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ABSTRACT
The Chamberlin-Courant (CC) family of committee selection rules

aim to select a committee of size k from a set ofm candidates to

maximize the satisfaction of n agents. The satisfaction of an agent

from a committee depends only on the rank of her favorite candi-

date and is determined by a satisfaction function. Unfortunately,

computing an optimal committee of size k is hard in general, which

has led to the development of approximation algorithms that select

a committee of size k , which guarantees some fraction of the opti-

mal satisfaction. However, there is often some flexibility in the size

of the committee to be selected.

In this paper, we initiate the study of size-relaxed committee
selection for the family of CC rules. Our main results are polynomial-

time algorithms to select committees of size at most k · O(logn),
whose satisfaction is guaranteed to be at least that of the optimal

committee of size k , and show that this is tight. We also provide

a constant-factor approximation algorithm for a class of approval

ballot based CC rules.
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1 INTRODUCTION
Consider the problem of a university library offering a collection

of journals, an airline offering a small collection of movies to cus-

tomers on a flight, or a company offering a portfolio of its prod-

ucts [11, 22, 25, 26]. These are real-world examples of the committee
selection problem where the goal is to select a committee of k can-

didates for a collection of n agents who have ordinal preferences

overm > k candidates to maximize the satisfaction experienced

by the agents. Often, there is some flexibility in the size of the

selected committee, and guaranteeing a certain level of satisfaction

is the more important consideration. Indeed, a university library

may have some flexibility in the number of journals they carry,

congressional committees can often be expanded, and a company

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
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can add a few products to its portfolio, in order to provide a target

satisfaction guarantee.

The Chamberlin-Courant (CC) [6] family of committee selection

rules are perhaps the most popular and well-known among rules

that aim at maximizing satisfaction for a committee of fixed size k .
Here, the satisfaction an agent associates with a committee depends

only on the position of her highest-ranked candidate who is a mem-

ber of the committee. The satisfaction is measured by a satisfaction
function, which maps each rank to a satisfaction score. A promi-

nent example is the Borda-CC rule, where the satisfaction an agent

derives from a committee is the Borda score of her highest-ranked

member of the committee. In general, a utilitarian α-CC rule is

characterized by a satisfaction function α , and selects a committee

which maximizes total satisfaction, while an egalitarian α-CC rule

selects a committee which maximizes the satisfaction of the least

satisfied agent. Unfortunately, the decision versions of selecting

a committee of size k is NP-hard for utilitarian [22, 23, 27] and

egalitarian [27] α-CC rules.

A common approach to circumvent the computational hardness

of CC rules is to fix the size of the committee at k , and compute a

committee whose satisfaction is approximately that of the optimal

committee. Lu and Boutilier [22] provide a (1 − 1

e )-approximation

algorithm, and Skowron et al. [27] provide a polynomial-time ap-

proximation scheme for the Borda-CC rule, to find a committee of

sizek which approximates the satisfaction of the optimal committee.

However, as Skowron et al. [27] argued, approximating satisfaction

while fixing the size of the committee raises the concern that an

agent, a candidate, or other parties, may identify a committee with

higher satisfaction and demand it to be selected instead.

This concern leads to the following natural notion of size-relaxed
committee selection introduced by Sekar et al. [25]: Can we compute
a committee of size at most γ ·k in polynomial time whose satisfaction
is at least that of the optimal committee of size k?

Our work follows in the research agenda initiated recently by Kil-

gour [19], who introduces the notion of selecting committees with-

out fixing the size of the committee. More recently, Sekar et al. [25]

consider the class of Condorcet-consistent [8] committee selection

rules due to [15], and provide an approximation algorithm for the

Maximin rule which picks a committee of size at most 2k , while
guaranteeing that the selected committee meets the Maximin ob-

jective of the optimal committee of size k . However, to the best of

our knowledge, nothing is known about size-relaxed committee

selection for the celebrated Chamberin-Courant rule.
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(Dis)satisfaction Utilitarian Egalitarian

function family Lower bound Upper bound Lower bound Upper bound

UPU ∩ PB

Ω(logn) [Theorem 2]

O(logn) [Theorem 3]

Ω(logn) [Theorem 2] O(logn) [Theorem 4]

PU n [Folklore]

t-approval APX-hard [Corollary 3] O(logn) [Theorem 3] APX-hard [Corollary 3] t [Theorem 5]

Table 1: Size-Relaxed committee selection. UPU stand for the set of universally polynomially unbounded (dis)satisfaction
function families, PB stands for the set of polynomially bounded (dis)satisfaction function families, PU stands for the set of
polynomially unbounded (dis)satisfaction function families. UPU∩PB stands for the (dis)satisfaction function families that
lies in both UPU and PB.

1.1 Our Contributions
We provide the first results on size-relaxed committee selection for

the CC family of committee selection rules, to the best of our knowl-

edge. We consider versions of the CC family of rules characterized

by satisfaction and dissatisfaction functions, and with utilitarian

and egalitarian objectives, and provide new algorithmic and com-

plexity results. Table 1 summarizes our results on lower and upper

bounds for the approximability of size-relaxed committee selection.

In Theorem 1, we prove an equivalence relation between the

hardness of approximating satisfaction and dissatisfaction function-

based versions of Chamberlin-Courant rules for utilitarian and egal-

itarian objectives. We show that if a satisfaction function based rule

is hard to approximate, then so is the corresponding dissatisfaction

function based rule hard to approximate. Our proof establishes

a reduction between the problem of approximating CC rules for

satisfaction and dissatisfaction functions. As we note in Remark 1,

this equivalence also applies for upper bound results.

