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ABSTRACT

Recent years have seen various designs of strategyproof
mechanisms in the facility location game and the obnoxious
facility game, by considering the facility as a point. In this
paper, we extend that point to be an interval and study a
novel activity scheduling game to schedule an activity in the
time domain [0, 1] based on all agents’ time reports. The
activity lasts for a time period of 𝑑 with 0 ≤ 𝑑 ≤ 1, and each
agent 𝑖 wants his private time 𝑡𝑖 to be within the activity
duration [𝑦, 𝑦 + 𝑑] or at least as close as possible. Thus
his cost is the time difference between his time 𝑡𝑖 and the
activity duration [𝑦, 𝑦 + 𝑑]. The social cost is the summation
of all agents’ costs. Our objective is to choose the activity
starting time 𝑦 so that the mechanisms are strategyproof
(truthful) and efficient. We design a mechanism outputting
an optimal solution and prove it is group strategyproof. For
minimizing the maximum cost, we also design a strategyproof
mechanism with approximation ratio 2. In the obnoxious
activity scheduling game, each agent prefers his conflict
time 𝑡𝑖 to be far away from the activity duration [𝑦, 𝑦 + 𝑑].
We respectively design deterministic and randomized group
strategyproof mechanisms with provable approximation ratios
and also show the lower bounds. Besides, for extension, we
consider the cost/utility as the characteristic function and
find group strategyproof mechanisms for minimizing the
social cost and maximizing the social utility.
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1 INTRODUCTION

In the literature of activity and resource scheduling (e.g., [10,
16]), the focus is to develop efficient algorithms (e.g., dynamic
programming and heuristic search) in a centralized manner
to meet task deadlines or improve resource utilization. There
is a lack of game theoretic study or strategyproof mechanism
design for the scheduler (social planner) to solicit private
information from involved human agents in the activity. In
this paper, we study a family of novel activity scheduling
games with fixed activity duration in the normalized time
domain [0, 1]. The activity to schedule lasts for a time period
of 𝑑 (e.g., two hours of a day) with 0 ≤ 𝑑 ≤ 1, and calls
for the participation of a group of self-interested agents.
The activity scheduling scenario is related to the traditional
facility location games on a spatial line segment (e.g., [2, 14]),
where each agent is self-interested and reports his private
location information to influence the social planner’s decision
on the facility location. In our problem, the social planner
collects all agents’ private time information and wants to
locate the activity in the time domain to minimize the social
cost (or maximize the social utility). Our objective is to
choose the activity starting time so that the mechanisms
are strategyproof and efficient. The technical difference is
that the activity has a time window with length 𝑑 while the
facility’s location is just a point.

We first study the activity scheduling game whose coun-
terpart is the facility location game. In general, [𝑦, 𝑦 + 𝑑]
is an activity’s duration and 𝑡𝑖 is agent 𝑖’s own business
time. Agent 𝑖’s own business can be done during the activity
in the same location, so agent 𝑖 wishes 𝑡𝑖 to be within
[𝑦, 𝑦 + 𝑑]. There are many real-life examples for motivating
such a game. For example, the activity can be a conference
reception session for attendants (agents) to register quickly
on the spot and the registration period (activity duration)
is [𝑦, 𝑦 + 𝑑] ⊆ [0, 1] by starting at time 𝑦 and ending at time
𝑦 + 𝑑. Other than the conference registration, each agent 𝑖
has a personal appointment at time 𝑡𝑖 in the same location
(e.g., meeting some friend there, checking in hotel) and wants
𝑡𝑖 to be within the activity duration [𝑦, 𝑦 + 𝑑], for saving the
waiting time. Here, we consider the duration of an agent 𝑖’s
personal appointment to be much shorter than the activity
duration and thus model it as a time point 𝑡𝑖. If 𝑡𝑖 < 𝑦, he
arrives at reception at time 𝑡𝑖 for his personal business and
then waits for a time period of 𝑦 − 𝑡𝑖 until he can register
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earliest at time 𝑦. Thus, his cost is the extra waiting time
𝑦 − 𝑡𝑖. If 𝑡𝑖 > 𝑦 + 𝑑, he needs to arrive no latter than time
𝑦 + 𝑑 to just catch the session and still needs to wait for at
least a time period of 𝑡𝑖 − 𝑦 − 𝑑 for his personal business at
time 𝑡𝑖. Therefore, the cost of an agent is 𝑦 − 𝑡𝑖 if 𝑡𝑖 < 𝑦;
𝑡𝑖 − 𝑦 − 𝑑 if 𝑡𝑖 > 𝑦 + 𝑑; and 0 if 𝑦 ≤ 𝑡𝑖 ≤ 𝑦 + 𝑑. As another
example, the activity can be a sales promotion of a brand in a
shopping mall for the brand members. The activity organizer
asks each member (agent) 𝑖 to report his available time 𝑡𝑖
to be present in the location to determine the activity time
[𝑦, 𝑦 + 𝑑]. Agent 𝑖 (if his preferred 𝑡𝑖 is outside the activity
time window [𝑦, 𝑦 + 𝑑]) needs to reschedule his own business
to catch the start time or end time of the activity, translating
to the inconvenience cost for rescheduling.

In this game, each agent must report his private time 𝑡𝑖
to the social planner and he may have a chance to decrease
his cost by misreporting 𝑡𝑖. Therefore, we emphasize strate-
gyproofness of a mechanism, which guarantees that an agent
cannot acquire any benefit from misreporting. We design a
mechanism outputting the optimal solution 𝑦 to minimize the
social cost and prove it is group strategyproof. For another
objective of minimizing the maximum cost, we also design a
strategyproof mechanism with approximation ratio 2.

We also model and study the obnoxious activity scheduling
game whose counterpart is the obnoxious facility location
game, we can view 𝑡𝑖 as the conflict time for agent 𝑖. An
agent 𝑖 wants to do his own business at time 𝑡𝑖 (e.g., at
another nearby location), and thus prefers 𝑡𝑖 to be far from
the activity duration [𝑦, 𝑦 + 𝑑] to avoid potential overlap in
time. For example, the activity can be a department meeting
during [𝑦, 𝑦 + 𝑑], and each attendee (agent) 𝑖 attends the
whole meeting. Each agent 𝑖 should report his conflict time
𝑡𝑖 for doing his own business and prefers 𝑡𝑖 to be far away
from meeting time. If 𝑦 ≤ 𝑡𝑖 ≤ 𝑦 + 𝑑, agent 𝑖 has to give
up his own business and thus has zero utility. If 𝑡𝑖 < 𝑦 or
𝑡𝑖 > 𝑦 + 𝑑, it is still possible that agent 𝑖’s own business
or the meeting may overrun to cause conflict. Therefore,
if 𝑡𝑖 < 𝑦, he wants the time gap 𝑦 − 𝑡𝑖 to be as long as
possible to reduce the chance of overlap due to possible
overrun of his business and thus his utility is 𝑦− 𝑡𝑖. Similarly,
if 𝑡𝑖 > 𝑦 + 𝑑, he wants long time gap 𝑡𝑖 − 𝑦− 𝑑 to reduce the
chance of overlap due to possible overrun of the meeting and
thus his utility is 𝑡𝑖 − 𝑦 − 𝑑. An agent may have a chance
to increase his utility by misreporting his 𝑡𝑖 and thus we
aim to design strategyproof mechanisms. We find that the
optimal solution to maximize the social utility is no longer
strategyproof given 0 ≤ 𝑑 < 1. Therefore, we respectively
design deterministic and randomized group strategyproof
mechanisms with provable approximation ratios and show
some lower bounds. For another objective of maximizing the
minimum utility, we find that any strategyproof mechanism
achieves an unbounded approximation ratio.

Finally, we extend our model to consider another case
that agent 𝑖 has only binary preference towards the activity
schedule [𝑦, 𝑦 + 𝑑] in both normal and obnoxious activity
scheduling games. That is, in the normal (or obnoxious) game,
each agent 𝑖 is happy (unhappy) once his 𝑡𝑖 is within [𝑦, 𝑦+𝑑]

and otherwise unhappy (happy). Formally, the cost of agent 𝑖
in normal game is 0 if 𝑡𝑖 ∈ [𝑦, 𝑦+𝑑]; 1 if 𝑡𝑖 ∈ [0, 𝑦)∪ (𝑦+𝑑, 1].
We find group strategyproof mechanisms for minimizing the
social cost and maximizing the social utility for the two
games, respectively. Besides the above examples, in practice
we can imagine many other examples to potentially fit in our
basic model.

1.1 Related Work

In the algorithmic view of locating one-facility, [14] first
studied strategyproof mechanisms with provable approxi-
mation ratios on the line. For the obnoxious facility game,
the mechanism design to improve the social utility was
first studied by [2]. They presented a deterministic group
strategyproof mechanism with approximation ratio 3 and a
randomized strategyproof mechanism with approximation
ratio 1.5. [21] found the lower bound of any randomized
strategyproof mechanisms for maximizing the social utility
is 1.077. [11] proved there is no strategyproof mechanism
such that the number of candidates is more than two. [23]
extended mechanism design for both games with weighted
agents on a line and provided lower and upper bounds on
the optimal social utility. [8] completely characterized deter-
ministic strategyproof and group strategyproof mechanisms
on single-sinked public policy domain. Combining the above
two models together, the dual-preference game was studied
in [5, 24], where some agents want to be close to the facility
while the others want to be far away from the facility. Other
variations of single facility location games can be found in
[3, 6, 18, 19].

