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ABSTRACT
We study the well-known Sequential Posted Pricing scheme with one

item, under the Bayesian setting that the value of each participating

agent to the item is drawn from her own value distribution, which is

known to the auctioneer as prior information. Each agent comes in

to the auction market sequentially, and is offered a take-it-or-leave-

it price. The goal of the auctioneer is to maximize her expected

revenue. This family of mechanisms has been proved to perform

well compared to optimal mechanism under the Bayesian frame-

work in various settings [11], but nothing was previously known on

the complexity of computing an optimal sequential posted pricing.

In this paper, we show that finding an optimal sequential posted

pricing is NP-complete even when the value distributions are of

support size three. For the upper bound, we introduce polynomial-

time algorithms when the distributions are of support size at most

two, or their values are drawn from any identical distributions. As a

by-product, we also show the same results hold for order-oblivious

posted pricing scheme where after the auctioneer posts the prices,

agents come into the auction in an adversarial order. We also study

the constrained sequential posted pricing where the auction only

runs for a fixed number of τ rounds, and give polynomial-time

algorithms when the distributions are of support size at most two.

Moreover, we extend our algorithm to cases when the values are

decayed with time or the item has several copies. To the best of

our knowledge, this is the first result that fully characterizes the

computational complexity of sequential posted pricing family.
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1 INTRODUCTION
Consider the following simple auction setting: the auctioneer owns

one item and wants to sell it to one ofn agents. For each i = 1, . . . ,n,
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agent i has valuevi to the item. The auctioneer does not knowwhat

the exact value of vi is, but has prior information for each agent,

i.e., knows the distribution Di of the value vi .
The auction runs in the following way: agents come in sequen-

tially, the auctioneer offers the agent a price to take the item upon

arrival. Each agent decides whether or not to accept this price (and

takes the item). The auction ends when the item is sold, or every

agent is not willing to buy the item at the offered price. The goal of

the auctioneer is to design a pricing scheme in order to maximize

her expected revenue from the auction. This family of mechanisms

is referred in lots of literature as Sequential Posted Pricing [8, 11, 32].
Although the auction scenario described above only sells one

item, Sequential Posted Pricing is different from the traditional

single-parameter auction setting where all the agents submit their

bids first, then the auction outputs the allocation and payment rules.

For the traditional single-parameter setting, Myerson proposed the

remarkable Myerson auction in [30], which gives the optimal auc-

tion that gains the highest expected revenue. Myerson’s auction

is simple, and useful in scenarios where seal bid auction can be

realized. However, in practice, there is a large number of scenarios

where seal bid auction can not be applied, such as house rental,

hotel accommodation, ticket booking, etc, since all the agents can-

not get around the table and participate in an auction. There are

more reasons that make Myerson’s auction hard to apply in prac-

tice: (1) in a Myerson auction each agent is incentivized to bid her

true value, but the agent may not want to reveal her true value

or even the agent herself is not clear about her true value; (2) it

is too difficult to explain to an agent who has little knowledge in

mechanism design why Myerson’s auction is dominant strategy

incentive compatible; (3) Myerson’s auction does not satisfy group

strategy-proofness [21], which gives chance for different agents to

collude.

As a take-it-or-leave-it scheme, Sequential Posted Pricing turns

out to be robust in practice: agents in this market do not need to

know or report their value, they make only one decision — take or

leave, which also protects their private value information. Besides,

it is always a dominant strategy for each agent to accept or decline

the offer immediately. Also, group strategy-proofness is guaranteed

in this scheme, as the only way one agent can help to increase

another agent’s utility is to decline an offer that she could have

accepted, which decreases her own utility. One can refer to more

discussions [8, 11, 32] about the robustness of sequential posted

pricing. As prior information from agents can be learned from

history [28, 29], the sequential posted pricing can be implemented

easily.
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A special case of Sequential Posted Pricing scheme is Anonymous
Pricing scheme [24], which sells the item at a fixed price, and let

people get what they want. From a theoretical point of view, when

value distributions for agents are regular (which holds for most of

the practical distributions), it has a good revenue guarantee com-

pared to the optimal auction [4, 25]. With practical consideration,

it is widely used in real life since it can be implemented efficiently.

A commonly seen scenario for anonymous pricing is the following:

in any supermarket, all the items are labelled with fixed prices. The

consumers may come at different times, and get whatever they want

until items are sold out. Note that a revenue-maximizing auctioneer

could utilize the prior information and realize the “personalized”

pricing in order to extract higher revenue (we definitely believe that

such things happen in our daily life). This also makes the family of

sequential posted pricing interesting and worth studying.

1.1 Results and Techniques
Our Results. We focus on computing optimal sequential posted

pricing (will be formally defined in Section 2) which we show to

be in NP. We then classify this problem by the support size of

value distributions. We prove that computing optimal sequential

posted pricing is NP-hard even when each value distribution is

of support size three. When each agent’s value distribution has

support at most two, we show that this problem is polynomial-

time tractable. To the best of our knowledge, this is the first result
that fully characterizes the exact optimal sequential posted pricing

with a single item. Previously, approximation (algorithm) results

were known to this revenue benchmark [10]. As a by-product, we

show the same results hold for the order-oblivious posted pricing in
which case the output of our scheme does not rely on the order of

the agents coming. We also consider constrained sequential posted
pricing scenarios where the sequential posted pricing only runs for

a number ofT < n rounds. We design a polynomial-time algorithm

for constrained sequential posted pricing when each agent’s value

distribution has support at most two. Surprisingly, we also apply

our techniques to some generalizations of this problem. We believe

that our results provide a better understanding of the fundamental

nature of sequential posted pricing.

