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ABSTRACT
In this work, we consider a student-project-resource matching-

allocation problem, where students have preferences over projects

and the projects have preferences over students. Although stu-

dents are many-to-one matched to projects, indivisible resources

are many-to-one allocated to projects whose capacities are endoge-

nously determined by the resources allocated to them. Tradition-

ally, this problem is decomposed into two separate problems: (1)

resources are allocated to projects based on expectations (resource

allocation problem), and (2) students are matched to projects based

on the capacities determined in the previous problem (matching

problem). Although both problems are well-understood, if the ex-

pectations used in the first are incorrect, we obtain a suboptimal

outcome. Thus, this problem must be solved as a whole without

dividing it in two parts. We show that no strategyproof mechanism

satisfies fairness (i.e., no student has justified envy) and weak effi-

ciency requirements on students’ welfare. Given this impossibility

result, we develop a new strategyproof mechanism that strikes

a good balance between fairness and efficiency and assess it by

experiments.
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1 INTRODUCTION
We introduce a simple, but fundamental problem called Student-

Project-Resourcematching-allocation problem (SPR).
1
On one hand,

SPR can be considered as a two-sided, many-to-one matching prob-

lem [44] since students are matched to projects based on their

preferences. On the other hand, it is also a discrete resource allo-

cation problem [33] since resources are allocated to each project.

However, unlike the standard two-sided matching setting, where

∗
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1
An SPR is a strict generalization of the student-project-room allocation problem [17],

in which a single resource (i.e., a room) is allocated to each project while multiple

resources can be allocated to each project in our model.
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the capacity of each project is exogenously determined, we assume

the capacities are endogenously determined by resource allocation.

If the mechanism designer knows the preferences of the stu-

dents, she can allocate resources to projects using combinatorial

optimization techniques. If each project’s capacity is determined,

even if the mechanism designer does not know their preferences

beforehand, she can find a matching that satisfies desirable proper-

ties (e.g., stability) with a strategyproof mechanism, e.g., Deferred

Acceptance mechanism (DA) [13], such that students voluntarily

disclose their true preferences. However, the mechanism designer

usually does not know their preferences. Thus, a common practice

is to determine the resource allocation part based on the expec-

tations or the past data and to set the capacities of the projects.

Then the actual matching of students to projects is determined

by a matching mechanism. In this approach, if the expectations

used in the first problem are incorrect, the outcome can be subopti-

mal; excess demand and supply for seats may coexist in the same

matching-allocation, which can be resolved by a better resource

allocation.

One real-life instancewhere this practice is applied is the nursery-

school waiting list problem [42]. As of October 2018, over 47,000

children were on waiting lists for nursery schools in Japan. This

serious social problem shackles women’s empowerment. The Japan-

ese government is trying to boost the number of nursery schools

to encourage more women to enter the workforce. The following is

the procedure for matching children and teachers to publicly certi-

fied nursery schools in Japanese municipalities. First, the matching

authority announces the quotas for each age group. This situation

can be formalized as an SPR by assuming a child is a student, each

age group in a school is a project, and a teacher is a resource.
2
Allo-

cation of the resources/teachers within a school to each age group

is based on estimates. Next, based on the quotas for each age group,

the actual assignment is determined by a matching mechanism.

The primary shortcoming of this procedure is that in the obtained

matching, excess supply and demand may coexist in one school

because the local authorities must determine the quotas for each

age group of all the schools before they know the actual demand.

To avoid such inefficiency, this problem should be solved as a whole

without dividing it in two parts.

Another example is a school choice program for assigning stu-

dents to public schools. In a standard setting, each school has a

maximum quota, which is determined in advance. Assume a local

government (e.g., a city/prefecture/state) has spare resources, e.g.,

2
This nursery school problem has a distinct structure, i.e., a child/student must be

assigned to one age group/project within a nursery school, and a resource/teacher is

shared within the projects/age groups that belong to the same nursery school. An SPR

is more general and can represent a variety of applications beyond this example.
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budget to hire temporary teachers, which can be allocated based on

the demand. Then the maximum quota of each school is no longer

fixed in advance, but it can be flexibly modified based on the actual

demand utilizing the spare budget/resources.