In Theorem 2, we prove that it is hard to approximate to within

a factor of o(logn), utilitarian and egalitarian CC rules based on

the class of universally polynomially unbounded (dis)satisfaction

functions (Definition 3).

In Theorem 3, we show that the lower bound is tight for utilitar-

ian CC rules, for the class of polynomially bounded (dis)satisfaction
functions (Definition 4). In Theorem 4, we show that the lower

bound is tight for egalitarian CC rules for universally polynomially

unbounded (dis)satisfaction functions.

We also provide constant factor approximation algorithms for

the important class of t-approval based egalitarian CC rules for

fixed constant t in Theorem 5 and Corollary 2. Notice that there

is a deep connection between t-approval based CC rules and the

VertexCover problem. We show in Corollary 3 that for t-approval
based CC rules both utilitarian and egalitarian rules are APX-hard.

Our results provide a classification of families of (dis)satisfaction

functions based on hardness of size-relaxed committee selec-

tion. Our approximation algorithms for the upper bound results

rely on a common framework involving a two-step greedy-based

algorithm, wherein (Step 1) we construct an instance of the

Weighted-Maximum-k-Coverage problem, and in (Step 2) we

apply a greedy-based algorithm to the constructed instance, while

simultaneously selecting a committee. We note that all our results

apply even when agents may have different (dis)satisfaction func-

tions. However, for simplicity, we will provide the proofs for the

case where all agents have the same (dis)satisfaction function, and

briefly explain how our proof can be extended.

2 RELATEDWORK AND DISCUSSIONS
We first note that Kocot et al. [20] also defines the notion of poly-

nomially bounded satisfaction functions. They call a satisfaction

function family as polynomially bounded, if for anym ∈ N, and
any l ≤ m, αm (l) ∈ Poly(m), where αm (l) denotes the satisfaction
of satisfaction function αm at position l . Thus, Borda satisfaction
function is regarded as polynomially bounded in [20]. They provide

efficient algorithms for multi-goal committee selection to provide

lower bound guarantees for multiple satisfaction functions simul-

taneously, under the restriction that the satisfaction functions are

polynomially bounded. We also adopt this notion to give our up-

per bound results for utilitarian CC rules. Our results classify the

family of Chamberlin-Courant rules based on their approximabil-

ity: we provide a O(logn)-approximation algorithm for polyno-

mially bounded (dis)satisfaction function based CC rules, while

CC rules characterized by universally polynomially unbounded

(dis)satisfaction functions are LOG-APX-hard, i.e., the problem is

hard to approximate within a factor of o(logn). For the universally
polynomially bounded notion introduced in our paper, we focus

on the (dis)satisfaction function family from a different point of

view: we use this notion to capture those (dis)satisfaction function

families that are LOG-APX-hard to approximate due to the reason

that there is enough gap for us to show the reduction works. We

propose this notion to pioneer the study of doing classifications on

(dis)satisfaction function families.

The problem of approximate committee selection has recently

attracted a lot of attention in social choice theory. Exact hardness

results for the Chamberlin-Courant rule are shown in [22, 23], for t-

approval and Borda satisfaction respectively. [27] provides hardness

of approximation results for the Monroe and Chamberlin-Courant

rules. [22] provides a greedy (1 − 1

e )-approximation algorithm for

utilitarian Borda-CC rule, which is improved to a PTAS by [27]. [3]

provides approximation algorithms for egalitarian Borda-CC, as

well as hardness of approximation results for other versions. [28]

shows that the Chamberlin-Courant rule for utilitarian approval

satisfaction is equivalent to the maximum coverage problem. For

exact parameterized complexity results of egalitarian Borda-CC,

Bloc, k-Borda rules we refer to Table 2 in [2].

Multi-winner selection with a variable number of winners is

also studied in recent years. The idea is in some sense similar:

they do not fix the number of winners in an election, but to find a

number of winners that make most of the voters happy. To the best

of our knowledge, current work only focuses on approval ballots,

and focus on the computational complexity of this problem under

various approval-based voting rules [12, 14, 19].
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The closest work to ours is [25], which studies Condorcet consis-

tent committee selection rules, where for Maximink they provide

an approximation algorithm to find a committee of size at most 2k
whose score is at least that of the optimal committee of size k .

The idea of size-relaxation is also quite common in other prob-

lems beyond committee selection. [21] studies a sized-relaxed ver-

sion of the facility location problem, where they allow adding more

than k locations to (approximately) meet the same objective as

the optimal choice of k locations. In job scheduling, usually, the

problem is to design scheduling that minimizes the makespan, i.e.,

the minimum completion time. A relaxed version is to use more

machines that maintain a given makespan, which is similar to

BinPacking [7]. As another example, in algorithmic mechanism de-

sign with n buyers, size relaxation is often studied under the name

competition complexity, with the idea of adding more (identical)

agents in a “simple” auction, achieving optimal revenue of n buyers

case [4, 5, 10, 13, 24].

3 PRELIMINARIES
For any n ∈ N, let [n] = {1, . . . ,n}. An election is a tuple E =

(N ,C, ®P), where N = [n] is a set of n agents, C = [m] is a set ofm

candidates, and ®P = (Pi )i ∈N is a preference profile, where each Pi
is a strict ranking over C, representing the preference of agent i .
For each agent i we use ≻i to denote the strict preference order over
C w.r.t. Pi . We define posi (j) to be the rank of candidate j in the

ranking Pi . Throughout the paper, we assume thatm = Poly(n). A
committee of size k is any subset C ⊆ C, |C | = k of the candidates.