To some extent, our model is related to the two-facility
location game, if we fix the gap 𝑑 between the two facilities.
For the two-facility location game, [12] studied the bounds
for the scenario of locating two homogeneous facilities and
the scenario when one agent possesses multiple locations. [4]
considered the requirement of the minimum distance between
the two facilities for locating them. [17] proposed a class
of percentile mechanisms in the form of generalized median
mechanisms. [15] initiated the study on two heterogeneous
facility location games in the graph where the cost of an agent
is the sum of his distances to both facilities. Other variations
on two-facility location games can be found in [1, 7, 22].

Besides, regarding activity scheduling problems, the lit-
erature [13, 20] only studied non-strategic agents. To our
best knowledge, our paper is the first to study the strategic
activity scheduling game, which also generalizes the facility
location games from locating points to locating intervals.

As a special case of zero activity duration (𝑑 = 0), our
models will degenerate to the facility location game or ob-
noxious facility location game, in which agent 𝑖’s cost or
utility is simply |𝑦− 𝑡𝑖|. In traditional facility location games,
the facility location is just a point, while in our activity
scheduling game, the non-trivial duration 𝑑 of the activity
plays an important role in our mechanism design and proofs
of bounds. In the obnoxious game, for example, we design
mechanisms according to 𝑑 ∈ [0, 1/2] or 𝑑 ∈ (1/2, 1), and
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we also prove the lower bounds according to 𝑑 ∈ [0, 1/3] or
𝑑 ∈ (1/3, 1). This is more challenging than the traditional
case where the facility location is considered as a point.

2 SYSTEM MODEL

Let 𝑁 = {1, 2, · · · , 𝑛} be the set of agents, and the time
interval is 𝐼 = [0, 1]. We denote t = {𝑡1, 𝑡2, · · · , 𝑡𝑛} ∈ 𝐼𝑛

as the 𝑛 agents’ time profile, which is private information
and needs to be reported by themselves. Without loss of
generality, we assume 𝑡𝑖 ≤ 𝑡𝑖+1 for any 1 ≤ 𝑖 ≤ 𝑛− 1.

In the activity scheduling game, denote the duration of
the activity as 𝑑 ∈ [0, 1]. The activity lasts from the start
time 𝑦 to the end time 𝑦 + 𝑑. A deterministic mechanism 𝑓
outputs the start time 𝑦 based on a given agents’ time profile
t, i.e., 𝑦 = 𝑓(t, 𝑑) : 𝐼𝑛 → 𝐼𝑑 = [0, 1− 𝑑]. Any agent 𝑖 prefers
his time 𝑡𝑖 to be close to the activity duration. Thus, the cost
of agent 𝑖 is denoted as

𝑐𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑) =

⎧⎨⎩
𝑦 − 𝑡𝑖, if 𝑡𝑖 < 𝑦;
0, if 𝑦 ≤ 𝑡𝑖 ≤ 𝑦 + 𝑑;
𝑡𝑖 − 𝑦 − 𝑑, if 𝑡𝑖 > 𝑦 + 𝑑.

(1)

The social cost of a mechanism 𝑓(t, 𝑑) on t is denoted as the
sum of costs of 𝑛 agents, i.e.,

𝑆𝐶(𝑓(t, 𝑑)|t, 𝑑) =
𝑛∑︁

𝑖=1

𝑐𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑). (2)

Further, a randomized mechanism is a function 𝑓 : 𝐼𝑛 →
∆(𝐼𝑑), where ∆(𝐼𝑑) is the set of distributions over 𝐼𝑑. If
𝑓(t, 𝑑) = 𝑦 ∼ 𝑃 (t, 𝑑), where 𝑃 is a probability distribution,
agent 𝑖’s cost is defined to be the expected cost over such dis-
tribution, i.e., IE𝑦∼𝑃 (t,𝑑)[𝑐𝑖(𝑦|𝑡𝑖, 𝑑)]. The social cost of a mech-
anism 𝑓(t, 𝑑) on t is denoted as the excepted sum of costs of
𝑛 agents over such distribution, i.e., IE𝑦∼𝑃 (t,𝑑)[𝑆𝐶(𝑦|t, 𝑑)] =∑︀𝑛

𝑖=1 IE𝑦∼𝑃 (t,𝑑)[𝑐𝑖(𝑦|𝑡𝑖, 𝑑)]. The maximum cost of a mecha-
nism 𝑓(t, 𝑑) with respect to t is 𝑀𝐶(𝑓(t, 𝑑)|t, 𝑑) = max𝑖∈𝑁

𝑐𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑).
As agents may misreport their times to change 𝑦 for their

own benefits, strategyproofness is important to ensure. Let
t−𝑖 = (𝑡1, · · · , 𝑡𝑖−1, 𝑡𝑖+1, · · · , 𝑡𝑛) be the time profile without
agent 𝑖. Let t𝑆 be the time profile with all agent 𝑖 ∈ 𝑆 ⊆ 𝑁
and t−𝑆 be the time profile without any agent 𝑖 ∈ 𝑆 ⊆ 𝑁 .
Next we formally define the strategyproofness and the group
strategyproofness.

Definition 2.1. A mechanism is strategyproof in the activi-
ty scheduling game if no agent can benefit from misreporting
his time. Formally, given agent 𝑖, profile t = {𝑡𝑖, t−𝑖} ∈ 𝐼𝑛,
and any misreported time 𝑡′𝑖 ∈ 𝐼 , it holds that

𝑐𝑖(𝑓(𝑡𝑖, t−𝑖, 𝑑)|𝑡𝑖, 𝑑) ≤ 𝑐𝑖(𝑓(𝑡
′
𝑖, t−𝑖, 𝑑)|𝑡𝑖, 𝑑).

Definition 2.2. A mechanism is group strategyproof in the
activity scheduling game if for any group of agents, at least
one of them cannot benefit if they misreport simultaneously.
Formally, given a non-empty set 𝑆 ⊆ 𝑁 , time profile t =
{t𝑆 , t−𝑆} ∈ 𝐼𝑛, and the misreported time profile t′𝑆 ∈ 𝐼 |𝑆|,
there exists 𝑖 ∈ 𝑆, satisfying

𝑐𝑖(𝑓(𝑡𝑆 , t−𝑆 , 𝑑)|𝑡𝑖, 𝑑) ≤ 𝑐𝑖(𝑓(𝑡
′
𝑆 , t−𝑆 , 𝑑)|𝑡𝑖, 𝑑).

For the activity scheduling game, we are interested in
designing strategyproof mechanisms that also perform well
with respect to minimizing the social cost. For a time profile
t, let 𝑂𝑃𝑇 (t, 𝑑) be the optimal (minimum) social cost. A
strategyproof mechanism 𝑓 has an approximation ratio 𝛾 ≥ 1,
if for any time profile t ∈ 𝐼𝑛, 𝑆𝐶(𝑓(t, 𝑑)|t, 𝑑) ≤ 𝛾𝑂𝑃𝑇 (t, 𝑑).

In the obnoxious activity scheduling game, an agent 𝑖
has his conflict time 𝑡𝑖, when he wants to do his own busi-
ness and any agent 𝑖 prefers his time 𝑡𝑖 to be far away
from the activity duration. We define agent 𝑖’s utility as
𝑢𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑) (or IE𝑦∼𝑃 (t,𝑑)[𝑢𝑖(𝑦|𝑡𝑖, 𝑑)]), which is the same
as 𝑐𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑) in (1) (or IE𝑦∼𝑃 (t,𝑑)[𝑐𝑖(𝑦|𝑡𝑖, 𝑑)]). The objec-
tive of this game is to maximize the social utility, which
is denoted as 𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) =

∑︀𝑛
𝑖=1 𝑢𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑) (or

IE𝑦∼𝑃 (t,𝑑)[𝑆𝑈(𝑦|t, 𝑑)] =
∑︀𝑛

𝑖=1 IE𝑦∼𝑃 (t,𝑑) [𝑢𝑖(𝑦|𝑡𝑖, 𝑑)]). The
minimum utility of a mechanism 𝑓(t, 𝑑) with respect to t is
𝑀𝑈(𝑓(t, 𝑑)|t, 𝑑) = min𝑖∈𝑁 𝑢𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑).

Definition 2.3. A mechanism is strategyproof in the ob-
noxious activity scheduling game if no agent can benefit from
misreporting his time. Formally, given any agent 𝑖, profile
t = {𝑡𝑖, t−𝑖} ∈ 𝐼𝑛, and any misreported time 𝑡′𝑖 ∈ 𝐼 , it holds
that

𝑢𝑖(𝑓(𝑡𝑖, t−𝑖, 𝑑)|𝑡𝑖, 𝑑) ≥ 𝑢𝑖(𝑓(𝑡
′
𝑖, t−𝑖, 𝑑)|𝑡𝑖, 𝑑).