Our main contribution is presenting a generalized framework to

capture two orthogonal problems that need to be solved simultane-

ously as a single problem by introducing SPR. Thenwe show several

impossibility results, in particular, that no strategyproof mecha-

nism satisfies fairness (i.e., no student has justified envy) and weak

efficiency requirements on students’ welfare. We also confirm the

limitations of the following three existing mechanisms [17]: Serial

Dictatorship mechanism (SD), Artificial Caps Deferred Acceptance

mechanism (ACDA), and Adaptive Deferred Acceptancemechanism

(ADA). Then we introduce a new strategyproof mechanism called

Sample and Vote Deferred Acceptance (SVDA), which satisfies sev-

eral properties on fairness and efficiency. SVDA can be considered

as a combination of SD and DA. Although it borrows a common idea

from auction mechanisms, i.e., dividing students/participants into

two groups and utilizing the information obtained by one group to

appropriately set parameters to apply the mechanism to another

group, its application to two-sided matching is novel. Moreover, we

believe that combining SD and DA, such that the entire mechanism

satisfies several desiderata, is unprecedented.

The rest of this paper is organized as follows. Section 2 introduces

a model of an SPR. Section 3 proves several impossibility results. In

Section 4, we discuss the existence of strategyproof mechanisms

and introduce our new strategyproof mechanism, SVDA. Next, we

numerically show that it strikes a good balance between fairness

and efficiency in Section 5. Finally, Section 6 concludes our paper.

1.1 Related Work
This paper follows previous works that address constrained match-

ing problems. Two-sided matching has attracted considerable atten-

tion from AI and theoretical computer science researchers [3, 4, 23,

25, 30, 49, 50]. A standard market deals with maximum quotas, i.e.,

capacity limits that cannot be exceeded. However, many real-world

matching markets are subject to a variety of constraints on the

legitimate distribution of students over schools (i.e., distributional

constraints) [32], including regional maximum quotas, which re-

strict the total number of students assigned to a set of schools [28],

minimum quotas, which guarantee that a certain number of stu-

dents are assigned to each school [12, 16, 21, 45, 46], and diversity

constraints [10, 19, 31, 34, 47]. Other works examine the computa-

tional complexity for finding a matching with desirable properties

under distributional constraints [6, 11, 20]. Ismaili et al. [27] deal

with a similar model, but their model utilizes a compact representa-

tion scheme to handle exponentially many students assuming they

can be divided into a small number of types.

Several works exist on three-sided matching problems [2, 24, 41]

where three types of players/agents are matched, e.g., males, fe-

males, and pets. Although their model superficially resembles ours,

they are fundamentally different. In our model, a resource is not

an agent/player; it has no preference over projects/students. A

project/student has no preference over resources; a project just

needs to receive sufficient resources to accommodate the students

who have applied to it. In the Student-Project Allocation problem

(SPA) [1], students are matched to projects, which are offered by lec-

turers. A student has a preference over projects, and a lecturer has

a preference over students. Each lecturer has a capacity limit. An

SPR can be formalized as a two-sided matching problem with dis-

tributional constraints [32]. There also exists an alternative model

of SPA, where a lecturer has a preference over projects [38, 39].

2 MODEL
We define a Student-Project-Resource matching-allocation problem

(SPR) as follows:

Definition 2.1 (Student-Project-Resource allocation (SPR) Instance).

An SPR instance is a tuple (S, P ,R,≻S ,≻P ,TR ,qR ).

• S = {s1, . . . , s |S |} is a set of students.
• P = {p1, . . . ,p |P |} is a set of projects.
• R = {r1, . . . , r |R |} is a set of indivisible resources.
• ≻S= (≻s )s ∈S are the student strict preferences over set P ∪
{∅}. Symbol ∅ means that a student is not assigned to any

project.

• ≻P= (≻p )p∈P are the project strict preferences over set S ∪
{∅}. Symbol ∅ means that a project is assigned no student.

• qR = (qr )r ∈R are the capacities of resources; qr ∈ N>0 for

every r ∈ R.
• TR = (Tr )r ∈R is a profile of resource compatibility lists,

where each Tr ⊆ P is a set of projects to which resource r
can be allocated. Since resource r is indivisible, it must be

allocated to exactly one project in Tr .

We illustrate our setting with the following example.