Ck denotes the set of all committees of size k . We use [m]k to denote

the set of all k-length increasing sequences of numbers from [m].
Given a committeeC of size k , we use posi (C) ∈ [m]k to denote the

sequence obtained by sorting {posi (j) : j ∈ C} in increasing order,

we use iC,l to denote the l-th member of posi (C).

Definition 1. A (dis)satisfaction function is a non-increasing (non-

decreasing) monotonic mapping αm : [m] → R+(δm : [m] → R+).
The value αm (l) (δm (l)) is an agent’s (dis)satisfaction from being

represented by a candidate that she ranks at position l .

For example, the Borda satisfaction function form candidates

is defined as Borda
m (l) = m − l . The t-approval (dis)satisfaction

function form ≥ t candidates is defined as αmt (l) = 1(δmt (l) = 0)

for l ≤ t , and αmt (l) = 0 (δmt (l) = 1) otherwise.

Definition 2. A family of (dis)satisfaction function ®α (
®δ ) is an

infinite-dimensional vector ®α = (α1,α2, . . .) (®δ = (δ1,δ2, . . .)) such
that ακ+1(l + 1) = ακ (l) (δκ+1(l) = δκ (l)) holds for all κ ∈ N and

l ∈ [κ].

Definition 3. A dissatisfaction function family
®δ is universally

polynomially bounded, if for any constant c > 0, there is a polyno-

mial p(κ) ∈ Ω(κc ) such that

δκ (κ)

δκ (l)
≤ p(κ)

holds for every κ ∈ N+, and every l ∈ [κ] such that l ≥ κc and

δκ (l) , 0. Otherwise,
®δ is universally polynomially unbounded.

Similar definitions hold for satisfaction case, by replacing δκ (l) , 0

with ακ (l) , 0 and replacing
δκ (κ)
δκ (l ) with

ακ (k−l )
ακ (1) .

We discuss this notion through examples: for the Borda dissat-

isfaction function family where δκ (κ) = κ − 1 for all κ ∈ N+.
Since κ − 1 ∈ Ω(κ) when c = 1, Borda is a universally polynomi-

ally unbounded satisfaction function family. The t-approval satis-
faction function family, ®αt , is universally polynomially bounded,

as αmt (m) = 1 ∈ o(mc ) for any constant c > 0. The family of

dissatisfaction functions, where ∀m ∈ N+, δm (l) = log
2
l , is a

universally polynomially bounded dissatisfaction function, since

δκ (κ)/δκ (2) = log
2
κ ∈ o(κc ) for any constant c > 0.

Definition 4. [20] A dissatisfaction function family
®δ is polyno-

mially bounded, if there exists a polynomial p(·) such that

δκ (κ)

δκ (l)
≤ p(κ)

holds for every κ ∈ N+, and every l ∈ [κ] such that δκ (l) , 0.

Otherwise,
®δ is polynomially unbounded. Similar definition holds

for satisfaction case, by replacing δκ (l) , 0 with ακ (l) , 0, and

replacing
δκ (κ)
δκ (l ) with

ακ (l )
ακ (1) .

An example of a family of polynomially bounded functions is the

Borda dissatisfaction function family where δκ (κ) = κ − 1 for all
κ ∈ N. It is easy to see that it is polynomially bounded by choosing

p(κ) = κ − 1. A polynomially unbounded dissatisfaction function

family is the one defined: ∀m ∈ N, δm (l) = 2
l
, since there does not

exist a polynomial p(·) that makes δκ (κ)/δκ (1) ≤ p(κ) for every
κ ∈ N+.

3.1 Size-Relaxed Computational Problems
Given an election with n agents and m candidates, and an inte-

ger k < m, we define the size-relaxed versions of the traditional

committee selection problems where the constraint on the size of

the committee is relaxed, but the selected committee provides the

(dis)satisfaction guarantee of the optimal committee of size k . For
notation simplicity we assume that every agent has the same family

of (dis)satisfaction function, and will discuss the same results for

agents having different satisfaction functions after each proof.

Definition 5. Given an election with n agents andm candidates,

and an integer k < m, we are asked to find a committeeC∗, |C∗ | ≥ k
of small size in polynomial time such that in:

• Relaxed-Utilitarian- ®α-CC with satisfaction function family

®α ,
∑
i ∈[n] α

m (iC∗,1) ≥ maxC ∈Ck
∑
i ∈[n] α

m (iC,1).
• Relaxed-Egalitarian- ®α-CC with satisfaction function family

®α , mini ∈[n] α
m (iC∗,1) ≥ maxC ∈Ck mini ∈[n] α

m (iC,1).

• Relaxed-Utilitarian-
®δ -CCwith dissatisfaction function family

®δ ,
∑
i ∈[n] δ

m (iC∗,1) ≤ minC ∈Ck
∑
i ∈[n] δ

m (iC,1).

• Relaxed-Egalitarian-
®δ -CC with dissatisfaction function fam-

ily
®δ , maxi ∈[n] δ

m (iC∗,1) ≤ minC ∈Ck maxi ∈[n] δ
m (iC,1).

If we are allowed to use exponential time, then by brutal-force

one can find a committeeC∗ of size k that satisfy the above proper-

ties. To measure the “small” here, we use the notion of approxima-

tion ratio.

Definition 6. We say that algorithm A is an r -approximation

algorithm for committee selection problems in Definition 5, if A

can find a feasible committee C∗ of such that |C∗ | ≤ rk .

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1532



We now recall the definition of the following NP-hard problems

that will be used in this paper.

Definition 7 (DominatingSet). Given a graphG = (V ,E), where
V is a vertex set, E is an edge set, and k is a positive integer, we are

asked whether there exists a vertex setW ⊂ V such that |W | ≤ k ,
and for each vertex v ∈ V , there is a vertex w ∈ W such that

w,v are adjacent. We use I = (V ,E,k) to denote an instance of

DominatingSet.