Definition 2.4. A mechanism is group strategyproof in
the obnoxious activity scheduling game if for any group of
agents, at least one of them cannot benefit if they misreport
simultaneously. Formally, given a non-empty set 𝑆 ⊆ 𝑁 , time
profile t = {t𝑆 , t−𝑆} ∈ 𝐼𝑛, and the misreported time profile

t′𝑆 ∈ 𝐼 |𝑆|, there exists 𝑖 ∈ 𝑆, satisfying

𝑢𝑖(𝑓(𝑡𝑆 , t−𝑆 , 𝑑)|𝑡𝑖, 𝑑) ≥ 𝑢𝑖(𝑓(𝑡
′
𝑆 , t−𝑆 , 𝑑)|𝑡𝑖, 𝑑).

For the obnoxious activity scheduling game, we are interest-
ed in strategyproof mechanisms that also perform well with
respect to maximizing the social utility. For a time profile
t, let 𝑂𝑃𝑇 (t, 𝑑) be the optimal (maximum) social utility. A
strategyproof mechanism 𝑓 has an approximation ratio 𝛾 ≥ 1,
if for any profile t ∈ 𝐼𝑛, 𝑂𝑃𝑇 (t, 𝑑) ≤ 𝛾𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑).

3 THE ACTIVITY SCHEDULING
GAME

3.1 Minimize the Social Cost

In this section, we study the activity scheduling game. The
social cost 𝑆𝐶(𝑦|t, 𝑑) in (2) is a continuous function of
variable 𝑦 ∈ 𝐼𝑑 = [0, 1 − 𝑑] since 𝑐𝑖(𝑦|𝑡𝑖, 𝑑) is a continuous
function of variable 𝑦. We define 𝐿(𝑦|t, 𝑑) = {𝑖|𝑡𝑖 ∈ [0, 𝑦), 𝑡𝑖 ∈
t} and 𝑅(𝑦|t, 𝑑) = {𝑖|𝑡𝑖 ∈ (𝑦 + 𝑑, 1], 𝑡𝑖 ∈ t}. |𝐿(𝑦|t, 𝑑)| and
|𝑅(𝑦|t, 𝑑)| are the numbers of agents whose times are in [0, 𝑦)
and (𝑦+ 𝑑, 1] respectively. By (1) and (2), the social cost can
be rewritten as

𝑆𝐶(𝑦|t, 𝑑) =
∑︁

𝑖:𝑖∈𝐿(𝑦|t,𝑑)

(𝑦 − 𝑡𝑖) +
∑︁

𝑖:𝑖∈𝑅(𝑦|t,𝑑)

(𝑡𝑖 − 𝑦 − 𝑑).
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Denote time interval

𝐺𝐿(t, 𝑑) = {𝑦| |𝐿(𝑦|t, 𝑑)| < |𝑅(𝑦|t, 𝑑)|},
𝐺𝑅(t, 𝑑) = {𝑦| |𝐿(𝑦|t, 𝑑)| > |𝑅(𝑦|t, 𝑑)|}.

As 𝑦 increases from 0 to 1 − 𝑑, |𝐿(𝑦|t, 𝑑)| increases from 0
and |𝑅(𝑦|t, 𝑑)| decreases to 0, thus 𝑦 ∈ [0, 1−𝑑] = 𝐺𝐿(t, 𝑑)∪
[sup𝐺𝐿(t, 𝑑), inf 𝐺𝑅(t, 𝑑)] ∪𝐺𝑅(t, 𝑑). By checking the deriv-
ative of 𝑑𝑆𝐶(𝑦|t, 𝑑)/ 𝑑𝑡 = |𝐿(𝑦|t, 𝑑)| − |𝑅(𝑦|t, 𝑑)|, we show
that for 𝑦 ∈ 𝐺𝐿(t, 𝑑), as 𝑦 increases, 𝑆𝐶(𝑦|t, 𝑑) decreases at
rate |𝑅(𝑦|t, 𝑑)| − |𝐿(𝑦|t, 𝑑)| > 0; for 𝑦 ∈ [sup𝐺𝐿(t, 𝑑), inf 𝐺𝑅

(t, 𝑑)], as 𝑦 increases, 𝑆𝐶(𝑦|t, 𝑑) remains unchanged; for
𝑦 ∈ 𝐺𝑅(t, 𝑑), as 𝑦 increases, 𝑆𝐶(𝑦|t, 𝑑) increases at rate
|𝐿(𝑦|t, 𝑑)| − |𝑅(𝑦|t, 𝑑)| > 0. Thus, 𝑆𝐶(𝑦|t, 𝑑) of 𝑦 is a con-
tinuous piecewise linear function. Denote the optimal time
to minimize the social cost as 𝑦⋆. Therefore, the optimal
solution is

𝑦⋆ ∈ [sup𝐺𝐿(t, 𝑑), inf 𝐺𝑅(t, 𝑑)].

Mechanism 1. Given 𝑑 ∈ [0, 1), return the optimal time
𝑦⋆ = sup𝐺𝐿(t, 𝑑) or 𝑦⋆ = inf 𝐺𝑅(t, 𝑑).

Theorem 3.1. Mechanism 1 is group strategyproof.

Proof. Without loss of generality, we only need to prove
𝑦⋆ = 𝑓(t, 𝑑) = sup𝐺𝐿(t, 𝑑) is group strategyproof. Denote
𝑆 ⊆ 𝑁 to be a coalition and t′ = {t−𝑆 , t

′
𝑆}. Suppose that

agent 𝑖 ∈ 𝑆 misreports his time from 𝑡𝑖 to 𝑡′𝑖. Denote 𝑦′ =
𝑓(t′, 𝑑) = sup𝐺𝐿(t

′, 𝑑). We divide our discussion into four
cases.

Case 1: 𝑆 contains at least one agent 𝑖 ∈ 𝑆 whose time is
in [𝑦⋆, 𝑦⋆ + 𝑑]. Obviously, 𝑐𝑖(𝑦

⋆|𝑡𝑖, 𝑑) = 0 ≤ 𝑐𝑖(𝑦
′|𝑡𝑖, 𝑑).

Case 2: 𝑆 contains both agents in 𝐿(𝑦⋆|t, 𝑑) and in 𝑅(𝑦⋆|t,
𝑑). Without loss of generality, assume that 𝑦′ < 𝑦⋆. Then
after misreporting, any agent 𝑖 in 𝑅(𝑦⋆|t, 𝑑) increases his cost
from 𝑐𝑖(𝑦

⋆|𝑡𝑖, 𝑑) = 𝑡𝑖 − 𝑦⋆ − 𝑑 to 𝑐𝑖(𝑦
′|𝑡𝑖, 𝑑) = 𝑡𝑖 − 𝑦′ − 𝑑.

Case 3: 𝑆 only contains agents in 𝐿(𝑦⋆|t, 𝑑). Without loss
of generality, assume all agents in 𝑆 = 𝐿(𝑦⋆|t, 𝑑) misreport
their times one by one. Consider agent 𝑖 with 𝑖 ∈ 𝑆 as the
first to misreport his time 𝑡𝑖 and t′ = {𝑡𝑖, t−𝑖}. Let 𝜖 satisfy
0 < 𝜖 < 𝑦⋆ − 𝑡𝑖. Since 𝑦⋆ − 𝜖 < 𝑦⋆ = sup𝐺𝐿(t, 𝑑), we have
𝑦⋆ − 𝜖 ∈ 𝐺𝐿(t, 𝑑), i.e.,

|𝐿(𝑦⋆ − 𝜖|t, 𝑑)| < |𝑅(𝑦⋆ − 𝜖|t, 𝑑)|. (3)

Since 𝑡𝑖 < 𝑦⋆ − 𝜖, if 𝑡′𝑖 < 𝑦⋆ − 𝜖, we have

|𝐿(𝑦⋆ − 𝜖|t, 𝑑)| = |𝐿(𝑦⋆ − 𝜖|t′, 𝑑)|; (4)

if 𝑡′𝑖 ≥ 𝑦⋆ − 𝜖,

|𝐿(𝑦⋆ − 𝜖|t, 𝑑)| > |𝐿(𝑦⋆ − 𝜖|t′, 𝑑)|. (5)

Since 𝑡𝑖 < 𝑦⋆ − 𝜖 ≤ 𝑦⋆ − 𝜖+ 𝑑, if 𝑡′𝑖 ≤ 𝑦⋆ − 𝜖+ 𝑑,

|𝑅(𝑦⋆ − 𝜖|t, 𝑑)| = |𝑅(𝑦⋆ − 𝜖|t′, 𝑑)|; (6)

if 𝑡′𝑖 > 𝑦⋆ − 𝜖+ 𝑑,

|𝑅(𝑦⋆ − 𝜖|t, 𝑑)| < |𝑅(𝑦⋆ − 𝜖|t′, 𝑑)|. (7)

By combining (3)-(7), we have

|𝐿(𝑦⋆ − 𝜖|t′, 𝑑)| ≤ |𝐿(𝑦⋆ − 𝜖|t, 𝑑)|
<|𝑅(𝑦⋆ − 𝜖|t, 𝑑)| ≤ |𝑅(𝑦⋆ − 𝜖|t′, 𝑑)|,

for any 𝑡′𝑖 ∈ 𝐼, which implies that 𝑦⋆ − 𝜖 ∈ 𝐺𝐿(t
′, 𝑑). Thus,

𝑦⋆−𝜖 ≤ sup𝐺𝐿(t
′, 𝑑) = 𝑦′. Let 𝜖 → 0, we have 𝑦′ ≥ 𝑦⋆. Then

the second agent’s misreporting also makes the activity time
greater than or equal to 𝑦′ and so on. Finally, after all agents
misreport, the final activity time 𝑦𝑓𝑖𝑛𝑎𝑙 ≥ · · · ≥ 𝑦′ ≥ 𝑦⋆.
Thus, for any agent 𝑖 in 𝐿(𝑦⋆|t, 𝑑), his cost 𝑐𝑖(𝑦

′|t, 𝑑) =
𝑦𝑓𝑖𝑛𝑎𝑙− 𝑡𝑖 ≥ 𝑦⋆− 𝑡𝑖 = 𝑐𝑖(𝑦

⋆|t, 𝑑) and agent 𝑖 cannot decrease
his cost by misreporting.

