, and SG start state selection criteria clearly outper-
form the uniform start sampling (UST) baseline whereas the SPCRL
start state selection is slightly worse than the baseline. The SG
criterion performs best being slightly superior towards the end.

5.1.2 Effects of Performance Measure Estimation. The previous
experiments showed that several choices for the start state selec-
tion policy can significantly outperform the UST baseline given
a high accuracy “ground truth” PMM. Compared to the normal
case, in a practical application, where the PMM must be estimated
solely from anyways collected trajectory data, for data-efficiency
reasons (compare Sec. 5.2), the “ground truth” PMM has two main
advantages for the curricula: First, the precision at the individual
2for better performance only states with a positive temporal performance measure
gain are considered for start selection

(a) Curriculum Generation Criteria Comparison

(b) Performance-Measure Estimation Ablation

Figure 2: Experiments on Discrete Gridworld Environment

grid cells is high, which allows the start state selection policies
to exploit subtle differences in goal-reaching probability. Second,
estimates of the goal-reaching probability are available over the
entire state space, even for states that the policy has not visited yet.
Consequently, starting states can be selected over the entire state
space to optimally boost the learning progress. To understand to
which extent these two properties influence the performance of the
curricula, we conduct an ablation study of three SG variants:
• SG: PMM estimated by specifically conducting 10 rollouts
from every feasible state in the state space for PMM estima-
tion only (significantly reduced data-efficiency)
• SG PMM: PMM estimated from the anyways collected roll-
out data of the last 5 RL training iterations (data-efficient)
• SG VISITED: like SG but PMM values only provided for
grid cells visited within the last 5 RL training iterations

Two things can be concluded from the results in Fig. 2b: First,
the estimation accuracy for the visited grid cells is high enough
using the training rollout data of the last 5 iterations, since SG
PMM and SG VISITED perform similarly. No additional rollouts are
necessary for sufficient estimation accuracy. Second, SG performs
slightly better towards the end by having goal-reaching probability
estimates of grid cells the agent has not visited recently during RL
training, which is not practical with respect to data-efficiency.
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5.2 Benchmarking on Spatial Navigation Tasks
The experiments in Sec. 5.1 showed that our novel SG start state
curriculum achieves state-of-the-art performance given a global
high accuracy PMM model estimate. Furthermore, we found out
that the PMM can be estimated sufficiently accurate from rollout
data collected in the inner RL loop. In the following, we compare
the performance-based start state curricula using this data-efficient
PMM estimation approach on challenging and realistic sparse re-
ward spatial navigation tasks. We evaluate them on three different
environments comparing to existing algorithms that can be used for
automatic start state selection in RL, demonstrating performance
gains of our SG curriculum. Prior to this, we evaluate which type
of PM model gives best performance in spatial navigation tasks.

5.2.1 Performance Measure Model Evaluation. In the following,
we want to find out whether the tabular PMM model, which was
perfectly suited for the discrete state and action space maze navi-
gation, or a neural network-based PMN model for the performance
measure results in better performance in difficult continuous state
and action space spatial navigation tasks. Therefore, we conduct
experiments with an RL agent using the SG curriculum on a contin-
uous state/action space and agent dynamics version of the gridworld
depicted in Fig. 1a. The 12-dimensional state space consists of veloc-
ity in x- and y-direction, x- and y-position, and eight binary values
to indicate obstacles on neighboring tiles. Actions are accelerations
in x- and y-direction. The agent has to reach the red goal tile.

For the spatial gradient curriculum with the tabular PMM (SG
PMM), the state space discretization necessary for the PMM estima-
tion uses the same tiling as in the discrete state space setting before.
SG PMN uses the value function critic of TRPO as performance
measure model since no discounting is employed and only using
the low-dimensional state space component s̄ did not turn out to be
beneficial in this scenario. For SG PMN 100 start state candidates
are pre-sampled uniformly and the ∆ value is similar to the tile size
1 m. The comparison is visualized in Fig. 3.

Figure 3: Performance Measure Choice on Continuous Grid

While both SG variants clearly outperform the uniform start
sampling baseline, SG PMM clearly outperforms SG PMN 3. A
possible reason for this is that the PMM by simply averaging returns
3We obtained similar results for the MuJoCo Point Mass task (Sec. 5.2.5).

of recent rollout data for regions of the state space can quickly
adapt to changes in the goal reaching capabilities of the agent
whereas the neural network uses a gradient-based optimizer to
continuously update its parameters, which additionally may have to
fight local optima. Setting the reaching probability for tiles without
available data by default to zero in case of the PMM model, which
enforces gradients at boundaries towards unexplored regions of
the state space, might be another aspect that explains the better
performance of SG PMM. As a result, we will use the tabular PMM
as our performance measure model in the remainder of this section.