Definition 8 (SetCover). Given a ground set U = [n], a family

F = {F1, F2, . . . Fm } of subsets of U , and a positive integer k , we
are asked whether there exists a subset J of [m] such that |J | ≤ k ,
and

⋃
j ∈J Fj = U . We use I = (U , F ,k) to denote an instance of

SetCover.

Definition 9 (Weighted-Maximum-k-Coverage). Given a

ground set U = [n], a weight function w : [n] → R+, a fam-

ily F = {F1, F2, . . . Fm } of subsets of U , and a positive integer

k , we are asked to find a subset J ⊆ [m] of size k , such that

w(∪l ∈J Fl ) :=
∑
i ∈∪l∈J Fl w(i) is maximized.We note that ourweight

functionw is additive, thus by defining weights for each element in

the ground set gives a full characterization of a weight function. We

use I = (U ,w, F ,k) to denote an instance of Weighted-Maximum-

k-Coverage.

4 LOWER BOUNDS ON EFFICIENT
APPROXIMATION OF SIZE-RELAXED
COMMITTEE SELECTION

We start by proving an equivalence in the hardness of approxi-

mating satisfaction and dissatisfaction based Chamberlin-Courant

rules in Theorem 1. We provide the proof for the egalitarian ob-

jectives only in the interest of space. The proof for the utilitarian

objective is similar.

Theorem 1. For any integer m, and any dissatisfaction function
family ®δ , if there is no algorithm that achieves r -approximation
for Relaxed-Egalitarian-®δ -CC, then there is no algorithm that
achieves r -approximation for Relaxed-Egalitarian- ®α-CC, where
αm (·): αm (i) = δm (m) − δm (i) for all i ∈ [m].

Proof. By construction we know that both problems share

the same candidate set. For any candidate set K that has a dis-

satisfaction of less than minC ∈Ck maxi ∈[n] δ
m (iC,1) for Relaxed-

Egalitarian-
®δ -CC, we know that the same candidate set K

has a satisfaction of greater than maxC ∈Ck mini ∈[n] α
m (iC,1) for

Relaxed-Egalitarian- ®α-CC.
We prove by contradiction. Suppose there is an algorithm A

for Relaxed-Egalitarian- ®α-CC that achieves r approximation,

with output candidate set K̂ . By the definition of approximation,

we know that |K̂ | ≤ kr . By the above argument, choosing K̂

for Relaxed-Egalitarian-
®δ -CC has a dissatisfaction of less than

minC ∈Ck maxi ∈[n] δ
m (iC,1). This gives an algorithm that achieves

r approximation for Relaxed-Egalitarian-
®δ -CC, a contradiction.

This concludes the proof.

□

Remark 1. It is not hard to see that the same equivalence holds for

upper bound results. We will use this in Section 4.

In light of Theorem 1 and its implications for both lower bound

and upper bound results, we will only consider either satisfaction or

dissatisfaction based Chamberlin-Courant rules. Unless otherwise

stated, we will prove for either rule, and the same results also apply

to the other rule.

Hardness of Approximation for Size-Relaxed Committee Selection.
We prove an o(logn) lower bound for the approximability of size-

relaxed committee selection in Theorem 2 by a reduction from

DominatingSet. For convenience, we prove the results for dissat-

isfaction functions. Results for satisfaction functions follow from

Theorem 1.

Theorem 2. For any dissatisfaction function family ®δ that is univer-
sally polynomially unbounded, there is no polynomial time algorithm
that has an approximation ratio of o(logn) unless P= NP for:
- Relaxed-Utilitarian-®δ -CC,
- Relaxed-Egalitarian-®δ -CC.

To prove this theorem, we first introduce the following lemma.

Lemma 1. For any dissatisfaction function family ®δ that is univer-
sally polynomially unbounded, for large enough n ∈ N, there exists
an integer r ∈ Poly(n) such that δ r (r ) ≥ nδ r (n).

Proof. By the definition of universally polynomially un-

bounded, we know that there exists a constant c > 0 such that

for any polynomial p(κ) ∈ Ω(κc ), there exists κ ∈ N and l ≥ κc

such that δκ (κ)/δκ (l) ≥ p(κ). Let n = ⌊p(κ)⌋ = ⌊κc ⌋, we know that

δκ (κ) ≥ nδκ (n) and κ ∈ poly(n). Take r = ⌊κ + 1⌋ gives the desired
integer r . □

Now we prove Theorem 2.

Proof. We first prove for Relaxed-Utilitarian-
®δ -CC. The

high-level idea is to establish a reduction from DominatingSet,

and show that the reduction is approximation preserving.

Reduction: Let I = (V ,E,k) be an instance of DominatingSet.

We construct an instance J = (N ,C, ®P) of Relaxed-Utilitarian-
®δ -CC as follows:

Let N = V be the agents, and the set of candidates C =
⋃n
j=1Cj

where each Cj corresponds to vertex j in V and contains exactly r
candidates, where r is the smallest value for which δm (r ) ≥ nδm (n)
(the existence of r follows from Lemma 1). For each Cj we pick

one candidate c j as representative of Cj . Denote by Γ+(i) the set of
vertices that is either i itself, or adjacent to i in graph G. For each
agent i ∈ N , we set the preference ≻i as follows:

cΓ+(i) ≻i CΓ+(i) − cΓ+(i) ≻i C −CΓ+(i),

where cΓ+(i) includes all candidate c j such that j ∈ Γ+(i) andCΓ+(i)
includes all candidate set Cj such that j ∈ Γ+(i). The ordering of

candidates in each part can be set arbitrarily.