Example 2.2. There are four students, s1, s2, s3, s4, four projects,
p1,p2,p3,p4, and two resources, r1, r2, where Tr1 = {p1,p2}, Tr2 =
{p3,p4}, and qr1 = 2, qr2 = 1. The following are the preferences:

s1 : p1 ≻ p2 ≻ p4 ≻ p3 ≻ ∅, p1 : s4 ≻ s3 ≻ s2 ≻ s1 ≻ ∅,
s2 : p1 ≻ p2 ≻ p3 ≻ p4 ≻ ∅, p2 : s4 ≻ s3 ≻ s2 ≻ s1 ≻ ∅,
s3 : p1 ≻ p2 ≻ p3 ≻ p4 ≻ ∅, p3 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ ∅,
s4 : p4 ≻ p3 ≻ p2 ≻ ∅ ≻ p1, p4 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ ∅.

Since we assume resources are indivisible, it is impossible to allo-

cate students to three different projects although the total capacity

of all resources equals three. A resource can be allocated only to a

compatible project, e.g., r1 can be allocated to either p1 or p2. The
following are the possible capacities of the four projects: (2, 0, 1, 0),

(2, 0, 0, 1), (0, 2, 1, 0), or (0, 2, 0, 1).

We follow the matching with contracts model [22]. Contract

(s,p) ∈ S ×P means that student s is matched to project p. Contract
(s,p) is acceptable to student s (resp. project p) if p ≻s ∅ holds (resp.
s ≻p ∅). Let X denote the set of all contracts that are acceptable to

the projects.
3

A matching is a set of contracts which satisfy the following

conditions.

Definition 2.3 (Matching). A matching is a subset Y ⊆ X , where

for every student s ∈ S , Ys = {(s,p) | (s,p) ∈ X }, either |Ys | = 0, or

Ys = {(s,p)} and p ≻s ∅ hold.

3
In designing a strategyproof mechanism, we assume student preferences are private

information, and the other information is public. Thus, X can be characterized by

public information.
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Students
s1 : p1 ≻ p2 ≻ p4 ≻ p3 ≻ ∅

s2 : p1 ≻ p2 ≻ p3 ≻ p4 ≻ ∅

s3 : p1 ≻ p2 ≻ p3 ≻ p4 ≻ ∅

s4 : p4 ≻ p3 ≻ p2 ≻ ∅ ≻ p1

Projects

p1 : s4 ≻ s3 ≻ s2 ≻ s1 ≻ ∅

p2 : s4 ≻ s3 ≻ s2 ≻ s1 ≻ ∅

p3 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ ∅

p4 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ ∅

Resources

r1 : qr1 = 2, Tr1 = {p1,p2}

r2 : qr2 = 1, Tr2 = {p3,p4}

matching allocation

Figure 1: SPR instance: matching Ŷ and allocation µ̂ in Example 2.2

For matching Y , let Y (s) ∈ P ∪ {∅} denote the project to which s
is matched (Y (s) = ∅ if s is not matched to any project in Y ), and let
Y (p) ⊆ S denote the set of students assigned to project p. In an SPR,

we also need to describe how resources are allocated to projects.

The feasiblity of a matching is defined based on this description.

Definition 2.4 (Allocation). An allocation µ : R → P maps each

resource r to a project µ(r ) ∈ Tr . Let qµ (p) =
∑
r ∈µ−1(p) qr .

4

Definition 2.5 (Feasibility). A feasiblematching (Y , µ) is amatching-

allocation pair where |Y (p)| ≤ qµ (p) holds for every p ∈ P .

In Example 2.2, assume matching Ŷ is {(s1,p1), (s2,p1), (s3, ∅),
(s4,p3)} and allocation µ̂ is distributing r1 to p1, and r2 to p3. Then
(Ŷ , µ̂) is a feasible matching. See Figure 1 for an illustration.

Next we introduce a concept related to efficiency called non-

wastefulness. First, we define a situation where a student claims

that the current matching is inefficient since her welfare can be

improved without disadvantaging other students.

Definition 2.6 (Claiming an Empty Seat with µ). For feasible

matching (Y , µ), student s claims an empty seat in project p with µ
if the following conditions hold:

• p ≻s Y (s), and
• Y \ {(s,Y (s))} ∪ {(s,p)} is feasible with µ.

In other words, student s claims an empty seat in project p with

µ if it is possible to move her to p from current project Y (s) (which
can be ∅) with current allocation µ.