5.2.2 Environments. The three spatial navigation scenarios are:
• A continuous state/action space and agent dynamics grid-
world as presented in Sec. 5.2.1 (T = 100).
• Similar to [9] a point mass agent in a "G-shape" maze (see
Fig. 4a) implemented using MuJoCo [41] (T = 500).
• Similar to [9] an “ant" agent in a "U-shape" maze (see Fig. 4b)
implemented using MuJoCo [41] (T = 2000).

While all of them are spatial navigation tasks with continuous
dynamics, the environments differ in maze complexity, dynamics
complexity, and time horizon T . The number of policy training
iterations between curriculum updates is l = 5 for all of them.

(a) Point Mass (G-Shape) (b) Ant (U-Shape)

Figure 4: MuJoCo Spatial Navigation Environments

5.2.3 Baselines. Apart from the simple UST baseline, we com-
pare the performance-based start state selection policies to:
• Reverse Curriculum Generation (RC) [9]: RC has been pro-
posed as a practical approximation of the GS curriculum that
does not assume to know the agent’s goal-reaching proba-
bility at unvisited states. It is currently the state-of-the-art
in start state selection for RL and replaces GS from now on.
• Asymmetric Self-Play (ASP) [38]: We implement and evaluate
two versions of this algorithm. As the first version, we imple-
ment the original algorithm as reported in [38] where during
self-play Alice starting from the goal proposes starts for Bob.
During the rest of the training time, Bob is trained on the
original goal-based MDP under uniform start states. As the
second version, ASP RC, we use a hybrid version of ASP and
RC which was used as a baseline in [9]. ASP RC uses the
self-play only to update Alice but not Bob. The starts Alice
generates are used as the “good states" in the RC algorithm.
• SAGG-RIAC [5]: In [8] the SAGG-RIAC algorithm for auto-
matic goal generation has been adapted to the modern batch
reinforcement learning setting using TRPO as the “Low-
Level Goal-Directed Exploration with Evolving Context". We
use their implementation but modify it in order to generate
start states instead of goal states.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1508



(a) Curriculum Generation Algorithm Comparison

(b) Symmetry Assumptions Ablation

Figure 5: Experiments on Continuous Gridworld

5.2.4 Continuous Grid. The results for the continuous gridworld
environment are presented in Fig. 5a. SG PMM and TPG PMM per-
form best, clearly outperforming UST and all the other baselines.
The two variants of the Asymmetric Self-Play algorithm perform
particularly badly. It turns out that, in this experiment, the compe-
tition between the two RL agents Alice and Bob quickly collapses
in the sense that one of the two gets much better than the other
one, which is usually Bob, the goal-reaching agent of interest. The
main reason for this might be that Bob gets more training since he
does “normal" reinforcement learning besides the self-play.

5.2.5 MuJoCo Point Mass. The results of theMuJoCo point mass
maze navigation task are presented in Fig. 6a. Again, SG PMM per-
forms best, especially more quickly reaching its final performance
level than RC, which catches up in the end. The performance of TPG
PMM greatly depends on the Boltzmann distribution temperature:
A value of 1.0 instead of 0.2 (gridworld) improves performance.

5.2.6 MuJoCo Ant. The results of the MuJoCo ant maze naviga-
tion task are shown in Fig. 6b. SG PMM performs best again. TPG
PMM and RC reach the same final performance level in the end but
show a slower increase in goal-reaching probability in the begin-
ning. SAGG-RIAC and Asymmetric Self-Play are not considered
any more due to their poor performance in the previous tasks.

(a) Point Mass (G-Shape)

(b) Ant (U-Shape)

Figure 6: MuJoCo Maze Navigation Experiments

5.2.7 Symmetry Assumptions Ablation. All spatial navigation
tasks considered in this section have symmetric agent dynamics in
common: With the equal magnitude of action, the agent moves the
same distance in the corresponding direction. However, this may
not hold for real world vehicles. A car, for example, has potentially
different gear ratios as well as maximum speeds in forward and
backward direction, respectively. Since the heuristic “Brownian
motion" procedure to generate new starting states in RC assumes
similar difficulty of getting fromA to B and fromB to A, respectively,
we want to investigate RC and the performance-based start state
curricula under “asymmetric" agent dynamics on the continuous
gridworld environment, in the following.