Techniques. It is a crucial observation that posted prices are

monotone non-increasing in an optimal sequential posted pricing.

By leveraging this fact, we design a dynamic programming based

algorithm for the case when value distributions are i.i.d, as well as

when the support of each value distribution is of size two. The most

technical part is the proof of NP-hardness when each support size

is three. We follow the framework by Chen et al. [13] for proving

ITEM-PRICING (multi-item single buyer unit-demand pricing) is

NP-hard. The fundamental connection between the problem Chen

et al. considered and the sequential posted pricing should be of

independent interests.

We establish a polynomial-time reduction from the well-known

NP-hard problem Partition. Recall that in a Partition problem

a set C = {c1, . . . , cn } of n positive integers is given, one wants to

decide if C can be partitioned into two subsets with equal sum. We

construct an auction instance based on a Partition instance, then

show that the expected revenue from this auction instance can be

well-approximated by a simple function. This function directly tells

us whether C can be partitioned into two subsets with equal sum.

Thus, an efficient algorithm for solving optimal sequential posted

pricing will give an algorithm that solves the Partition instance

efficiently, which concludes the reduction.

1.2 Related work
Sequential posted pricing was first proposed in [32], where the

motivation is to use thismechanism as a tool to approximate optimal

revenue in single item setting. Since then, a series of work [2, 8,

9, 11] devotes on using sequential posted price auction (and its

variations) to approximate optimal mechanism, both for single-

item and multi-item settings.

As a revenue benchmark, understanding the revenue gap be-

tween optimal sequential posted pricing and optimal auction in a

variety of settings is also an important research topic that receives

lots of attention in the algorithmic mechanism design area [1, 5,

7, 11, 15]. Another line of research takes this as a simple mecha-

nism and studies the revenue gap between this and other simple

pricing schemes, such as order-oblivious sequential posted pricing

mechanism, anonymous pricing, etc [3, 11, 19, 23, 26, 33].

The most related work to our paper is [10], where they give

a PTAS algorithm for finding optimal sequential posted pricing

mechanism, for k-unit items with unit demand buyers under mild

value distribution assumptions.

Understanding the complexity of the optimal mechanism in a

mechanism family is also a research topic that receives a lot of

attention. There are two lines of research focusing on proving the

intractability of the optimal mechanism. One is the computational

complexity of the optimal mechanism, in which they prove com-

puting the optimal mechanism in a certain class is intractable [12–

14, 16–18, 31]. The other one focuses onmenu complexity of optimal

mechanism, in which they prove that an optimal mechanism has

exponential large menu size, in various settings [6, 12, 22].

2 PRELIMINARY
We study the problem in the following auction environment: an

auctioneer has one item and wants to sell it to one of n agents.

Each agent i has a value vi to this item, which is drawn from the

distribution Di such that all the distributions are independent. We

assume that these value distributions are discrete, i.e., for each agent

i , the values of agent i , as well as the probability for each possiblevi ,
are rational numbers, and are known to the auctioneer (traditional

Bayesian setting [30]). We use suppi =
{
v1i ,v

2

i , . . . ,v
|suppi |

i

}
to

denote the support of Di , where 0 ≤ v1i < v2i < . . . < v
|suppi |

i .

Let li = v
1

i and hi = v
|suppi |

i be the two ends of suppi . Let succi :

R+ → suppi ∪ {∞} be a function that takes a value as input and

outputs the smallest value in suppi that is higher than or equal

to the value (if there is no such value we define it to be ∞). We

use I = {Di }
n
i=1 to denote an auction instance. During the auction,

the agents come to the auction sequentially (each agent appears

at most once). Let π : [n] → [n] be the order mapping, with

π (i) meaning the i-th coming agent. The auctioneer posts prices

p = (p1,p2, . . . ,pn ), where agent i is posted the price of pi . Let
di (pi ) be the probability that agent i will take this item at pi . The
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auctioneer then runs sequential posted pricing to sell this item,

introduced in the following.

2.1 Sequential Posted Pricing
Sequential Posted Price mechanism takes at most n phases. At

phase i , the i-th agent π (i) comes in. The auctioneer offers a price

of pπ (i) to agent π (i). If the agent accepts the price, then the auction
terminates, otherwise move to the next phase (i + 1) until phase
n ends. Let SPM(π , p, {Di }

n
i=1) be the expected revenue given by

sequential posted price mechanism with order π , prices p over

distributions {Di }
n
i=1, which means:

SPM

(
π , p, {Di }

n
i=1

)
=

n∑
i=1

dπ (i)
(
pπ (i)

)
· pπ (i)

i−1∏
j=1

(
1 − dπ (j)

(
pπ (j)

)) .
We are interested in revenue optimal sequential posted pricing

and revenue optimal order-oblivious posted pricing. The former one

gives the optimal revenue in the family of sequential posted price

mechanisms. The latter gives the optimal prices in terms of agents

come in an adversarial order, the “robust prices” in sequential posted

price mechanism family. We define both as decision problems in

the following.