Let l = minC ∈Ck
∑
i ∈[n] δ

m (iC,1), the minimum utilitarian dis-

satisfaction with k candidates. We claim that l ≤ nδm (n) if and
only if I is a YES instance of DominatingSet.
(⇐) If I a YES instance of DominatingSet, then there is a dom-

inating set K of size k . Thus for each i ∈ V there is a j ∈ K such

that i and j are the same or adjacent. Let T = {c j |j ∈ K} be our
chosen candidate set of size k . By the above argument, for each
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agent i ∈ N , there is a j ∈ T s.t. posi (j) ≤ n. This gives k candidates

such that the total dissatisfaction is at most n · δm (n).
(⇒) If l ≤ nδm (n), we prove by contradiction that I is a YES instance
of DominatingSet. If not, then there is no dominating set of size

k , thus we know that for any size k subset K of V , there exists

an i ∈ V such that for any vertex j ∈ K , i and j are neither the
same not adjacent. This implies that for instance J , by choosing

any k candidates T , we know that there is an agent i such that all

candidates in T get a dissatisfaction of at least δm (r )(since they

are all in C − CΓ+(i)). Thus, the total dissatisfaction for choosing

k candidates is at least δm (r ) > n · δm (n), a contradiction. This

concludes the exact NP-hardness.

The following lemma shows that the reduction is approximation

preserving.

Lemma 2. If there is an o(logn)-approximation algorithm
for Relaxed-Utilitarian-®δ -CC for universally polynomially un-
bounded dissatisfaction function family ®δ , then there is an o(logn)
approximation algorithm for DominatingSet.

Proof. Suppose that algorithm A has approximation ratio of

o(logn). For a DominatingSet instance I = (V ,E,k), let k∗ be the

smallest k that makes I a YES instance. let J = (N ,C, ®P) be the

constructed election instance in the proof of Theorem 2. Note that

in the construction we do not need to know the value of k . We

run algorithm A with k enumerating from 1 to n, and check if the

output candidate set has a total dissatisfaction of less than nδm (n).

If for
ˆk the condition holds, we end our algorithm with a candidate

set Ĉ of size
ˆk · o(logn). Let T = {j | |Ĉ ∩Cj | ≥ 1}. We claim that T

is a dominating set of I .
If it is not the case, then there exists a vertex i ∈ V such that for

any vertex j ∈ T , i and j are neither the same, nor adjacent. This

means that agent i’s dissatisfaction, when choosing candidate set

Ĉ , is at least δm (r ) ≥ nδm (n), a contradiction.
Next we prove that

ˆk ≤ k∗. If not, then we have already run

algorithmA with k∗. We know from above proof of Theorem 2 that

it is possible to choose k∗ candidates such that the total dissatisfac-

tion is less than nδm (n), and algorithm should in round k∗ output
a candidate set of k∗o(logn) with dissatisfaction ≤ nδm (n), which
means that our algorithm should stop at round k∗, a contradiction.

By now, we end up constructing an algorithm that chooses at

most k∗ ·o(logn) vertices that form a dominating set, which gives us

an o(logn) approximation algorithm for DominatingSet problem.

This concludes the proof. □

Since the dominating set problem is LOG-APX-hard [1], this

concludes the proof.

For Relaxed-Egalitarian-
®δ -CC, we know that by universally

polynomially unbounded property, there exists an r ′ such that

δm (n) < δm (r ′). We apply the same reduction but with r replace
by r ′. We denote by l = minC ∈Ck maxi ∈[n] δ

m (iC,1) the minimum

egalitarian dissatisfaction with k candidates. We claim that l ≤
δm (n) if and only if I is a YES instance of DominatingSet.

(⇐)If there is a dominating set K of size k , then there exist k
candidates such that the total egalitarian dissatisfaction is at most

δm (n) since for each agent one will contribute a total dissatisfaction
of at most δm (n).

(⇒)If l ≤ δm (n), we prove by contradiction that I is a YES

instance of DominatingSet. If not, then there is no dominating set

of size k , thus there exists an i ∈ V such that for any vertex j ∈ K , i
and j are neither the same nor adjacent. This implies that for our

election instance, by choosing any k candidates T , we know that

there is an agent i such that all candidates inT get a dissatisfaction

of at least δm (r )(since they are all inC−CΓ+(i)). Thus the egalitarian

dissatisfaction for choosing any k candidates is at least δm (r ) >
δm (n), which contradicts. This gives the reduction which implies

this problem is NP-hard. The approximation preserving property

directly follows from Lemma 2. This concludes the proof.

□

Remark 2. Although the proof seems to rely on the condition that

m ≥ n, this is not necessary: one can choose appropriate n′ =
Ω(nc ) for a constant c > 0, and make the reduction work. Since

o(logn′) = o(logn), we can still conclude the LOG-APX-hardness.

Remark 3. This theorem also holds for the cases that the dissatisfac-

tion families among agents are different: let
®δi be the dissatisfaction

function family for agent i , we just need to replace the condition

δm (r ) ≥ nδm (n) by mini δ
m
i (r ) ≥

∑
i δ

m
i (n) (which can also be

derived from Lemma 1), and the proof also applies.

5 APPROXIMATION ALGORITHMS FOR
SIZE-RELAXED COMMITTEE SELECTION

In this section, we give upper bounds results for the size-

relaxed committee selection problem. At a high level, all of

our approximation algorithms involve the following two main

steps: given an instance of committee selection, (Step 1) con-

struct an instance of Weighted-Maximum-k-Coverage, and
(Step 2) run a greedy/LP rounding based algorithm on the

Weighted-Maximum-k-Coverage instance, and transform the

solution to a solution for the committee selection instance. Through-

out this section we will prove upper bounds for satisfaction based

Chamberlin-Courant rules for convenience. The results for dissat-

isfaction functions follow from Theorem 1 and Remark 1.