Case 4: 𝑆 only contains agents in 𝑅(𝑦⋆|t, 𝑑). This case is
similar to Case 3.

In conclusion, 𝑓 is group strategyproof. �

Corollary 3.2. The complexity of running Mechansim 1
is 𝑂(𝑛) in the worst case.

Proof. Without loss of generality, in Mechanism 1, we use
𝑦⋆ = sup𝐺𝐿(t, 𝑑). In fact, given a group of 𝑛 agents, either
𝑦⋆ or 𝑦⋆+𝑑 is at one of the agents’ times 𝑡𝑖’s. The way to find
𝑦⋆ is to let 𝑦 and 𝑦+𝑑 be 𝑥1, 𝑥2, . . . 𝑥𝑛 one by one until some
𝑥𝑖 = sup𝐺𝐿(t, 𝑑) or 𝑥𝑖 = sup𝐺𝐿(t, 𝑑)+ 𝑑. Therefore, we use
the sequential search in Mechanism 1, where 2𝑛 is the length
of the list. The complexity of the worst-case performance of
running Mechansim 1 is 𝑂(𝑛). �

3.2 Minimize the Maximum Cost

For the objective of minimizing the maximum cost, the
following lemma shows the optimal solution.

Lemma 3.3. The optimal maximum cost for min𝑓 𝑀𝐶(𝑓(t,
𝑑)|t, 𝑑) is (𝑡𝑛 − 𝑡1 − 𝑑)/2 if 𝑡𝑛 − 𝑡1 ≥ 𝑑 and 0 if 𝑡𝑛 − 𝑡1 < 𝑑
and the optimal solution is not strategyproof.

Next, we design a deterministic group strategyproof mech-
anism.

Mechanism 2. Given 𝑑 ∈ [0, 1), return

𝑦 = 𝑓(t, 𝑑) = 𝑙(t, 𝑑) =

{︂
𝑡1, if 𝑡1 + 𝑑 ≤ 1;
1− 𝑑, if 𝑡1 + 𝑑 > 1,

or 𝑦 = 𝑓(t, 𝑑) = 𝑟(t, 𝑑) =

{︂
𝑡𝑛 − 𝑑, if 𝑡𝑛 ≥ 𝑑;
0, if 𝑡𝑛 < 𝑑.

Theorem 3.4. Mechanism 2 is group strategyproof and
has the approximation ratio of 2.

Similarly, strategyproof Mechanism 1 has the approxima-
tion ratio of 2 for minimizing the maximum cost. Inspired by
Theorem 2.2 in [14], the next lemma shows the lower bound.

Lemma 3.5. Given 𝑑 ∈ [0, 1) for any 𝑛 ≥ 2 agents, any de-
terministic strategyproof mechanism 𝑓 has an approximation
ratio of at least 2 for the maximum cost.

By Theorem 3.4 and Lemma 3.5, the bound 2 is tight.

4 THE OBNOXIOUS ACTIVITY
SCHEDULING GAME

In this section, we study the obnoxious activity scheduling
game. From the analysis in the last section, it is easy to see
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that the optimal solution of max𝑆𝑈(𝑦|t, 𝑑) must be 0 or
1− 𝑑. We define

𝑆𝑈𝑙 = 𝑆𝑈(𝑦 = 0|t, 𝑑) =
∑︁

𝑖:𝑡𝑖≥𝑑

(𝑡𝑖 − 𝑑),

𝑆𝑈𝑟 = 𝑆𝑈(𝑦 = 1− 𝑑|t, 𝑑) =
∑︁

𝑖:𝑡𝑖≤1−𝑑

(1− 𝑑− 𝑡𝑖).

Then 𝑂𝑃𝑇 (t, 𝑑) = max{𝑆𝑈𝑙, 𝑆𝑈𝑟} and the optimal time is:
𝑦 = 0 if 𝑆𝑈𝑙 ≥ 𝑆𝑈𝑟; 𝑦 = 1 − 𝑑 if 𝑆𝑈𝑙 < 𝑆𝑈𝑟. If 𝑑 = 1, the
optimal solution is 𝑦 = 0, and is obviously strategyproof.
However, if 𝑑 < 1, the optimal solution is not strategyproof,
since this game is a generalization of the obnoxious facility
game [2]. Next, we design strategyproof mechanisms given
0 ≤ 𝑑 < 1.

4.1 Deterministic Mechanisms

We design deterministic strategyproof mechanisms for max
𝑆𝑈(𝑦|t, 𝑑) in this subsection. Given 𝑑 ∈ [0, 1

2
), define 𝑄1 =

{𝑖|𝑡𝑖 ∈ [0, 1
2
]} and 𝑄2 = {𝑖|𝑡𝑖 ∈ ( 1

2
, 1]}.

Mechanism 3. Given 𝑑 ∈ [0, 1
2
), return 𝑦 = 𝑓(t, 𝑑) = 0 if

|𝑄1| ≤ |𝑄2|; 𝑦 = 𝑓(t, 𝑑) = 1− 𝑑 if |𝑄1| > |𝑄2|.

Theorem 4.1. Mechanism 3 is group strategyproof and
has the approximation ratio of 3−4𝑑

1−2𝑑
.

Proof. Mechanism 3 is proved group strategyproof by
following the similar proof of Theorem 1 in [2].

Given 𝑑 < 1
2
, without loss of generality, assume |𝑄1| ≤ |𝑄2|.

Thus, 𝑓 = 0 and its social utility is 𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) = 𝑆𝑈𝑙.
The optimal solution could still be 𝑦 = 1− 𝑑. We have

𝛾 =
𝑂𝑃𝑇 (t, 𝑑)

𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) =

∑︀
𝑖:𝑡𝑖≤1−𝑑(1− 𝑑− 𝑡𝑖)∑︀

𝑖:𝑡𝑖≥𝑑(𝑡𝑖 − 𝑑)

=

∑︀
𝑖:𝑡𝑖∈[0, 1

2
](1− 𝑑− 𝑡𝑖) +

∑︀
𝑖:𝑡𝑖∈( 1

2
,1−𝑑](1− 𝑑− 𝑡𝑖)∑︀

𝑖:𝑡𝑖∈[𝑑, 1
2
](𝑡𝑖 − 𝑑) +

∑︀
𝑖:𝑡𝑖∈[ 1

2
,1](𝑡𝑖 − 𝑑)

≤
(1− 𝑑)|𝑄1|+ ( 1

2
− 𝑑)|𝑄2|

0 + ( 1
2
− 𝑑)|𝑄2|

≤
(1− 𝑑) + ( 1

2
− 𝑑)

1
2
− 𝑑

=
3− 4𝑑

1− 2𝑑
.

�

Corollary 4.2. 𝛾 = 3−4𝑑
1−2𝑑

is tight for Mechanism 3.

Proof. Consider a time profile t = {0, 1
2
+ 𝜖}, where

0 < 𝜖 < 1
2
. Obviously, 𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) = 1

2
+ 𝜖−𝑑 with 𝑦 = 0

by Mechanism 3 and 𝑂𝑃𝑇 (t, 𝑑) = 3
2
− 2𝑑− 𝜖 with 𝑦 = 1− 𝑑,

which implies 𝛾 = 3−4𝑑−2𝜖
1−2𝑑+2𝜖

→ 3−4𝑑
1−2𝑑

as 𝜖 → 0. �

By following Mechanism 3, we can also design the following
strategyproof mechanism given 𝑑 ∈ [ 1

2
, 1). Define 𝑄3 =

{𝑖|𝑦𝑖 ∈ [0, 1− 𝑑]} and 𝑄4 = {𝑖|𝑦𝑖 ∈ [𝑑, 1]}.

Mechanism 4. Given 𝑑 ∈ [ 1
2
, 1), return 𝑦 = 𝑓(t, 𝑑) = 0 if

|𝑄3| ≤ |𝑄4|; 𝑦 = 𝑓(t, 𝑑) = 1− 𝑑 if |𝑄3| > |𝑄4|.