Definition 2.1 (RevSPM). Given an auction instance I = {Di }
n
i=1

and a positive rational number t , RevSPM problem decides if there

exists a tuple (π , p) such that

SPM(π , p, {Di }
n
i=1) ≥ t .

Definition 2.2 (RevOPM). Given an auction instance I = {Di }
n
i=1

and a positive rational number t , RevOPM problem decides if there

exists a price vector p such that

min

π
SPM(π , p, {Di }

n
i=1) ≥ t .

We are also interest in sequential posted pricing scenarios where

the auction runs for a fixed number of τ < n rounds, which we call

Constrained Sequential Posted Pricing. The expected revenue is as

follows:

CSPM

(
π , p, {Di }

n
i=1,τ

)
=

τ∑
i=1

dπ (i)
(
pπ (i)

)
· pπ (i)

i−1∏
j=1

(
1 − dπ (j)

(
pπ (j)

)) .
We define the optimal version and order-oblivious version as

decision problems in the following.

Definition 2.3 (RevCSPM). Given an auction instance I = {Di }
n
i=1,

the number of rounds τ and a positive rational number t , RevCSPM
problem decides if there exists a tuple (π , p) such that

CSPM(π , p, {Di }
n
i=1,τ ) ≥ t .

Definition 2.4 (RevCOPM). Given an auction instance I = {Di }
n
i=1,

the number of rounds τ and a positive rational number t , RevCOPM
problem decides if there exists a price vector p such that

min

π
CSPM(π , p, {Di }

n
i=1,τ ) ≥ t .

We are now ready to formally state our results.

Theorem 2.5. RevSPM and RevOPM are both in NP.

If value distributions are i.i.d., the above two benchmarks are

the same and tractable:

Theorem 2.6. RevSPM and RevOPM are both in P if auction
instance I has i.i.d. distributions.

When the distributions are not identical, things become much

more challenging. We present our main theorem in the following:

Theorem 2.7. RevSPM and RevOPM are both NP-hard even if
value distributions in the auction instance I have support of size three.
If the value distributions are of support size two then both problems
are in P.

For constrained sequential posted pricing scenarios, we also give

an algorithm when value distributions are of support size 2.

Theorem 2.8. If the value distributions are of support size two
then both RevCSPM and RevCOPM are in P.

We also study some extensions where (1) each agent’s value may

decay with time, (2) there is a single item with multiple copies and

unit-demand agents.

Theorem 2.9. If each agent’s value exponentially decay with time
with a decay factor of η ≤ 1, then RevSPM and RevOPM are both
NP-hard even if value distributions in the auction instance I have
support of size three. If the value distributions are of support size two
then both problems are in P.

Theorem 2.10. For single item with a constant number of copies,
if each agent is unit-demand, then RevSPM and RevOPM are both
NP-hard even if value distributions in the auction instance I have
support of size three. If the value distributions are of support size two
then both problems are in P. 1

2.2 Structural Lemmas
In this part, we introduce two important properties that reveal the

structure of optimal sequential posted pricing.

One crucial observation (also mentioned in [10]) about optimal

sequential posted pricing is that, by fixing a posted price for each

agent, the best order and the adversarial order of agents coming

to the market are actually determined by a simple rule: the order

should be monotone with posted prices.

Lemma 2.11 ([10]). In a sequential posted pricing scheme with n
agents, if the auctioneer sets price pi for each agent i , then the best
order that gives highest expected revenue is monotone decreasing with
pi , while the adversarial order that gives lowest expected revenue is
monotone increasing with pi .

Here is a simple example why this is true:

Example 1. Consider the case where there are two agents 1 and 2.
Posted prices for agent 1 and 2 are p1,p2 respectively with p1 > p2.
The probability that agent 1 will take this item at price p1 is d1. The
probability that agent 2 will take this item at price p2 is d2.

When agent 1 comes before agent 2, the expected revenue equals
to:

p1d1 + (1 − d1)p2d2.

1
Theorem 2.9 and Theorem 2.10 also holds when the value distributions are i.i.d.
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When agent 2 comes before agent 1, the expected revenue equals to:

p2d2 + (1 − d2)p1d1.

The revenue gap between the first and second case is d1d2(p1 − p2),
which implies it is better to place agent 1 before agent 2.

In general, if there exist two agents i and j such that i comes just

before j in the auction andpi < pj , we can also have a modified SPM

by swapping i and j in the auction, while not changing posted prices.
One can see that in a realization where at most 1 of the two agents

has a value higher than the posted price, the expected revenue

between the original auction and the modified auction of swapping

the two agents are the same. When both agents have values higher

than their posted prices, the auction may not reach the latter agent,

thus the modified SPM gains higher expected revenue.

Another observation on sequential posted pricing is that, for

arbitrary order of agents coming, the auctioneer only needs to

consider those prices on agents’ value distribution support. Such a

result will greatly simplify our analysis.