5.1 Utilitarian Satisfaction
We first illustrate our approach through our algorithm for Relaxed-

Utilitarian- ®α-CC, where given an instance with election E =

(N ,C, ®P), we proceed in two steps:

Step 1. Construct an instance I = (U ,w, F ,k) of Weighted-

Maximum-k-Coverage by applying Algorithm 1 to E =

(N ,C, ®P), where (i) there is an element ai, j in ground set

U , for each agent i ∈ N , and candidate j ∈ C, with

weight αm (posi (j)) − αm (posi (j) + 1), and (ii) there is a set

Fj = {ai, ĵ : i ∈ N , ĵ ∈ C,posi (j) > posi (ĵ)}, for every candidate

j ∈ C in F . W.l.o.g. assume αm (m + 1) = 0.

Step 2. Algorithm 2 greedily picks the set Fj∗ with maximum mar-

ginal increase in the weight of covered elements for instance I , and
adds candidate j∗ to the committee.

Example 1 shows the key idea behind our approach: the utilitarian

satisfaction of a committee equals to the total weight covered by the

corresponding subsets for theWeighted-Maximum-k-Coverage
instance.
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Example 1. Consider the following simple multi-winner selec-

tion instance E = (N ,C, ®P) with Borda satisfaction. We let N =

{1, 2, 3, 4}, C = {a,b, c,d}. Our objective is to look for the satis-

faction of k = 2 candidates. For preference profile, we define the

preference order for each i as follows:

1 : a ≻ b ≻ c ≻ d

2 : a ≻ c ≻ b ≻ d

3 : b ≻ c ≻ d ≻ a

4 : d ≻ a ≻ b ≻ c

It is not hard to see by choosing a and b one can get the max-

imum Borda satisfaction of 3 + 3 + 3 + 2 = 11. Consider a

Weighted-Maximum-k-Coverage instance I = (U ,w, F , 2), with
U = {ai, j }4×4, F = {Fa , Fb , Fc , Fd }, w({ai, j }) = 1 for any i and
j < 4,w({ai, j }) = 0 for any i and j = 4.

Fa = {a1,1, . . . ,a1,4,a2,1, . . . ,a2,4,a3,4,a4,2,a4,3,a4,4}

Fb = {a1,2,a1,3,a1,4,a2,3,a2,4,a3,1, . . . ,a3,4,a4,3,a4,4}

Fc = {a1,3,a1,4,a2,2,a2,3,a2,4,a3,2,a3,3,a3,4,a4,4}

Fd = {a1,4,a2,4,a3,3,a3,4,a4,1,a4,2,a4,3,a4,4}

We can see that by choosing Fa and Fb we get the weighted-

maximum-2-coverage, with cover size equal to 11. This is exactly

maximum utilitarian satisfaction. □

Algorithm 1 SC(E,k) Election to Cover.

Input: An election E = (N ,C, ®P), positive integer k
Output: A weighted-maximum-k-coverage I = (U ,w, F ,k)
1: LetU ← {ai, j }n×m , F = {F1, F2, . . . , Fm }
2: for i = 1, . . . ,n do
3: for l = 1, . . . ,m do
4: Letw({ai,l }) = αm (l) − αm (l + 1)

5: for j = 1, . . . ,m do
6: Fj ← {ai,l |i ∈ [n], l ∈ [m], l ≥ posi (j)}

7: return (U ,w, F ,k)

Algorithm 2 Relaxed-Utilitarian- ®α-CC

Input: An election E = (N ,C, ®P), positive integer k
Output: A set of candidates K
1: K = ∅,L = [m],V = ∅
2: (U ,w, F ,k) ← SC(E,k)

3: γ = maxi1,i2∈[n],l1,l2∈[m]
w ({ai

1
,l
1
})

w ({ai
2
,l
2
})

4: for l = 1, . . . ,k · (logmnγ + 1) do
5: Pick j ∈ L s.t.w(Fj −V ) is maximized

6: V ← Fj ∪V , K ← K ∪ j, L← L − j

7: return K

Our main result in Theorem 3 proves a O(logn) upper bound by

applying Algorithm 1 and 2. The proof relies on Lemma 3, where

we prove an O(k logn) upper bound for size-relaxed version of

Weighted-Maximum-k-Coverage, under the restriction that the

ratio of any two weights is bounded. In the classical Weighted-

Maximum-k-Coverage problem, we are given a ground set U ,

whose elements are associated with weights, a family F of sub-

sets of U , and a positive integer k , and we are asked to pick k
members of F whose cover has the maximum total weight. In the

size-relaxed version, we are asked to select at most γ · k members

of F such that the weight covered is at least that of the optimal

set of k members. Although the size-relaxed version of Weighted-

Maximum-k-Coverage does not formally appear in any reference

to the best of our knowledge, it can be derived from Lemma 3.14

of [16].

Theorem 3. For polynomially bounded satisfaction function family
®α , Algorithm 2 guarantees an approximation ratio of O(logn) to
Relaxed-Utilitarian- ®α-CC in polynomial time.

The key step in the proof is Lemma 3, where we show that

Algorithm 2 is a O(logn)-approximation algorithm for the size-

relaxed version ofWeighted-Maximum-k-Coverage, where given
a Weighted-Maximum-k-Coverage instance I = (U ,w, F ,k), in
the size-relaxed version we are asked to find a subset Ĵ of F such

that the total weight of elements covered in Ĵ is at least the total
weight covered by the optimal solution J∗ toWeighted-Maximum-

k-Coverage.