Definition 2.7 (Nonwastefulness). For feasible matching (Y , µ),
student s possibly claims an empty seat in project p if ∃µ ′ such
that s claims an empty seat in p with µ ′. Feasible matching (Y , µ) is
nonwasteful if no student possibly claims an empty seat.

In other words, s possibly claims an empty seat in p if s can be

moved to a more preferred project p without changing the assign-

ment of the other students with allocation µ ′. Note that µ ′ can be

different from µ. Thus, s can possibly claim an empty seat in p even

if it is impossible to move her to p with current allocation µ as

long as it becomes possible with a different and better allocation µ ′.
In a traditional setting, since the maximum quota of each project

is fixed, it suffices to check whether a student can be moved to

another project under the fixed maximum quota. In contrast, in our

setting, maximum quotas are endogenous and flexible. Thus, the

definition of nonwastefulness is modified to reflect this flexibility.

4
For µ−1(p) = ∅, we assume qµ (p) = 0.

In the setting of Example 2.2 (Figure 1), s4 cannot claim an empty

seat in p4 in current allocation µ̂ because no resource is allocated

to p4 and it is impossible to move her from p3 to p4. However, she
possibly claims an empty seat in p4 since by allocating r2 to p4, we
can move her to p4 without disadvantaging other students. Thus,
(Ŷ , µ̂) does not satisfy nonwastefulness.

Next we introduce a concept called fairness.

Definition 2.8 (Fairness). Given feasible matching (Y , µ), student
s has justified envy toward student s ′ if for project p such that

s ′ ∈ Y (p), p ≻s Y (s) and s ≻p s ′ hold. A feasible matching (Y , µ) is
fair if no student has justified envy.

In other words, student s has justified envy toward s ′ if s ′ is
assigned to project p although s prefers p over her current project

Y (s) and projectp also prefers s over s ′. In the setting of Example 2.2

in Figure 1, s3 has justified envy toward s1 (or s2) since she prefers
p1 over ∅, and p1 prefers her over s1 (or s2).

By combining nonwastefulness and fairness, we obtain stability.

Definition 2.9 (Stability). A feasible matching (Y , µ) is stable if it
is nonwasteful and fair.

Next we introduce concepts on students’ welfare (efficiency).

Definition 2.10 (Pareto Efficiency). Matching Y is Pareto domi-

nated by Y ′ if all students weakly prefer Y ′ over Y (that is, either

Y ′(s) ≻s Y (s) or Y (s) = Y (s ′) for every s ∈ S) and at least one stu-

dent strictly prefers Y ′. Matching Y is strongly Pareto dominated

by Y ′ if all students strictly prefer Y ′ over Y . A feasible matching

is Pareto efficient if no feasible matching Pareto dominates it. A

feasible matching is weakly Pareto efficient if no feasible matching

strongly Pareto dominates it.

If a matching is Pareto efficient, we need to sacrifice the welfare

of other students to improve the assignment of one student. If a

matching is weakly Pareto efficient, it is impossible to strictly im-

prove the assignments of all students. Pareto efficiency obviously

implies weak Pareto efficiency but not vice versa. Pareto efficiency

also implies nonwastefulness since if a matching is wasteful, i.e., stu-

dent s possibly claims an empty seat in project p, then we can move

s to p from her current assignment without changing the welfare of

other students using appropriate allocation µ ′. The converse is not
true. Weak Pareto efficiency and nonwastefulness are independent

properties. In the setting of Example 2.2, matching Ŷ in Figure 1

is not Pareto efficient since s4 possibly claims an empty seat in

p4; we can improve the assignment of s4 without disadvantaging
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other students. On the other hand, it is weakly Pareto efficient since

s1 and s2 are assigned to their best project and their assignment

cannot be improved.

Next we formally define amechanism and introduce the desirable

properties a mechanism should satisfy.

Definition 2.11 (Mechanism). Given any SPR instance, a mech-

anism outputs a feasible matching (Y , µ). If a mechanism always

yields a feasible matching that satisfies property A (e.g., fairness),

we say that this mechanism is A (e.g., fair).

Definition 2.12 ((Group) Strategyproofness). Amechanism is strat-

egyproof if no student has an incentive to misreport her preference.