Lemma 2.12. Given a fixed order π , the best price vector p should
be on ×ni=1suppi .

Proof. Without the loss of generality, we assume π (j) = i is the
first agent under order π violating the statement, i.e. pi < suppi .

We will construct a new set of posted prices which are all on their

own supports, keeping the revenue non-decreasing. We analyze

in the following two cases, recall that hi = v
|suppi |

i is the largest

value agent i could pay for the item.

• pi < hi . In this case we know that succ(pi ) is finite. By
setting p′i to be succi (pi ), the probability that i wins the
item does not change, thus the probability that other agents

win the item does not change). The expected revenue of the

auctioneer increases as agent i contributes no less expected

revenue, while the expected revenue from other agents does

not change. By this, we decrease the number of agents with

posted price not on support by 1.

• pi > hi . In this case succi (pi ) is∞. This means that agent i
will get this item with 0 probability, contributing a revenue

of 0. Thus, a mechanism that “skips” this agent have exactly

the same revenue. We then put i to the end of the sequence,

post a price of hi . This will not decrease the revenue, while
decrease the number of agents with posted price not on

support by 1.

For both cases, we have a new pricing scheme that gains revenue

which is not less than the former pricing, while decreases the num-

ber of agents whose posted price is not on the support by 1. Our

result holds by repeating the whole process. □

3 COMPUTATIONAL COMPLEXITY
In this section, we show the complexity structure of the sequential

posted price mechanism family. We first show that RevSPM and

RevOPM are both in NP. We then proceed to show that when dis-

tributions are i.i.d., a dynamic programming algorithm can solve

both problems in polynomial time. After that, we tackle the gen-

eral distribution case. We classify the instances by the support

size of distributions and identify the boundary for NP-hard and

polynomial-time tractable cases separately. We conclude this sec-

tion with almost the same computational complexity structure for

constrained sequential posted pricing.

3.1 Membership in NP
In this section, we show that RevSPM and RevOPM are both in NP.

Proof of Theorem 2.5. We first consider the problem RevSPM.

Recall that the input of RevSPM contains the value distributions

{Di }
n
i=1. Let the certificate be the posted price for each agent and

the coming order of agents π . We first show that the length of the

certificate is a polynomial of the input size.

As we know, a RevSPM instance takes I = {Di }
n
i=1 as the input.

So the input is of size at least n. The order is a function with an

input of size O(logn) (encoding each number in [n] takes at most

O(logn) bits) and an output of size O(logn), with n possible inputs

and outputs. Thus this is within a polynomial size of n. For the
prices, by Lemma 2.12, optimal prices can only be on the support,

thus the prices are also of a polynomial size of the input.

Thus the certificate is within a polynomial size of the input.

Given order and prices, one can verify the condition by computing

SPM, where there are n terms with each term that can be computed

in polynomial time of the input.

For RevOPM, the proof is almost the same, except that we need

to compute the adversarial order. By Lemma 2.11 the adversarial

order is to sort the posted prices in an increasing order, which can

be done in polynomial time. This concludes the proof. □

3.2 i.i.d. Distributions
If the distributions are i.i.d., things become easier since we don’t

need to care about the order of buyers coming to the auction (thus

RevSPM and RevOPM are equivalent). In this case, we only need

to care about posted prices. Denote all distribution Di ’s with D.
We use d(x) to denote the cumulative density of D at x . We give

the following dynamic programming algorithm in Algorithm 1 and

prove it is optimal.

Algorithm 1: RevSPM with i.i.d. distributions

input :number of agents n, value distribution D
output :prices p = (p1,p2, . . . ,pn )

begin
Let t← 0;

for i = n to 1 do
pi ← argmaxx x(1 − d(x)) + d(x) · t ;

t ← pi (1 − d(pi )) + d(pi ) · t ;

end
end

It is obvious that this algorithm runs in polynomial time. We

show the the correctness in Lemma 3.1.

Lemma 3.1. For any k ∈ [n], let Rk denote optimal revenue with k
agents, then

Rk = max

x
x · (1 − d(x)) + d(x) · Rk−1.
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Proof. By definition, we have

Rk =max

p

k∑
i=1

i−1∏
j=1

d(pj ) · pi (1 − d(pi ))

=max

p
p1(1 − d(p1))+

d(p1) ·
k∑
i=2

i−1∏
j=1

d(pj ) · pi (1 − d(pi ))

≤max

p1
p1(1 − d(p1)) + d(p1) · Rk−1.

Also, by the definition of sequential posted price, we have Rk ≥
x(1 − d(x)) + d(x)Rk−1 for any x (the right-hand side gives an

instance of sequential posted price with k buyers.) This concludes

the proof. □

Proof of Theorem 2.6. Apply Lemma 3.1 for each iteration, we

know that Algorithm 1 gives optimal sequential posted pricing.

Thus, when distributions are i.i.d., the optimal sequential posted

price can be computed in polynomial time. □

Remark 1. Here we present this simple and rigorous proof for
i.i.d. distributions. It is intuitively true and not hard to see that by
using a dynamic programming algorithm, for general distributions,
if the agents are coming in a known fixed order, then the optimal
posted prices can be computed efficiently (see [8] for a more detailed
analysis).