Lemma 3. Let l∗ be the total weight of the optimal Weighted-

Maximum-k-Coverage, if there exists a polynomial p(·) such that:

wmax := max

i, j ∈[n]

w(i)

w(j)
∈ O(p(n)),

then there is a polynomial time algorithm that selects O(k logn)
elements with coverage of at least l∗.

We claim that the greedy algorithm, which in each round, picks

the subset with highest incremental weight (breaking ties arbitrar-

ily), has this property.

Let Lj be the set that by running greedy algorithm for j rounds,
the elements covered in ground set. Let Mk be the set that by

choosing k subsets in F , the elements covered in ground set with

maximum weight (weighted maximum k coverage). We extend the

definition of weight to subset of [n] such that for any subset S ⊆ [n],
w(S) =

∑
i ∈S w(i). We show thatw(Lk log(n ·wmax)+1) ≥ w(Mk ).

LetOPTk = w(Mk ), and ai and bi be the total weight of elements

covered inMk andMk = U −Mk respectively in round i by greedy

algorithm. We know from Lemma 3.14 of [16], that for all i ≥ 1,

i∑
j=1
(aj + bj ) ≥ OPTk −OPTk

(
1 −

1

k

)i
. (1)

Now we start to prove Lemma 3.

Proof. We know from (1) that by running the greedy algorithm

for k log(n · wmax) rounds, the number of elements covered by

greedy algorithm is at least

OPTk −OPTk

(
1 −

1

k

)k log(n ·wmax)

=OPTK

(
1 −

1

n ·wmax

)
.
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Since for any i ∈ [n], OPTk ≤ n · wmax · w(i), by picking an-

other set which contribute an increment of at least 1 element,

greedy algorithm covers a total weight of at least OPTk . Thus
w(Lk log(n ·wmax)+1) ≥ w(Mk ). This concludes the proof of this

lemma. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. It is not hard to see that the weight of

coverage by any k subsets in I exactly equals the satisfaction of the

corresponding size k committee. In particular, the optimal k subsets

with maximum weighted coverage corresponds to the optimal size

k committee. By Lemma 3, Algorithm 2 which greedily chooses Fj
that maximizes incremental weight(equals to size in this case) will

output a set K such that |K | = O(k logmnγ ), while covering at least
the size of the maximum coverage of k subsets chosen from F . Since
we are focusing on polynomially bounded satisfaction function

family, thusm and γ are in Poly(n), we conclude the proof. □

Theorem 3 also works for the case that satisfaction between

agents are different, but we omit the proof in the interest of space.

Corollary 1. Let ®αi be the satisfaction function family for agent i . If
∀i , ®αi satisfy polynomial gap among weights property. By replacing
weights with w({ai,l }) = αmi (l) − αmi (l + 1) in Algorithm 2, the
modified algorithm guarantees an approximation ratio of O(logn) to
Relaxed-Utilitarian- ®α-CC in polynomial time.

Remark 4. It turns out this algorithm does not work with the family

of unbounded satisfaction functions. The following counterexample

shows why this happens.

Example 2. Letm = O(n2), let αm (i) =
∑n
j=i

1

nn−j for i ≤ n, and

αm (i) = 0 for i > n. Candidate 1 appears in each vote at rank n,
candidate 2 appears in each vote but the last one at rank n − 1, with
rank in the last voter behind n, candidate 3 appears in each vote

but the first two, at rank n − 2, with rank in the first two voters

behind n,. . . , candidate n/4 appears in each vote but the first (or

maybe last, depending on if n/4 is odd) n/4 voters at rank n − n/4.
Candidate Tom appears in the first half of voters at rank n/2, and
the second half of voters at rank behind n. Candidate Jerry appears

in the first half of voter at rank behind n, and the second half of

voters at rank n/2. For the other candidates, it ranks on one voter

less than n, and on the other voters behind n.
One can check that in this example, the greedy algorithm will

start choosing from candidate 1 to n/4 in the first n/4 rounds. Still,
they end up having less satisfaction than directly choosing Tom

and Jerry. Thus the greedy algorithm does not have a satisfaction

guarantee of O(logn) here: the gap is already Ω(n). It is clear to
see that by choosing at most n candidates, one can achieve optimal

satisfaction. □

5.2 Egalitarian Satisfaction
Here we show upper bound results for any satisfaction functions.

For the egalitarian objective, we design similar algorithms but

based on SetCover, thus without weights. We note that, SetCover

is a special case of Weighted-Maximum-k-Coverage where all

weights are set to be 1, and k is set to be the value of optimal k∗

that covers the ground set.

Algorithm 3 Relaxed-Egalitarian- ®α-CC

Input: An election E = (N ,C, ®P), positive integer k
Output: A set of candidates K
1: K = ∅,L = [m],V = ∅
2: (U , F ,k) ← SC(E,k)
3: for t = 1, . . . ,m do
4: St ← {ai,k |k ∈ [m],k > m − t}, Kt = ∅
5: for l = 1, . . . ,k(logmn + 1) do
6: Pick j ∈ L s.t. |(Fj ∪ (V ∩ St )) − (V ∩ St ))| is maximized

7: V ← Fj ∪V , Kt ← Kt ∩ j, L← L − j

8: if St ⊆ V then
9: K ← Kt
10: return K

The high level idea of this algorithm is this: we enumerate over all

possible egalitarian satisfaction (polynomial many), each egalitarian

satisfaction lt corresponds to a subset St of ground set, and we

run the traditional greedy algorithm for O(k logn) rounds with
the target to cover St . If in round t , the greedy algorithm succeed

covering St , then we update chosen candidate set K . We prove in

Theorem 4 that this algorithm is a polynomial time algorithm that

gives O(logn) approximation.