The following lemma shows the approximation ratio of
Mechanism 4 is infinite.

Lemma 4.3. Given 𝑑 ∈ [ 1
2
, 1) for any 𝑛 ≥ 2 agents, any

deterministic strategyproof mechanism 𝑓 which only selects
from any two candidate times has an approximation ratio 𝛾
of at least +∞.

Proof. Given 𝑑 ∈ [ 1
2
, 1), let 𝑓 be a deterministic strat-

egyproof mechanism selecting from two candidate times 𝑦1
and 𝑦2, which satisfy 0 ≤ 𝑦1 < 𝑦2 ≤ 1 − 𝑑. Let 𝜖 satisfy
0 < 𝜖2 < 1 − 𝑑. Consider the values of 𝑦1 and 𝑦2, we have
the three cases.

Case 1: 𝑦1 < 𝑦2 ≤ 1−𝑑−𝜖2. Consider a time profile t = {1−
𝑑−𝜖2}. Then 𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) ≤ max{𝑆𝑈(𝑦1|t, 𝑑), 𝑆𝑈(𝑦2|t, 𝑑)
} = 0 and 𝑂𝑃𝑇 (t, 𝑑) = 𝑆𝑈(1 − 𝑑|t, 𝑑) = 𝜖2, implying 𝛾 =
𝑂𝑃𝑇 (t, 𝑑)/𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) = +∞.

Case 2: 𝜖2 ≤ 𝑦1 < 𝑦2. This case is similar to Case 1.
Case 3: 𝑦1 < 𝜖2 < 1− 𝑑− 𝜖2 < 𝑦2. Consider a time profile

t = {𝑡1, 𝑡2} = {1− 𝑑− 𝜖, 𝑑+ 𝜖}. Note that given 𝑑 ∈ [ 1
2
, 1),

0 < 𝑡1 < 1 − 𝑑 ≤ 𝑑 < 𝑡2 < 1. Without loss of generality,
suppose that 𝑓(t, 𝑑) = 𝑦1. Thus, 𝑢1(𝑦1|𝑡1, 𝑑) = 0, due to
𝑦1 < 𝑡1 < 𝑦1 + 𝑑. Consider 𝑡′1 = 0 and t′ = {𝑡′1, 𝑡2}. Let 𝑦′ =
𝑓(t′, 𝑑). As 𝑓 is strategyproof and agent 1 cannot increase
his utility by misreporting from 𝑡1 to 𝑡′1, the utility of agent
1 must satisfy 𝑢1(𝑦

′|𝑡1, 𝑑) ≤ 𝑢1(𝑦1|𝑡1, 𝑑) = 0, which implies
that 𝑦′ = 𝑦1, due to 𝑢1(𝑦2|𝑡1, 𝑑) ≥ 𝜖− 𝜖2 > 0. Hence, for the
profile t′, the social utility of t′ under 𝑓 is 𝑆𝑈(𝑦1|t′, 𝑑) = 𝜖
and 𝑂𝑃𝑇 (t′, 𝑑) = 𝑆𝑈(1 − 𝑑|t′, 𝑑) = 1 − 𝑑. Therefore, the
approximation ratio of 𝑓 is (1− 𝑑)/𝜖 → +∞ as 𝜖 → 0.

In conclusion, the approximation ratio 𝛾 is +∞. �

By Lemma 4.3, Mechanism 4 achieves the best possible
approximation ratio among deterministic strategyproof mech-
anisms choosing from two candidate times. It also has the
possibility of choosing the optimal time 0 or 1 − 𝑑 to best
serve the agents, thus Mechanism 4 is good. To remedy this,
later in the next subsection, we will propose a randomized
mechanism with approximation ratio 2.
Discussion: we have two directions to solve the infinite
approximation ratio problem. One is to prove the extension of
Lemma 4.3, that any deterministic strategyproof mechanism
which only selects from 𝑝 ≥ 3 candidate times has an infinite
approximation ratio. The other one is to prove that there
is no 𝑝-candidate deterministic strategyproof mechanism for
any 𝑝 ≥ 3. This means for any strategyproof mechanism with
𝑝-candidate, it only selects from two candidate times and the
other (𝑝− 2) candidate times are never selected. We think
this hypothesis is reasonable since it shares some similarity
with Theorem 3 in reference [11].

The reason why we have to design two mechanisms divided
into 𝑑 < 1/2 and 𝑑 ≥ 1/2 in the obnoxious game is as follows:
given 𝑑 < 1/2, the two chosen candidate activity duration
[0, 𝑑] and [1− 𝑑, 1] have no intersection; but given 𝑑 ≥ 1/2,
they have intersection. We should design sets 𝑄1, 𝑄2 to be
different from 𝑄3, 𝑄4. The next two lemmas show the lower
bounds of deterministic strategyproof mechanisms.

Lemma 4.4. Given 𝑑 ∈ [0, 1
3
) for any 𝑛 ≥ 2 agents, any de-

terministic strategyproof mechanism 𝑓 has an approximation
ratio 𝛾 of at least 4−5𝑑

2−𝑑
∈ ( 7

5
, 2].

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1543



Proof. Assume 𝑁 = {1, 2}. Let 𝑓 be a deterministic
strategyproof mechanism. Consider the time profile t =
{𝑡1, 𝑡2} = { 1+𝑑

3
, 2−𝑑

3
} and 𝑓(t, 𝑑) = 𝑦. Note that given

𝑑 ∈ [0, 1
3
), 0 ≤ 𝑑 < 𝑡1 < 𝑡2 < 1 − 𝑑 ≤ 1. Consider the

value of 𝑦 ∈ 𝐼𝑑, we have the following three cases.
Case 1: 𝑦 ∈ [0, 1−2𝑑

3
]. In this case, 𝑢1(𝑦|𝑡1, 𝑑) = 𝑡1 − 𝑦 − 𝑑,

due to 𝑦 + 𝑑 ≤ 𝑡1. Consider 𝑡′1 = 0 and t′ = {𝑡′1, 𝑡2}. Let
𝑦′ = 𝑓(t′, 𝑑). Note that 𝑆𝑈(0|t′, 𝑑) = 0+(𝑡2−𝑑) = 2−4𝑑

3
and

𝑆𝑈(1−𝑑|t′, 𝑑) = (1−𝑑)+(1−𝑑−𝑡2) =
4−5𝑑

3
. Thus the optimal

social utility of t′ is 𝑂𝑃𝑇 (t′, 𝑑) = 𝑆𝑈(1 − 𝑑|t′, 𝑑) = 4−5𝑑
3

.
As 𝑓 is strategyproof and agent 1 cannot increase his utility
by misreporting from 𝑡1 to 𝑡′1, the utility of agent 1 must
satisfy 𝑢1(𝑦

′|𝑡1, 𝑑) ≤ 𝑢1(𝑦|𝑡1, 𝑑) = 𝑡1−𝑦−𝑑 ≤ 𝑡1−𝑑 = 1−2𝑑
3

,

which implies that 𝑦′ ∈ [0, 2−𝑑
3

]. Hence, for the profile t′, the

social utility of t′ under 𝑓 is 𝑆𝑈(𝑓(t′, 𝑑)|t′, 𝑑) ≤ 𝑡2 = 2−𝑑
3

.

Therefore, 𝛾 ≥ 𝑂𝑃𝑇 (t′, 𝑑)/𝑆𝑈(𝑓(t′, 𝑑)|t′, 𝑑) ≥ 4−5𝑑
2−𝑑

.

Case 2: 𝑦 ∈ ( 1−2𝑑
3

, 2−𝑑
3

). Since 𝑦 + 𝑑 ≥ 𝑡1 and 𝑦 ≤ 𝑡2,

𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) ≤ 𝑡2 − 𝑡1 = 1−2𝑑
3

, and 𝑂𝑃𝑇 (t, 𝑑) = 𝑡1 + 𝑡2 −
2𝑑 = 1−2𝑑. Thus, we have 𝛾 ≥ 𝑂𝑃𝑇 (t, 𝑑)/𝑆𝑈(𝑓(t, 𝑑)|t, 𝑑) ≥
3.

Case 3: 𝑦 ∈ [ 2−𝑑
3

, 1 − 𝑑]. Due to symmetry, this case is
similar to Case 1.

Therefore, by combining the above three cases, 𝛾 is at least
min{ 4−5𝑑

2−𝑑
, 3} = 4−5𝑑

2−𝑑
∈ ( 7

5
, 2]. �

Lemma 4.5. Given 𝑑 ∈ [ 1
3
, 1) for any 𝑛 ≥ 2 agents, any de-

terministic strategyproof mechanism 𝑓 has an approximation
ratio 𝛾 of at least 2.