3.3 General Case: Non-identical Distributions
3.3.1 NP-hardness. In this section, we give a polynomial time

reduction from Partition [20] to RevSPM.

In a Partition instance we are given a set C = {c1, . . . , cn }
containingn positive integers. The problem requires us to determine

whether it is possible to partition the set C into two subsets with

equal sum. Without the loss of generality, we assume c1 is the

largest number among these n numbers, c1 = max{c1, . . . , cn }.
Given an instance C = {c1, . . . , cn } of Partition, we will con-

struct a RevSPM instance in polynomial time. The construction is

as follows: the auction has n agents, each agent i has a value vi
over the item that can take three possible integer values {0,a,b},
where a and b are two positive integers such that 0 < a < b (we

will finally set a = 1 and b = 2 but let us keep using a and b for

technical reasons). Let qi = Pr [vi = b] and ri = Pr [vi = a]. Also
denoteM = 2

nc3
1
and ti =

1

2

∑
j,i, j ∈[n] c j/M . for every i ∈ [n], the

following equations give the values of qi and ri ,

ri + qi = ci/M (1)

qi = ri · [a(1 − ti )] /(b − a) (2)

ForT1,T2,δ ∈ R
+
, we writeT1 = T2 ±δ to denote |T1 −T2 | ≤ δ . For

the value of t in this RevSPM instance, we will specify it later on

in the proof.

Expand and rearrange Eq (2), we have

bqi = a(qi + ri ) − ari ti (3)

for all i . Let N = 2
nc2

1
. It is not hard to see that qi , ri = O(1/N ) and

ti = O(n/N ) for all i . In computing the revenue-optimal sequential

posted pricing, we keep the first order terms of O(poly(n)/N ), and

the second order terms ofO(poly(n)/N 2). For higher order termswe

will ignore them by denote them withO(ϵ), where ϵ = poly(n)/N 3
.

For each i ∈ [n], add ri on both sides of Eq (2) and move the

multiplier for ri to the left side, we have:

ri =
b − a

b − ati
(ri + qi )

=
b − a

b
(ri + qi ) ± 2

b − a

b
(ri + qi )ati

=
b − a

b
(ri + qi ) ±O(n/M

2) (4)

By Lemma 2.12, we know that the possible prices for each pi
could only be on 0,a,b. Denote S = {i |pi = a} and T = {i |pi = b},
R = {i |pi = 0}. The following two lemmas give the structure of op-

timal sequential posted pricing on order. According to Lemma 2.11,

we have

Lemma 3.2. The best order is to place all agents in T first, then
followed by all agents in S , with agents in R at the end.

Lemma 3.3. Given an optimal instance, we can have R = ∅ and
thus p ∈ {a,b}n .

Proof. Notice that for agents in R, they end up contributing a

revenue of 0. If R is non-empty, then one can pick the first agent

that appears in sequence from R, changes her posted price to be

a, and ends up contributing no less revenue. This implies in an

optimal instance, R = ∅, and price vector p ∈ {a,b}n . □

Next we will compute the optimal revenue. For an index set T ,
we denote j , i ∈ T as all possible choices of two different indices

inT . By Lemma 3.2 and 3.3 we know that for an optimal sequential

posted pricing, the agents with price b appears first, followed by

rest agents with prices a. We computed the expected revenue R(p)
as follows, the O(ϵ) term below represents the ignoring higher

order terms:

b ·

(
1 −

∏
i ∈T
(1 − qi )

)
+ a

∏
i ∈T
(1 − qi ) ·

(
1 −

∏
i ∈S
(1 − qi − ri )

)
= b

©«
∑
i ∈T

qi −
∑
j,i ∈T

qiqj
ª®¬ + a

(
1 −

∑
i ∈T

qi

)
·

©«
∑
i ∈S
(ri + qi ) −

∑
j,i ∈S

(ri + qi )(r j + qj )
ª®¬ ±O(ϵ)

=

(
b
∑
i ∈T

qi + a
∑
i ∈S
(ri + qi )

)
︸                            ︷︷                            ︸

1st order part

−

©«
b

∑
i,j ∈T

qiqj︸        ︷︷        ︸
2nd order I

+

a
∑
i ∈T

qi
∑
j ∈S
(r j + qj )︸                   ︷︷                   ︸

2nd order II

+a
∑
i,j ∈S

(ri + qi )(r j + qj )︸                         ︷︷                         ︸
2nd order III

ª®®®®®®®¬
±O(ϵ).
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Next we will simplify these terms case by case.

First order part. According to Eq (3), we have

b
∑
i ∈T

qi + a
∑
i ∈S
(ri + qi ) = b

∑
i ∈[n]

qi + a
∑
i ∈S

ri ti .

Second order term I.

− b
∑

i,j ∈T
qiqj

= −
1

2

∑
i ∈T

qi
∑

j ∈T , j,i
bqj

(3)
= −

1

2

∑
i ∈T

qi
∑

j ∈T , j,i
(aqj + ar j − ar j tj )

= −
1

2

∑
i ∈T

qi
∑

j ∈T , j,i
aqj −

1

2

∑
i ∈T

qi
∑

j ∈T , j,i
ar j +O(ϵ)

= − a
∑
j,i ∈T

qiqj − a
∑
j,i ∈T

qir j +O(ϵ).