A mechanism is weakly group strategyproof if no group of students

can collude to misreport their preferences in a way that makes

every member strictly better off.

3 IMPOSSIBILITY THEOREMS
In an SPR, resources should be flexibly allocated to projects for more

efficient matching. However, such flexibility is hard to combine

with fairness. First, we show that fairness and nonwastefulness are

incompatible.

Theorem 3.1. An SPR instance exists where no feasible matching

is fair and nonwasteful.

Proof. Consider the following SPR instance: two students, s1, s2,
two projects, p1,p2, and a unitary resource compatible with both.

The student preferences are p1 ≻s1 p2 and p2 ≻s2 p1. The project
preferences are s2 ≻p1 s1 and s1 ≻p2 s2. By symmetry, we can

assume the resource is allocated to p1 w.l.o.g. From fairness, s2
must be allocated to p1. Then s1 possibly claims an empty seat in

p2 since moving her to p2 is possible by allocating the resource to

p2. □

Given this impossibility theorem, we introduce weaker condi-

tions on efficiency.

Definition 3.2 (Weak Nonwastefulness). Feasible matching (Y , µ)
is weakly nonwasteful if no student claims an empty seat with

current allocation µ.

In the setting of Example 2.2, feasible matching (Ŷ , µ̂) in Figure 1

is weakly nonwasteful because no student can be assigned to a

better project with current allocation µ̂.

Definition 3.3 (Very Weak Nonwastefulness). For feasible match-

ing (Y , µ), student s strongly claims an empty seat if Y (s) = ∅, and
∀µ ′, such that (Y , µ ′) is feasible, ∃p in which s claims an empty

seat with µ ′. A feasible matching is very weakly nonwasteful if no

student strongly claims an empty seat.

In other words, student s strongly claims an empty seat if she is

currently unassigned, and under any feasible resource allocation

µ ′, project p exists such that s claims an empty seat in p with µ ′.
Note that p can be different for each µ ′.

Consider matching Y = {(s1,p1), (s2,p1), (s3, ∅), (s4, ∅)} in the

setting of Example 2.2. Then s3 strongly claims an empty seat. Here

Y (s3) = ∅. For any allocation with which Y is feasible, r1 must be

allocated to p1. When r2 is allocated to p3, s3 claims an empty seat

in p3. When r2 is allocated to p4, s3 claims an empty seat in p4.

If student s strongly claims an empty seat, she is currently unas-

signed and claims an empty seat in project p with current allocation

µ. If she claims an empty seat in p with the current assignment,

she also possibly claims an empty seat in p. Thus nonwastefulness
implies weak nonwastefulness, and weak nonwastefulness implies

very weak nonwastefulness.

To define another concept called resource efficiency, we first de-

fine unanimous preferences.

Definition 3.4 (Unanimous Preference). Students unanimously

prefer p over p′ if for every s ∈ S , (s,p) ∈ X and p ≻s p
′
hold.

This condition means that project p accepts all students and all

students prefer p over p′. If students unanimously prefer p over

p′, allocating any resource (which is compatible with both p and

p′) to p′ is inefficient in terms of students’ welfare. The following

formalizes this intuition.

Definition 3.5 (Resource Efficiency). Resource allocation µ is re-

source efficient if no resource r , such that p,p′ ∈ Tr and students

unanimously prefer p over p′, is allocated to p′. A mechanism is

resource efficient if it always returns a resource efficient allocation.

Pareto efficiency implies nonwastefulness. The following theo-

rem shows that Pareto efficiency also implies resource efficiency.

Theorem 3.6. If feasible matching (Y , µ) is Pareto efficient, then

allocation µ ′ exists such that (Y , µ ′) is feasible and µ ′ is resource
efficient.

Proof. For contradiction, assume Y is Pareto efficient, and all

students unanimously preferp overp′, but for any µ such that (Y , µ)
is feasible, resource r is allocated to p′ while p,p′ ∈ Tr holds. Con-
sider µ ′ obtained from µ, such that r is re-assigned to p. If (Y , µ ′) is
feasible, we repeat the same procedure. (Y , µ ′) eventually becomes

infeasible (otherwise, we obtain resource efficient µ ′, which contra-

dicts our assumption). Since students unanimously prefer p over p′,
any student assigned to p′ is acceptable to p and prefers p over p′.
Consider another matching Y ′, in which some students are moved

from p′ to p such that (Y ′, µ ′) becomes feasible. Then the moved

students prefer Y ′ over Y (and the other students are indifferent).