Proof. Assume 𝑁 = {1, 2}. Let 𝑓 be a deterministic
strategyproof mechanism. Consider the time profile t =
{𝑡1, 𝑡2} = { 1−𝑑

2
, 1+𝑑

2
} and 𝑓(t, 𝑑) = 𝑦. Note that given

𝑑 ∈ [ 1
3
, 1), 0 < 𝑡1 ≤ 𝑑, 1− 𝑑 ≤ 𝑡2 < 1. Consider the value of

𝑦 ∈ 𝐼𝑑, we have the following two cases.
Case 1: 𝑦 ∈ [0, 1−𝑑

2
]. In this case, 𝑢1(𝑦|𝑡1, 𝑑) = 0, due

to 𝑦 ≤ 𝑡1 < 𝑦 + 𝑑. Consider 𝑡′1 = 0 and t′ = {𝑡′1, 𝑡2}. Let
𝑦′ = 𝑓(t′, 𝑑). Note that 𝑆𝑈(0|t′, 𝑑) = 0 + (𝑡2 − 𝑑) = 1−𝑑

2

and 𝑆𝑈(1− 𝑑|t′, 𝑑) = (1− 𝑑) + 0 = 1− 𝑑. Thus the optimal
social utility of t′ is 𝑂𝑃𝑇 (t′, 𝑑) = 𝑆𝑈(1 − 𝑑|t′, 𝑑) = 1 −
𝑑. As 𝑓 is strategyproof and agent 1 cannot increase his
utility by misreporting from 𝑡1 to 𝑡′1, the utility of agent 1
must satisfy 𝑢1(𝑦

′|𝑡1, 𝑑) ≤ 𝑢1(𝑦|𝑡1, 𝑑) = 0, which implies
that 𝑦′ ∈ [0, 1−𝑑

2
]. Hence, the social utility of t′ under

𝑓 is 𝑆𝑈(𝑓(t′, 𝑑)|t′, 𝑑) = 𝑡2 − 𝑑 = 1−𝑑
2

. Therefore, 𝛾 ≥
𝑂𝑃𝑇 (t′, 𝑑)/𝑆𝑈(𝑓(t′, 𝑑)|t′, 𝑑) = 2.

Case 2: 𝑦 ∈ ( 1−𝑑
2

, 1 − 𝑑]. Due to symmetry, this case is
similar to Case 1. �

We find Lemma 4.4 does not work for 𝑑 ∈ [ 1
3
, 1), thus we

propose Lemma 4.5 with a different time profile. Interestingly,
we notice that the lower bound is not continuous when 𝑑 is
close to 1. If 𝑑 ∈ [ 1

3
, 1), the lower bound is always 2 but if

𝑑 = 1, the lower bound drops to 1 immediately. The reason
is that the utility of agent 𝑖 is zero if 𝑥𝑖 ∈ [𝑦, 𝑦 + 𝑑]. As 𝑑
approaches 1, the utility of any agent 𝑖 approaches 0 but with
a different speed as that for the optimal solution and thus
the limit of the approximation ratio is not 1.

4.2 Randomized Mechanisms

Inspired by Mechanism 3 in [2], we design the following
randomized mechanism.

Mechanism 5. Given 𝑑 ∈ [0, 1
2
), return 𝑦 = 𝑓(t, 𝑑) = 0

with probability 𝛼 and 𝑦 = 𝑓(t, 𝑑) = 1 − 𝑑 with probability
(1− 𝛼), where

𝛼 =
2(1− 𝑑)|𝑄1||𝑄2|+ (1− 2𝑑)|𝑄2|2

(1− 2𝑑)|𝑄1|2 + 4(1− 𝑑)|𝑄1||𝑄2|+ (1− 2𝑑)|𝑄2|2
.

Theorem 4.6. Mechanism 5 is group strategyproof with
approximation ratio 3−4𝑑

2−3𝑑
∈ [ 3

2
, 2) for 𝑑 ∈ [0, 1

2
).

Corollary 4.7. 𝛾 = 3−4𝑑
2−3𝑑

is tight for Mechanism 5.

Proof. Consider a time profile t = {0.5, . . . , 0.5⏟  ⏞  
𝑛/2

, 1, . . . , 1⏟  ⏞  
𝑛/2

}.

Obviously, IE𝑦∼𝑃 (t,𝑑)[𝑆𝑈(𝑦|t, 𝑑)] = 2−3𝑑
4

𝑛 by Mechanism 5

and 𝑂𝑃𝑇 (t, 𝑑) = 3−4𝑑
4

𝑛, which implies 𝛾 = 3−4𝑑
2−3𝑑

. �

In fact, Mechanism 5 only works for 𝑑 ∈ [0, 1
2
), but does not

work for 𝑑 ∈ [ 1
2
, 1), thus we propose the following mechanism.

Mechanism 6. Given 𝑑 ∈ [ 1
2
, 1), return 𝑦 = 𝑓(t, 𝑑) = 0

with probability 1
2
and 𝑦 = 𝑓(t, 𝑑) = 1− 𝑑 with probability 1

2
.

Theorem 4.8. Mechanism 6 is group strategyproof with
approximation ratio 2 for 𝑑 ∈ [ 1

2
, 1).

Proof. Mechanism 6 is group strategyproof since the
probability distribution of 𝑦 is unchanged. We obtain

𝛾 =
𝑂𝑃𝑇 (t, 𝑑)

IE𝑦∼𝑃 (t,𝑑)[𝑆𝑈(𝑦|t, 𝑑)] =
max{𝑆𝑈𝑙, 𝑆𝑈𝑟}
1
2
𝑆𝑈𝑙 +

1
2
𝑆𝑈𝑟

≤ max{ 2

1 + 𝑆𝑈𝑟
𝑆𝑈𝑙

,
2

𝑆𝑈𝑙
𝑆𝑈𝑟

+ 1
} ≤ 2.

�

Corollary 4.9. 𝛾 = 2 is tight for Mechanism 6.

Proof. Consider a profile t = {1− 𝑑, . . . , 1− 𝑑⏟  ⏞  
𝑛/2

, 1, . . . , 1⏟  ⏞  
𝑛/2

}.

Obviously, IE𝑦∼𝑃 (t,𝑑)[𝑆𝑈(𝑦|t, 𝑑)] = 1−𝑑
4

𝑛 by Mechanism 6

and 𝑂𝑃𝑇 (t, 𝑑) = 1−𝑑
2

𝑛, which implies 𝛾 = 2. �

The next two lemmas show the lower bounds of randomized
strategyproof mechanisms. Inspired by the idea of Theorem
3 in [21], we have the following lemma.

Lemma 4.10. Given 𝑑 ∈ [0, 1
3
) for any 𝑛 ≥ 2 agents, any

randomized strategyproof mechanism 𝑓 has an approximation
ratio 𝛾 of at least 14−16𝑑

13−14𝑑
.

Lemma 4.11. Given 𝑑 ∈ [ 1
3
, 1) for any 𝑛 ≥ 2 agents, any

randomized strategyproof mechanism 𝑓 has an approximation
ratio 𝛾 of at least 4

3
.

Proof. Assume 𝑁 = {1, 2}. Let 𝑓 be a randomized strat-
egyproof mechanism. First, assume 𝑓 follows a continuous
distribution. Consider the profile t = {𝑡1, 𝑡2} = { 1−𝑑

2
, 1+𝑑

2
}

and let 𝑓(t, 𝑑) = 𝑦 ∼ 𝑃1. Note that given 𝑑 ∈ [ 1
3
, 1), 0 < 𝑡1 ≤
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𝑑 and 1− 𝑑 ≤ 𝑡2 < 1. The utility of agent 1 and the utility
of agent 2 are

IE
𝑦∼𝑃1

[𝑢1(𝑦|𝑡1, 𝑑)] =
∫︁ 1−𝑑

1−𝑑
2

(𝑦 − 1− 𝑑

2
)𝑃1(𝑦)𝑑𝑦,

IE
𝑦∼𝑃1

[𝑢2(𝑦|𝑡2, 𝑑)] =
∫︁ 1−𝑑

2

0

(
1− 𝑑

2
− 𝑦)𝑃1(𝑦)𝑑𝑦.

Without loss of generality, assume IE𝑦∼𝑃1 [𝑢1(𝑦|𝑡1, 𝑑)] ≤ IE𝑦∼𝑃1

[𝑢2(𝑦|𝑡2, 𝑑)]. In this case, IE𝑦∼𝑃1 [𝑆𝑈(𝑦|t, 𝑑)] = IE𝑦∼𝑃1 [𝑢1(𝑦|𝑡1,
𝑑)] + IE𝑦∼𝑃1 [𝑢2(𝑦|𝑡2, 𝑑)] ≤ 𝑂𝑃𝑇 (t, 𝑑) = 0 + 𝑡2 − 𝑑 = 1−𝑑

2
,

which implies IE𝑦∼𝑃1 [𝑢1(𝑦|𝑡1, 𝑑)] ≤ 1−𝑑
4

.
Denote t′ as the time profile after one of the two agents

misreports. Consider 𝑡′1 = 0 and t′ = {𝑡′1, 𝑡2}. Let 𝑓(t′, 𝑑) =
𝑦′ ∼ 𝑃2. As 𝑓 is strategyproof and agent 1 cannot increase
his utility by misreporting from 𝑡1 to 𝑡′1, the utility of agent
1 must satisfy that