Second order term III.

− a
∑
i,j ∈S

(ri + qi )(r j + qj )

= −a
∑
i,j ∈S

rir j − 2a
∑
i,j ∈S

riqj − a
∑
i,j ∈S

qiqj .

Sum up all these terms, we have R(p) equals to:

R(p) =b
∑
i ∈[n]

qi + a
∑
i ∈S

ri ti

− a
∑

j,i ∈[n]

qiqj − a
∑

j,i ∈[n]

qir j

− a
∑
i,j ∈S

rir j − a
∑
i,j ∈S

riqj ±O(ϵ)

=
©«b

∑
i ∈[n]

qi − a
∑

j,i ∈[n]

qiqj − a
∑

j,i ∈[n]

qir j
ª®¬︸                                                  ︷︷                                                  ︸

fixed

+
a

2

·
∑
i ∈S

ri
∑
j ∈T
(r j + qj ) ±O(ϵ). (by the definition of ti )

Notice the fact that the terms b
∑
i ∈[n] qi , a

∑
j,i ∈[n] qiqj and

a
∑
j,i ∈[n] qir j are independent of partition, thus are fixed values.

If we want to maximize the total sum, we just need to care about

the remaining term
a
2

∑
i ∈S ri

∑
j ∈T (ri +qi ). By Eq (4), we have the

remain term equals to:

a(b − a)

b

∑
i ∈S
(ri + qi )

∑
j ∈T
(ri + qi ) ±O(ϵ).

Let b = 2,a = 1, the optimal revenue can be represented in the

following way:

L +
1

2M2

(∑
i ∈S

ci

) ©«
∑
j ∈T

c j
ª®¬ ±O(ϵ),

where L is a number of at least second order O(poly(n)/N 2), inde-

pendent of partition.

The second term is also of second order. Notice that the sum

of two factors

∑
i ∈S ci and

∑
j ∈T c j is a constant (denote it by 2H ).

Thus, their product is maximized when they are equal. If C can

be partitioned into two subsets, each with sum equals to H , then

the corresponding partition of indices gives an expected revenue

of L + H 2

2M2
±O(ϵ). On the other hand, if C cannot be partitioned

into two subsets that are of equal sum, then for any partition of

indices, the expected revenue will be at most L + H 2−1
2M2

±O(ϵ). For

O(ϵ), as it is a higher-order term compared to the first two terms,

thus can be ignored. Let t = L + H 2−0.5
2M2

. From above it follows that

there exists a partition of C of equal sum if and only if there exists

a sequential posted pricing scheme that has a revenue of at least t .
This concludes the proof.

For order oblivious case, changing the order of a and b would

work. Since this is just a rename, we can apply the same argument.

This concludes the hardness proof.

3.3.2 Algorithm for support size two. Next, we focus on the case

where value distributions are of support size two.

According to Lemma 2.12, we can focus on prices on distribution

support. An important observation in this setting is that we only

need to focus on prices such that at most one agent receives a low

price.

Lemma 3.4. If each agent’s value distribution is of size at most
two, then there is an optimal sequential posted pricing such that at
most one agent’s price is set to be low value.

Proof. For an optimal sequential posted pricing, denoteU the

set of agents that are priced at the low value, and let i∗ be the first
agent that appears in the sequence that is priced at low value. If

two or more agents’ prices are set to be low value, consider another

mechanism that set i∗’s price to be low value, while setting the

prices of other agents with high value. Since the item is sold with

probability 1 to agent i∗, the revenue of this mechanism equal to

the optimal sequential posted pricing. This concludes the proof. □

Now we prove that if all agents’ value distribution are of support

size two, then RevSPM and RevOPM are both in P.

Proof. Denote for each buyer i , the value support is {li ,hi }
where li < hi . By Lemma 2.12 we know that the optimal prices

should be on support. By Lemma 3.4, we know that at most one

agent’s price is set to be low value, these are in total at most n + 1
possible price vectors for all agents. For each such price vector p, by
Lemma 2.11we can compute the best order π for this p. Thus, we can
get an optimal sequential posted price mechanism in polynomial

time. For order oblivious case, we can apply the same argument,

but orders are reversed. This concludes the proof. □

3.4 Constrained Sequential Posted Pricing
Recall that in a constrained sequential posted pricing problem, the

sequential posted pricing scheme only run for τ < n rounds where

n is the number of agents.

First note that both RevCSPM and RevCOPM are in NP, as in

both problems the length of the certificate and verification cost are

less than RevSPM and RevOPM respectively.
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If τ is small, say, a constant, then one can tackle this problem by

brute-force. We show in the following corollary that both RevCSPM

and RevCOPM are NP-hard for large enough τ .

Corollary 3.5. RevCSPM and RevCOPM are both NP-hard even
if value distributions in the auction instance I have support of size
three and τ = Ω(nc ) where c > 0 is a constant.

Basically, this is correct since one can always construct n − τ
dummy agents that will contribute almost nothing to the optimal

revenue.

For the rest of this part, we give a polynomial-time algorithm

for both RevCSPM and RevCOPM when value distributions are of

support size at most two.