We skew the agent dynamics: While they are unchanged when
moving in positive x- or y-direction, moving in negative direction
only a quarter of the chosen acceleration is applied. By this, the
“Brownian motion" of RC is biased towards positive direction. The
results are visualized in Fig. 5b. While the final goal-reaching prob-
ability of SG PMM decreases by around 20 percentage points in
comparison to the symmetric dynamics case, the performance of RC
drops by more than 40 percentage points, being worse than the UST
baseline. Also the performance of TPG PMM drops slightly more
than SG PMM. This indicates that SG start state selection is more
robust with respect to (arbitrary) agent-environment dynamics.
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5.3 Generalization to Robotic Manipulation
Task

Finally, we show that our spatial gradient curriculum is also appli-
cable to higher-dimensional robotic manipulation tasks, achieving
superior performance. We use a robotic key insertion task similar
to the one presented in [9], which was implemented using MuJoCo
[41]. The state space includes the 7 joint angles and 7 joint velocities
of the robot as well as the 3D positions of 3 reference points on the
key. The joint accelerations are applied as actions. For a successful
key insertion, the key must be inserted with a specific orientation,
rotated clockwise by 90°, pushed, rotated counterclockwise by 90°,
and finally be within 3 cm of the target location. All robot configu-
rations with the tip of the key being within 40 cm of the key-hole
are considered feasible. The environment is depicted in Fig. 7.

Figure 7: MuJoCo Key Insertion Task

The subspace S̄ to choose start states from is chosen as the 7D
joint angle configuration. Therefore, we use a neural network-based
PMN model for the performance measure since the PMM model
does not scale to such high dimensionality. Each l = 2 iterations
the sampling probabilities for 1000 uniformly sampled proposal
starts are calculated. For SG PMN, the delta is chosen similar to the
goal-reaching accuracy: ∆ = 3 cm.

The simulation results are presented in Fig. 8. While all perfor-
mance-based start state curricula outperform the UST baseline, the
spatial gradient curriculum (SG PMN) clearly performs best.

Figure 8: MuJoCo Key Insertion Task

6 CONCLUSION
In this work, we introduced a unifying framework for performance-
based start state curriculum generation in reinforcement learning.

It consists of two key components: 1) A state-dependent perfor-
mance measure, which estimates the policy’s current capabilities,
e.g. the goal-reaching probability. 2) A start state selection policy
that selects starts based on the PM.We showed how several existing
automatic curriculum generation approaches fit in our framework.
Furthermore, we introduced a novel start state selection policy that
makes use of spatial performance measure gradients to find start
states at the boundary of the policy’s current capabilities.

Comparing different start state selection policies using a “ground
truth" PM model, our spatial gradient curriculum performed best.
We found that for recently visited states the PM can sufficiently be
estimated using rollout data from the RL training loop. The perfor-
mance gap to the “ground truth" PM model is largely explained by
the available global information at unvisited states.

In realistic continuous dynamics spatial navigation tasks, our
proposed spatial gradient start state curriculum achieves state-of-
the-art performance, performing best or among the best compared
to the other curriculum generation algorithms, most notably out-
performing the Reverse Curriculum approach. Additionally, our
approach turned out to be more robust with respect to asymmetric
dynamics than any other start state curriculum and does not need
any additional rollouts to generate new start states.

Our proposed spatial gradient start state selection policy can
be flexibly combined with arbitrary estimators of the performance
measure. For spatial navigation tasks, a tabular representation em-
pirically resulted in the best performance. Using a neural network
model as performance measure, our spatial gradient start state cur-
riculum is also applicable to high-dimensional robotic manipulation
tasks, achieving state-of-the-art performance.

Applying our start state curriculum framework to MDPs with
intermediate rewards is a potential direction for future work. The
performance measure might either solely focus on goal reaching as
before or be designed to also account for the intermediate rewards
such that the curriculum selects starts to improve the overall per-
formance. Another research direction may be to find out whether
our SG curriculum can be modified to be applicable to more general
graph structures than regular lattices by looking at PM differences
between neightboring nodes rather than spatial derivatives.

A POLICY OPTIMIZATION PARAMETERS

Table 1: TRPO Parameters

Environment Grid MJ Point MJ Ant MJ Key
Max KL 5e-4 5e-4 1e-2 5e-4
Damping 5e-3 5e-3 1e-3 5e-3
Batch Size 3200 20000 80000 50000

Policy and value function critic are represented by fully con-
nected neural networks with three hidden layers of 64 neurons.

For GS and RC, a = 0.1 and b = 0.9. The RC parameters are
Nnew = 50, Nold = 25, TB = 20, M = 1000 in the gridworld
experiments and similar to [9] in the MuJoCo experiments.

Code will be made available: https://github.com/boschresearch/
A-Performance-Based-Start-State-Curriculum-Framework-for-RL
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