IE
𝑦′∼𝑃2

[𝑢1(𝑦
′|𝑡1, 𝑑)] =

∫︁ 1−𝑑

1−𝑑
2

(𝑦′ − 1− 𝑑

2
)𝑃2(𝑦

′)𝑑𝑦′

≤ IE
𝑦∼𝑃1

[𝑢1(𝑦|𝑡1, 𝑑)] =
∫︁ 1−𝑑

1−𝑑
2

(𝑦 − 1− 𝑑

2
)𝑃1(𝑦)𝑑𝑦. (8)

For the profile t′, the social utility of t′ under 𝑓 is

IE
𝑦′∼𝑃2

[𝑆𝑈(𝑦′|t′, 𝑑)]

= IE
𝑦′∼𝑃2

[𝑢1(𝑦
′|𝑡′1, 𝑑)] + IE

𝑦′∼𝑃2

[𝑢2(𝑦
′|𝑡2, 𝑑)]

=

∫︁ 1−𝑑

0

𝑦′𝑃2(𝑦
′)𝑑𝑦′ +

∫︁ 1−𝑑
2

0

(
1− 𝑑

2
− 𝑦′)𝑃2(𝑦

′)𝑑𝑦′

=

∫︁ 1−𝑑
2

0

𝑦′𝑃2(𝑦
′)𝑑𝑦′ +

∫︁ 1−𝑑

1−𝑑
2

𝑦′𝑃2(𝑦
′)𝑑𝑦′

+

∫︁ 1−𝑑
2

0

(
1− 𝑑

2
− 𝑦′)𝑃2(𝑦

′)𝑑𝑦′

=

∫︁ 1−𝑑

1−𝑑
2

𝑦′𝑃2(𝑦
′)𝑑𝑦′ +

∫︁ 1−𝑑
2

0

1− 𝑑

2
𝑃2(𝑦

′)𝑑𝑦′

=

∫︁ 1−𝑑

1−𝑑
2

(𝑦′ − 1− 𝑑

2
)𝑃2(𝑦

′)𝑑𝑦′ +
1− 𝑑

2

∫︁ 1−𝑑

0

𝑃2(𝑦
′)𝑑𝑦′

≤
∫︁ 1−𝑑

1−𝑑
2

(𝑦 − 1− 𝑑

2
)𝑃1(𝑦)𝑑𝑦 +

1− 𝑑

2
× 1

= IE
𝑦∼𝑃1

[𝑢1(𝑦|𝑡1, 𝑑)] +
1− 𝑑

2
≤ 1− 𝑑

4
+

1− 𝑑

2
=

3

4
(1− 𝑑),

where the second last inequality is due to (8). The optimal
social utility of t′ is 𝑂𝑃𝑇 (t′, 𝑑) = 𝑆𝑈(1 − 𝑑|t′, 𝑑) = 1 − 𝑑.
Thus, 𝛾 ≥ 𝑂𝑃𝑇 (t′, 𝑑)/𝑆𝑈(𝑓(t′, 𝑑)|t′, 𝑑) ≥ 4/3.

On the other hand, if 𝑓 follows a discrete distribution,
we can define probability density functions 𝑃1 and 𝑃2 to be
Dirac Delta functions (see Chapter 6. Generalized Functions
in [9]) respectively at each one of discrete times. For exam-
ple, if we select 𝑦 = 𝑦 with probability 𝑝, then 𝑃1(𝑦) =

+∞ and
∫︀ 𝑦+𝜖

𝑦−𝜖
𝑔(𝑦)𝑃1(𝑦)𝑑𝑦 = 𝑔(𝑦)𝑝, where |𝑔(𝑦)| < +∞

and 𝜖 > 0. We can transform each utility function into
the integral formula: 𝐸𝑦∼𝑃𝑗 [𝑢𝑖(𝑦|𝑡𝑖, 𝑑)] =

∑︀
𝑘:𝑦𝑗,𝑘∈𝐴𝑖

|𝑦𝑗,𝑘 −

(1 − 𝑑)/2|𝑝𝑗,𝑘 =
∫︀
𝑦∈𝐴𝑖

|𝑦 − (1 − 𝑑)/2|𝑃𝑗(𝑦)𝑑𝑦, where 𝑖, 𝑗 =

1, 2, 𝐴1 = [(1− 𝑑)/2, 1− 𝑑], 𝐴2 = [0, (1− 𝑑)/2], 𝑃𝑗(𝑦) is Dirac
Delta function and 𝑝𝑗,𝑘 is the probability of 𝑦 being selected
as 𝑦𝑗,𝑘. All proofs above follow and we can obtain the same
lower bound. �

4.3 Maximize the Minimum Utility

For the objective of max𝑓 𝑀𝑈(𝑓(t, 𝑑)| t, 𝑑), the optimal
solution is not strategyproof. Section 5.4 of [8] proved that
if each agent 𝑖 has a strict preference order over the policy
domain which is single-sinked (opposite to single-peaked),
for maximizing the minimum utility in the obnoxious facility
game, any deterministic strategyproof mechanism has an
unbounded approximation ratio. Since the agent’s preference
order in our work is single-sinked and our utility function
(1) is quasi-convex, any deterministic strategyproof mecha-
nism for maximizing the minimum utility has an unbounded
approximation ratio.

5 EXTENSION TO THE
CHARACTERISTIC FUNCTIONS

For extension, in the activity scheduling game, we further
consider the cost of agent 𝑖 as a characteristic function:

𝑐𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑) =
{︂

0, if 𝑦 ≤ 𝑡𝑖 ≤ 𝑦 + 𝑑;
1, if 𝑡𝑖 < 𝑦 or 𝑡𝑖 > 𝑦 + 𝑑.

(9)

Our new objective is min
∑︀

𝑖∈𝑁 𝑐𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑). Define𝐻1(𝑦|t,
𝑑) = {𝑎|𝑎 ∈ [𝑦, 𝑦+𝑑], 𝑎 ∈ t} and Ω1(t, 𝑑) = {𝑦| |𝐻1(𝑦|t, 𝑑)| =
max𝑦 |𝐻1(𝑦|t, 𝑑)|, 𝑦 ∈ [0, 1− 𝑑]}.

Theorem 5.1. For minimizing the social cost, the optimal
solution can be 𝑦 = supΩ1(t, 𝑑) or 𝑦 = inf Ω1(t, 𝑑), which is
group strategyproof.

Proof. Without loss of generality, we only need to prove
𝑦 = supΩ1(t, 𝑑) is the optimal solution and group strate-
gyproof. Denote 𝑆 ⊆ 𝑁 to be a coalition and t′ = {t−𝑆 , t

′
𝑆}.

Suppose that agent 𝑖 ∈ 𝑆 misreports his time from 𝑡𝑖 to
𝑡′𝑖. Denote 𝑦⋆ = supΩ1(t, 𝑑) and after misreporting 𝑦′ =
supΩ1(t

′, 𝑑).
Obviously, Ω1(t, 𝑑) = argmin𝑦

∑︀
𝑖∈𝑁 𝑐𝑖(𝑦|𝑡𝑖, 𝑑) and thus

is the optimal solution. Since Ω1(t, 𝑑) is the union of closed
intervals, supΩ1(t, 𝑑) ∈ Ω1(t, 𝑑) and thus 𝑦 = supΩ1(t, 𝑑) is
the optimal solution.

For group strategyproofness, we have four cases.
Case 1: 𝑆 contains at least one agent 𝑖 ∈ 𝑆 whose time is

in [𝑦⋆, 𝑦⋆ + 𝑑]. Obviously, 𝑐𝑖(𝑦
⋆|𝑡𝑖, 𝑑) = 0 ≤ 𝑐𝑖(𝑦

′|𝑡𝑖, 𝑑).
Case 2: 𝑆 contains both agents whose times are in [0, 𝑦⋆)

and in (𝑦⋆ + 𝑑, 1]. If 𝑦′ < 𝑦⋆, for any agents whose times are
in (𝑦⋆ + 𝑑, 1], after misreporting, by (9), 𝑐𝑖(𝑦

⋆|𝑡𝑖, 𝑑) = 1 =
𝑐𝑖(𝑦

′|𝑡𝑖, 𝑑); if 𝑦′ > 𝑦⋆, for any agents whose times are in (0, 𝑦⋆],
after misreporting, by (9), 𝑐𝑖(𝑦

⋆|𝑡𝑖, 𝑑) = 1 = 𝑐𝑖(𝑦
′|𝑡𝑖, 𝑑).