We first show a lemma similar to Lemma 2.11.

Lemma 3.6. In a constrained sequential posted price scheme with
n agents, if the auctioneer sets price pi for each agent i , then in a best
order, the posted prices for the first τ agents are monotone decreasing
with pi , while the adversarial order the posted prices for the first τ
agents are monotone increasing.

Next we show that Algorithm 2 gives the optimal constrained

sequential posted pricing scheme when posted prices are fixed.

Lemma 3.7. In a constrained sequential posted price scheme with n
agents, if the auctioneer sets pricepi for each agent i , then Algorithm 2
is a polynomial-time algorithm that gives the optimal order.

Algorithm 2: RevCSPM with fixed posted prices

input :number of agents n, posted prices p1 ≥ p2 ≥ . . . ≥ pn ,
probabilities of taking the item d1,d2, . . . ,dn , time τ

output : the optimal expected revenue optRev

begin
let optRev ← 0;

for i = n to 1 do
let Ei,1 ← pi · di ;

for j = 2 to min{τ ,n + 1 − i} do
let Ei, j ← −∞;

for k = i + 1 to n + 2 − j do
Ei, j ← max {Ei, j ,pi · di + Ek, j−1 · (1 − di )};

end
end
if i ≥ n + 1 − τ then

optRev ← max {optRev,Ei,τ };

end
end
return optRev ;

end

Lemma 3.8. Given posted prices in descending order, i.e., p1 ≥ p2 ≥
· · · ≥ pn , and probabilities of taking the item d1,d2, . . . ,dn , for any
i ∈ [n], 1 < k ≤ n − i , let Ei,k denote optimal revenue with agents
setUi,k ⊆ {i ′ |i ′ ≥ i} with i ∈ Ui,k and |Ui,k | = k , then

Ei,k = pi · di + max

i<j≤n−k+2
Ej,k−1 · (1 − di ).

Proof. LetLi,k be the set of sequence L satisfying the condition
|L| = k , L ⊆ {i, i + 1, . . . ,n} and L1 = i . By definition, we have

Ei,k = max

L∈Li,k

k∑
k ′=1

(pLk′ · dLk′ ·
k ′−1∏
k ′′=1

(1 − pLk′′ ))

=pi · di + max

L∈Li,k

k∑
k ′=2

(pLk′ · dLk′ ·
k ′−1∏
k ′′=2

(1 − pLk′′ )) · (1 − di )

≤pi · di + max

L∈Li,k
EL2,k−1 · (1 − di )

≤pi · di + max

i<j≤n−k+2
Ej,k−1 · (1 − di ).

Also, by the definition of sequential posted pricing, we have

Ei,k ≥ pi · di + Ej,k−1 · (1 − di ) for any j satisfies i < j ≤ n − k + 2
(the right-hand side gives an instance of sequential posted price

with k buyers). This concludes the proof. □

We are now ready to prove Lemma 3.7.

Proof of Lemma 3.7. Without the loss of generality, assume

that p1 ≥ p2 ≥ . . . ≥ pn . By Lemma 3.8 we know that Ei,k =
pi · di +maxi<j≤n−k+2 Ej,k−1 · (1 − di ), which is the procedure in

updating Ei, j in the algorithm. Set k = τ and enumerate over all

Ei,τ (which is the procedure of computing optRev in the algorithm)

gives the optimal expected revenue. It can be easily figured out that

the running time of the algorithm isO(n3), thus the algorithm runs

in polynomial time. This concludes the proof of this lemma. □

Finally, we prove Theorem 2.8.

Proof of Theorem 2.8. First, notice that both Lemma 3.4 and

Lemma 2.12 still hold in this setting. Thus we only need to consider

the case that posted prices for agents are fixed. Also, by Lemma 3.6,

the posted prices should be decreasing for the first T agents. By

Lemma 3.7, Algorithm 2 gives the optimal expected revenue for

this case. This concludes the proof for RevCSPM.

ForRevCOPM, we just need tomodify Algorithm 2 so that it finds

the minimum expected revenue for fixed posted prices, then finds

the maximum one among all possible n + 1 fixed posted prices. □

Remark 2. There exists another algorithm that can calculate the
value in time complexity O(n2). The basic idea is to compress the
states in the Algorithm 2. As that algorithm is not intuitive as the
Algorithm 2 does, it is not presented here. One can also apply the
technique in [27] to solve this.

As presented above, to show RevSPM is NP-hard, we make use

of techniques from Chen et al. [13], where they proved ITEM-

PRICING is NP-hard. Recall that in a sequential posted pricing

scenario there is one item for sale among n agents. The agents

come in sequentially and decide on whether to take the item at

the posted price. Item pricing is a scenario where the auctioneer

has n heterogeneous items offered to a unit-demand buyer. The

auctioneer posts prices on items and let the agent take her favourite

(utility-maximizing) item, paying the price accordingly. These two

problems look somewhat similar: the common thing between these

two auctions is that, the auctioneer posts prices for each individual

(items in item pricing and agents in sequential posted pricing). A

natural question would be if one can show a reduction between
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these two auctions. Unfortunately, to the best of our knowledge, it is

unlikely to construct a reduction from ITEM-PRICING. These two

mechanisms run in a seemingly similar but completely different

manner (choosing a utility-maximizing offer vs. take-it-or-leave-it

mechanism). For the i.i.d. case, as our paper states, it is easy to get a

dynamic programming algorithm for the RevSPMproblem.However,
for ITEM-PRICING, the i.i.d. case is also NP-hard (see Theorem 4

of [13]). This series of evidence suggests that it is challenging to

show the hardness of RevSPM by making a direct reduction from

ITEM-PRICING, since the difficulties are not on the same page.