This contradicts the fact that Y is Pareto efficient. □

Now we are ready to introduce another impossibility theorem.

Theorem 3.7. No mechanism exists that is fair, very weakly non-

wasteful, resource efficient, and strategyproof.

Proof. Consider the following situation: three students, s1, s2, s3,
three projects, p1,p2,p3, one resource, r with qr = 2, and Tr =
{p1,p2,p3}. The following are the preferences:

s1 : p2 ≻ p3 ≻ p1 ≻ ∅, p1 : s1 ≻ s2 ≻ s3 ≻ ∅,
s2 : p3 ≻ p1 ≻ p2 ≻ ∅, p2 : s2 ≻ s3 ≻ s1 ≻ ∅,
s3 : p1 ≻ p2 ≻ p3 ≻ ∅, p3 : s3 ≻ s1 ≻ s2 ≻ ∅.

Recall that since all resources must be distributed, resource r must

be allocated to a project. From very weak nonwastefulness and

fairness, the following are the possible matchings: allocating s1 and
s2 to p1, allocating s2 and s3 to p2, or allocating s3 and s1 to p3. From
the symmetry, we can assume r is allocated to p1 and s1 and s2 are
assigned to p1 w.l.o.g. Next we examine the case where preference

of s3 is changed to p3 ≻ p1 ≻ p2 ≻ ∅. From resource efficiency,
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r cannot be allocated to p1 since all students prefer p3 over p1.
If r is allocated to p2 (or p3), then from fairness and very weak

nonwastefulness, s3 must be assigned to p2 (or p3). This violates
strategyproofness since s3 is not assigned to any project in the

original situation. □

4 STRATEGYPROOF MECHANISMS
4.1 Existing Mechanisms
An SPR belongs to a general class of problems where distributional

constraints satisfy a condition called heredity [17]. Heredity means

that if matching Y is feasible (to be precise, if allocation µ exists

such that (Y , µ) is feasible), then any of its subsets Y ′ ⊂ Y is also

feasible with some allocation µ ′. SPR clearly satisfies this property:

if (Y , µ) is feasible, for any Y ′ ⊂ Y , (Y , µ) is feasible. Goto et al. [17]
present three general strategyproof mechanisms in this context.

Since an SPR satisfies heredity, the properties of these mechanisms

are automatically inherited to our model.

Before describing these mechanisms, we introduce a computa-

tional problem that needs to be solved within these mechanisms.

Definition 4.1 (Feasibility). For a given SPR instance and match-

ing Y , does allocation µ exist such that (Y , µ) is feasible?

We settle its computational complexity by the reduction from a

partition problem, which is known to be NP-complete [29].

Definition 4.2 (Partition). Can a givenmultisetV = {v1, . . . ,vℓ}
of positive integers be partitioned into two multisetsV1 andV2 such
that the sum of the numbers in V1 equals the sum of the numbers

in V2?

Theorem 4.3. Feasibility is NP-complete.

Proof. For yes instances, whether (Y , µ) is feasible can be veri-

fied in polynomial time when µ is given as a certificate. Hence, this

problem belongs to class NP.

We show that any instance of Partition can be reduced to

an SPR instance. For integer multiset V = {v1, . . . ,vℓ}, such that∑
v ∈V v = 2m, we create two projects, p1 and p2, and ℓ resources

R = {r1, . . . , rℓ}. Each resource ri ∈ R is compatible with both

projects, i.e.,Tri = {p1,p2}, and the capacity qri equals tovi . We as-

sume 2m students, and in givenmatchingY ,m students are matched

to both projects p1 and p2. Clearly, if the original Partition is yes,

i.e., if we can partition V into two multisets that hitm, then the

corresponding Feasiblity is yes, and vice versa.

Since Partition is NP-complete, Feasibility is also NP-complete.

□

To verify feasibility, we need to solve a Mixed Integer Program-

ming (MIP) instance. For a special case where qr = 1 for all r andTR
has a laminar structure, the distributional constraints form an M

♮
-

convex set; a generalized mechanism can obtain a fair matching [32]

since Feasibility is no longer NP-complete.