Case 3: 𝑆 only contains agents whose times are in [0, 𝑦⋆).
Assume for contradiction 𝑓 is not group strategyproof. Any
agent 𝑖 ∈ 𝑆 must decrease his cost by misreporting. Since
𝑐𝑖(𝑦

⋆|𝑡𝑖, 𝑑) = 1 > 𝑐𝑖(𝑦
′|𝑡𝑖, 𝑑) = 0 from (9), 𝑦′ must satisfy

that 𝑦′ ≤ 𝑡𝑖 ≤ 𝑦′ + 𝑑 for any 𝑖 ∈ 𝑆 and further, 𝑦′ ≤ 𝑡𝑖 < 𝑦⋆.
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Since 𝑦⋆ = supΩ1(t, 𝑑),

|𝐻1(𝑦
⋆|t, 𝑑)| = max𝑦 |𝐻1(𝑦|t, 𝑑)| ≥ |𝐻1(𝑦

′|t, 𝑑)|. (10)

Since 𝑦′ = supΩ1(t
′, 𝑑) and 𝑦′ < 𝑦⋆,

|𝐻1(𝑦
′|t′, 𝑑)| = max𝑦 |𝐻1(𝑦|t′, 𝑑)| > |𝐻1(𝑦

⋆|t′, 𝑑)|. (11)

Since 𝑡𝑖 /∈ [𝑦⋆, 𝑦⋆ + 𝑑] and 𝑡𝑖 ∈ [𝑦′, 𝑦′ + 𝑑] for any 𝑖 ∈ 𝑆,

|𝐻1(𝑦
⋆|t′, 𝑑)| ≥ |𝐻1(𝑦

⋆|t, 𝑑)|, (12)

|𝐻1(𝑦
′|t′, 𝑑)| ≤ |𝐻1(𝑦

′|t, 𝑑)|. (13)

By (10) and (12), we have

|𝐻1(𝑦
⋆|t′, 𝑑)| ≥ |𝐻1(𝑦

′|t, 𝑑)|. (14)

By (11) and (13), we have

|𝐻1(𝑦
⋆|t′, 𝑑)| < |𝐻1(𝑦

′|t, 𝑑)|. (15)

However, (14) contradicts (15). Therefore, at least one agent
𝑖 ∈ 𝑆 cannot decrease his cost by misreporting.

Case 4: 𝑆 only contains agents whose times are in (𝑦⋆+𝑑, 1].
This case is similar to Case 3.

In conclusion, 𝑓 is group strategyproof. �

In the obnoxious activity scheduling game, we further
consider the utility of agent 𝑖 as a characteristic function:

𝑢𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑) =
{︂

0, if 𝑦 < 𝑡𝑖 < 𝑦 + 𝑑;
1, if 𝑡𝑖 ≤ 𝑦 or 𝑡𝑖 ≥ 𝑦 + 𝑑.

(16)

Our new objective is max
∑︀

𝑖∈𝑁 𝑢𝑖(𝑓(t, 𝑑)|𝑡𝑖, 𝑑). Define 𝐻2(𝑦|
t, 𝑑) = {𝑎|𝑎 ∈ (𝑦, 𝑦+𝑑), 𝑎 ∈ t} and Ω2(t, 𝑑) = {𝑦| |𝐻2(𝑦|t, 𝑑)|
= min𝑦 |𝐻2(𝑦|t, 𝑑)|, 𝑦 ∈ [0, 1− 𝑑]}.

Theorem 5.2. For maximizing the social utility, the op-
timal solution can be 𝑦 = supΩ2(t, 𝑑) or 𝑦 = inf Ω2(t, 𝑑),
which is group strategyproof.

Proof. Without loss of generality, we only need to prove
𝑦 = supΩ2(t, 𝑑) is the optimal solution and group strate-
gyproof. Denote 𝑆 ⊆ 𝑁 to be a coalition and t′ = {t−𝑆 , t

′
𝑆}.

Suppose that agent 𝑖 ∈ 𝑆 misreports his time from 𝑡𝑖 to
𝑡′𝑖. Denote 𝑦⋆ = supΩ2(t, 𝑑) and after misreporting 𝑦′ =
supΩ2(t

′, 𝑑).
Obviously, Ω2(t, 𝑑) = argmax𝑦

∑︀
𝑖∈𝑁 𝑢𝑖(𝑦|𝑡𝑖, 𝑑) and thus

is the optimal solution. Since Ω2(t, 𝑑) is the union of closed
intervals, supΩ2(t, 𝑑) ∈ Ω2(t, 𝑑) and thus 𝑦 = supΩ2(t, 𝑑) is
the optimal solution.

For group strategyproofness, we have two cases.
Case 1: 𝑆 contains at least one agent 𝑖 ∈ 𝑆 whose time is

in [0, 𝑦⋆]∪ [𝑦⋆ + 𝑑, 1]. Obviously, from (16), 𝑢𝑖(𝑦
⋆|𝑡𝑖, 𝑑) = 1 ≥

𝑢𝑖(𝑦
′|𝑡𝑖, 𝑑).

Case 2: 𝑆 only contains agents whose times are in (𝑦⋆, 𝑦⋆ +
𝑑). Assume for contradiction 𝑓 is not group strategyproof.
Any agent 𝑖 ∈ 𝑆 must increase his utility by misreporting.
Since 𝑢𝑖(𝑦

⋆|𝑡𝑖, 𝑑) = 0 < 𝑢𝑖(𝑦
′|𝑡𝑖, 𝑑) = 1 from (16), 𝑦′ must

satisfy that 𝑦′ ≥ 𝑡𝑖 for any 𝑖 ∈ 𝑆 or 𝑦′ + 𝑑 ≤ 𝑡𝑖 for any 𝑖 ∈ 𝑆.
We have two subcases.

Subcase 1: 𝑦′ ≥ 𝑡𝑖 for any 𝑖 ∈ 𝑆. Since 𝑦⋆ = supΩ2(t, 𝑑)
and 𝑦′ ≥ 𝑡𝑖 > 𝑦⋆,

|𝐻2(𝑦
⋆|t, 𝑑)| = min𝑦 |𝐻2(𝑦|t, 𝑑)| < |𝐻2(𝑦

′|t, 𝑑)|. (17)

Since 𝑦′ = supΩ2(t
′, 𝑑),

|𝐻2(𝑦
′|t′, 𝑑)|= min𝑦 |𝐻1(𝑦|t′, 𝑑)| ≤ |𝐻2(𝑦

⋆|t′, 𝑑)|. (18)

Since 𝑡𝑖 ∈ (𝑦⋆, 𝑦⋆ + 𝑑) and 𝑡𝑖 /∈ (𝑦′, 𝑦′ + 𝑑) for any 𝑖 ∈ 𝑆,

|𝐻2(𝑦
⋆|t′, 𝑑)| ≤ |𝐻2(𝑦

⋆|t, 𝑑)|, (19)

|𝐻2(𝑦
′|t′, 𝑑)| ≥ |𝐻2(𝑦

′|t, 𝑑)|. (20)

By (17) and (19), we have

|𝐻2(𝑦
⋆|t′, 𝑑)| < |𝐻2(𝑦

′|t, 𝑑)|. (21)

By (18) and (20), we have

|𝐻2(𝑦
⋆|t′, 𝑑)| ≥ |𝐻2(𝑦

′|t, 𝑑)|. (22)

However, (21) contradicts (22). Therefore, at least one agent
𝑖 ∈ 𝑆 cannot increase his utility by misreporting.

Subcase 2: 𝑦′+𝑑 ≤ 𝑡𝑖 for any 𝑖 ∈ 𝑆. This subcase is similar
to Subcase 1.

In conclusion, 𝑓 is group strategyproof. �

We can see that the definitions of (9) and (16) are different.
If we define the utility of agent 𝑖 the same as (9), we have the
following remark to find the strategyproof optimal solution.
Define Ω3(t, 𝑑) = {𝑦| |𝐻1(𝑦|t, 𝑑)| = min𝑦 |𝐻1(𝑦|t, 𝑑)|, 𝑦 ∈
[0, 1− 𝑑]}.

Remark 1. For maximizing the social utility, the optimal
solution can be 𝑦 = (supΩ3(t, 𝑑))

− or 𝑦 = (inf Ω3(t, 𝑑))
+,

which is group strategyproof.

Note that we can use Remark 1 to find the strategyproof
optimal solution but Remark 1 is not a mechanism since we
can not acquire one-sided limit of a value (i.e., (supΩ3(t, 𝑑))

−,
(inf Ω3(t, 𝑑))

+).

6 CONCLUSIONS AND FUTURE
WORKS

We considered a social planner schedules an activity in the
time domain [0, 1]. In the activity scheduling game, each agent
𝑖 wants his time 𝑡𝑖 to be close to the activity duration [𝑦, 𝑦+𝑑].
We designed a group strategyproof mechanism outputting
an optimal solution. In the obnoxious activity scheduling
game, each agent prefers his time 𝑡𝑖 to be far away from the
activity duration [𝑦, 𝑦 + 𝑑]. We designed deterministic and
randomized group strategyproof mechanisms with provable
approximation ratios and showed some lower bounds. We
also considered the cost/utility as the characteristic function
and found group strategyproof mechanisms for minimizing
the social cost and maximizing the social utility.

In the future, we will consider agent 𝑖’s own business
domain as an interval [𝑡𝑖, 𝑡𝑖 + 𝑑𝑖], by starting at time 𝑡𝑖 and
ending at time 𝑡𝑖 + 𝑑𝑖 (𝑑𝑖 ≥ 0). The cost/utility is the time
to overlap between agent 𝑖’s interval [𝑡𝑖, 𝑡𝑖 + 𝑑𝑖] and the
activity duration [𝑦, 𝑦 + 𝑑]. Another insight for the activity
scheduling games in the time domain is the potential natural
extension to the asymmetric case: before the ideal time point
and after the ideal time point by the same time difference
might mean differently for an agent. This asymmetric case is
hardly justifiable in traditional facility location games.
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