With the above results, these two problems have the same com-

plexity structure for independent but non-identical distributions

regime. We hope this work will pioneer the study on the complex-

ity of the SPM family, a class of mechanisms with nice structural

properties. We believe the techniques for proving the hardness

result for the SPM family helps in proving the hardness result for

ITEM-PRICING.

4 EXTENSIONS
In this section, we extend our results to the following settings:

(1) Each agent’s value may decay with time.

(2) There is one item with a constant number of copies.

4.1 Value Decay with Time
Here we prove Theorem 2.9 that RevSPM is in P when each agent’s

value decay with time.

We first show that given prices of each buyer, we can compute

the best order in polynomial time.

Lemma 4.1. In an n-agent sequential posted pricing with value
decay factor η ≤ 1, if the auctioneer set price vector to be p =
(p1,p2, · · · ,pn ), then the best order that gives highest expected rev-
enue makes pi (1−Di (pi ))

1−Di (pi )η
monotone.

Proof. If the best order is not monotone with
pi (1−Di (pi ))
1−Di (pi )η

, then

there must exists two consecutive buyers i, j such that i > j and
pidi

1−η+diη
<

pjdj
1−η+djη

. By swapping the two buyers in the auction,

the revenue for the other buyers won’t change regardless of whether

they appear before or after the these two buyers as the probability

they will receive the item remains the same. For these two buyers,

the revenue gain by swapping is

C1

[
pjdj + (1 − dj )pidiη − pidi − (1 − di )pjdjη

]
=C1

[
pjdj (1 − η − diη) − pidi (1 − η − djη)

]
> 0

where C1 is the probability that the item is left before the two

buyers. This implies that in an optimal instance, there won’t be any

consecutive buyers such that i > j and
pidi

1−η+diη
<

pjdj
1−η+djη

. This

concludes the proof. □

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. When the support of value distribu-

tions are of size at most two, it is not hard to see that Lemma 3.4

and Lemma 2.12 still hold in this setting, we know that we only

need to consider the case that at most 1 of the agents are set with

low price. Thus, we only need to consider n + 1 set of prices.

Since sorting
pi (1−Di (pi ))
1−Di (pi )η

takes only polynomial time, this prob-

lem is also polynomial time tractable.

For value distributions with support size three, note that the

hardness result directly applies from Theorem 2.7, by setting η = 1.

This concludes the proof. □

4.2 Single Item with Multiple Copies
We prove Theorem 2.10 that RevSPM is in P when there is single

item with constant number c of copies.

Proof of Theorem 2.10. When the support of value distribu-

tions are of size at most two, Lemma 2.12 and Lemma 2.11 still

hold in this setting(for Lemma 2.11, proof in [10] also applies for

one item with multiple copies). For Lemma 3.4, we can extend this

result by enumerating all possible subsets of size at most c , and let

those agents be posted with low value as price. The enumeration

can be done in polynomial time when c is a constant.
For value distributions with support size three, note that the hard-

ness result here directly applies from Theorem 2.7, by considering

the single copy case. This concludes the proof.

□

5 CONCLUSION AND FUTUREWORK
This paper fully characterizes the problem of computing exact opti-
mal sequential posted pricing, by showing that both RevSPM and

RevOPM are NP-complete, even if distributions are of support size

three, while is tractable when distributions are of support size two.

Hence we obtain a “dichotomy theorem” for the complexity of SPM

with respect to the support size of the value distributions. To the

best of our knowledge, our work is the first to prove such hardness

results for the SPM problem.

This paper also raises a few questions. As the result [10] sug-

gests, theoretically speaking, there is a PTAS algorithm computing

this revenue benchmark (although not quite intuitive). It would

be interesting to understand what is in between, i.e., is there an

FPTAS algorithm computing such a revenue benchmark? Is there

any “simple” sequential posted pricing that can be found easily

with an (1 + ϵ) guarantee?
This paper studies Sequential Posted Pricing in single item set-

ting, it would be an interesting question to understand the be-

havior when there are multiple heterogeneous items with unit-

demand/additive value agents. We conjecture that for multiple

heterogeneous items here, RevSPM is APX-hard. We believe that

new insights should be required.

Last but not least, we follow the proof framework of Chen et

al. [13], it is particularly interesting to investigate the connection

between ITEM-PRICING and sequential posted pricing. One thing

should be noted that for the ITEM-PRICING, it is still NP-hard

even when the value distributions are i.i.d., while it is tractable for

SPM problems. Showing a reduction even in one direction between

these two problems would be challenging. We do think this is of

importance to understand the connection between the hardness

results of these two problems in such a mild way (a direct reduction),
and leave it as future work to explore.
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