Theorem 4. Algorithm 3 guarantees an approximation ratio of
O(logn) to Relaxed-Egalitarian- ®α-CC in polynomial time.

Proof. Let αm (l) = maxC ∈Ck mini ∈[n] α
m (iC,1), if we can

choose k subsets in F that cover all elements in {ai, j |j > m − l},
then we can get an egalitarian satisfaction of αm (l).

Recall that our algorithm enumerates all possible target satis-

faction. We first claim that when the algorithm moves to the step

checking egalitarian satisfaction of αm (l), running the greedy al-

gorithm for k(logmn + 1) times Sl will be covered. This is because
there exists k subsets that covers Sl , so (Sl , F ,k) is a YES instance of
SetCover. Lemma 3 tells us the above greedy algorithm will output

a set cover within k(logmn + 1) rounds. So the above algorithm

will update K with the approximation guarantee and satisfaction

guarantee. Later updates in this algorithm will only give egalitarian

satisfaction higher than αm (l). Thus, the candidate set outputted
by Algorithm 3 has at least optimal egalitarian satisfaction by k
candidates, with O(logmn) = O(logn) approximation ratio. The

algorithm runs in m · k · (logmn + 1) steps, as m = poly(n) this
algorithm runs in polynomial time. This concludes the proof. □

t-Approval. Algorithm 3 also works for the class of t-approval
satisfaction functions. As mentioned in Remark 3, if t = Ω(Poly(n)),
then size-relaxed committee problem is LOG-APX-hard. However,

in practice, t is usually very small, say, a constant. We prove in

Theorem 5 that there is a t approximation algorithm for t-approval
satisfaction.

Theorem 5. Algorithm 4 guarantees an approximation ratio ofO(t)
to Relaxed-Egalitarian- ®αt -CC in polynomial time.

First, we give some intuition behind our algorithm and the proof.

Notice that for the t-approval satisfaction, there are t candidates
with satisfaction of 1 for each voter. Therefore, the corresponding

SetCover instances are restricted to the case where each element

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1536



in U appears at most t times in the subsets of F . [17] provides a

t-approximation algorithm for this case using LP rounding, which

we refer to as LowFreq, for low frequency set cover. Also, in the

egalitarian case, the optimal satisfaction can only be 0 or 1, which

we exploit in our algorithm.

Proof. To solve this, we only need to solve the following special

instance of set cover: U = [n], F = {F1, F2, . . . , Fm } where each
Fl = {i |posi (l) ≤ t}. By definition, to get a satisfaction of 1 on a

specific agent i , we need to select a candidate j with posi (j) ≤ t .
This is by construction equivalent to cover i ∈ U . Notice that in

the egalitarian case, optimal satisfaction can only be 0 or 1. For the

former case, we return ∅. For the latter case, we need to cover all

i ∈ U . Thus it is equivalent to cover all elements in U . One can

directly apply the set cover algorithm with a frequency of t as in
Algorithm 4. □

Algorithm 4 Relaxed-Egalitarian- ®αt -CC

Input: An election E = (N ,C, ®P), positive integers k, t
Output: A set of candidates K
1: LetU ← [n] , F = {F1, F2, . . . , Fm }
2: for l = 1, . . . ,m do
3: Fl ← {i |i ∈ N ,posi (l) ≤ t}

4: K ← LowFreq(U , F ,k)
5: if |K | < k · t then
6: return K
7: else
8: return ∅

By combining techniques from Theorem 4 and Theorem 5, there

is an O(t) approximation algorithm for any ®α which assigns a pos-

itive (dis)satisfaction to at most t positions, i.e. for any ®α , where
αm (l) = 0 for any l > t : just enumerate possible satisfaction as

Algorithm 3 does, and cover the corresponding target set as Algo-

rithm 4 does.

Corollary 2. For any ®α which assigns a positive (dis)satisfaction to
at most t positions, i.e. for any ®α , where αm (l) = 0 for any l > t , there
is an algorithm that guarantees an approximation ratio of O(logn)
to Relaxed-Egalitarian- ®α-CC in polynomial time.

Also, notice that when t = 2, the size-relaxed problem exactly

becomes VertexCover[18]. Note that the VertexCover problem

is APX-hard to solve [9], thus, for t-approval our size-relaxed ob-

jective is APX-hard.

Corollary 3. For t-approval (dis)satisfaction function family, it is
APX-hard to solve
- Relaxed-Utilitarian- ®α t -CC,
- Relaxed-Egalitarian- ®α t -CC.

6 DISCUSSION
Throughout the paper, we assume thatm = O(Poly(n)), which is

often the case in practice. Here we discuss the theoretical reason

we make this assumption. First, ifm is too large, then our algorithm

hasO(log(mn)) approximation, which can be greater than n. In this

case, we should choose n candidates that rank top of each agent

as the committee. Second, our approach of proving lower bounds

for approximating CC rules through a lower bound preserving

reduction from a hard to approximate problem does not provide an

immediate way forward to prove lower bounds based on bothm
and n, because we are not able to identify a suitable known problem.

In our paper, we tackle the size-relaxed committee selection

problem by classifying (dis)satisfaction function families, and study

each cases. This classification makes it convenient for us to derive

clean results. But still, it is not clear if there is an approximation

algorithm for polynomially unbounded satisfaction function with

relatively good guarantee. A similar question on size-relaxed ver-

sion of weighted-maximum-k-coverage which is fundamental, is

also open to the best of our knowledge. We believe new insights

are required.
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