In the following, we describe these mechanisms adopted to an

SPR one by one. First, Serial Dictatorship mechanism (SD) uses a

serial order among students. The order can be arbitrary, but it must

be determined independently from student preferences to guarantee

strategyproofness. W.l.o.g., we assume this order is s1, s2, . . ..

Conceptually, SD can be described as follows. Let Y denote all

the possible matchings, each of which can be feasible with some

allocation. The first student, s1, chooses subset Y 1 ⊆ Y , such that

she equally prefers any matching in Y 1 and strictly prefers any

matching in Y 1 over any matching in Y \Y 1. In other words, she

chooses her most preferred matchings in Y . Since she is concerned
with the project to which she is assigned and has no interest in

the assignments of other students, her most preferred matching

is not unique, and her choice is a subset of Y . In the setting of

Example 2.2, s1 will choose Y 1 = {Y ∈ Y | (s1,p1) ∈ Y }, i.e., all
elements in Y such that s1 is allocated to p1. Then next student s2
chooses Y 2 ⊆ Y 1 in a similar way; she chooses her most preferred

matchings within Y 1, and so forth. In the setting of Example 2.2,

s2 will choose Y 2 = {Y ∈ Y 1 | (s2,p1) ∈ Y }, i.e., all elements

in Y 1 such that s2 is allocated to p1. SD is clearly strategyproof

since each student can choose her most preferred matchings from

exogenously determined possibilities. SD is also Pareto efficient by

the following reason. Clearly, we cannot improve the assignment of

s1. Moreover, we cannot improve s2 without hurting s2, and so forth.
Thus, it is impossible to improve the assignment of one student

without hurting other students. Since SD is Pareto efficient, it is

also nonwasteful.

The following is the formal definition of SD for an SPR:

Mechanism 1 (Serial Dictatorship (SD)).

Step 1: Y ← ∅. k ← 1.

Step 2: If k > |S |, return Y . Otherwise, choose (sk ,p) ∈ X , where

p is hermost preferred, acceptable project such thatY∪{(sk ,p)}
is feasible with some allocation µ ′. Y ← Y ∪ {(sk ,p)} (if no
such p exists, sk is not assigned to any project).

Step 3: k ← k + 1. Go to Step 2.

Unfortunately, SD is computationally expensive in our setting

since we need to solve Feasibility for Y ∪ {(sk ,p)} in Step 2. Nor

does SD satisfy fairness. Many students could have justified envy

in SD since it completely ignores project preferences.

The next mechanism is Artificial Caps Deferred Acceptance

(ACDA), which is based on the well-known Deferred Acceptance

(DA) [13]. In DA, each student first applies to her most preferred

project. Then each project provisionally accepts students up to its

capacity limit based on its preference and rejects the rest of them.

A rejected student applies to her second choice. Each project provi-

sionally accepts students who have applied without distinguishing

among newly applied and already provisionally accepted students,

and so forth. To apply DA, the maximum quota (i.e., capacity limit)

of each project must be predetermined. In ACDA, we artificially

determine maximum quotas. More specifically, we choose an ar-

bitrary allocation µ independently from student preferences and

decide maximum quotas based on it.

The detailed procedure of ACDA for an SPR is given as follows:

Mechanism 2 (Artificial CapsDeferredAcceptance (ACDA)).

Step 1: Choose µ independently from ≻S .

Step 2: Run the standard DA, assuming the maximum quota of

each project p is

∑
r ∈µ−1(p) qr and obtain matching Y .

Step 3: Return (Y , µ).
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Although ACDA obtains a fair matching in polynomial-time,

it can be very inefficient; many students would possibly claim an

empty seat since µ is chosen independently from their preferences.

The third mechanism is Adaptive Deferred Acceptance (ADA).

Like SD, ADA uses serial order among students. The order can be

arbitrary, but it must be determined independently from student

preferences to guarantee strategyproofness. W.l.o.g., we assume

this order is s1, s2, . . .. As well as ACDA, ADA requires maximum

quota qp for each project p. If no maximum quota is given, i.e., if we

assume qp = ∞ for each p ∈ P , ADA obtains the identical matching

as SD. To apply ADA to an SPR, we choose qp as

∑
r |Tr ∋p qr , which

is the largest capacity when all compatible resources are allocated

to it. During the execution of ADA, project p is forbidden under

(partial) matching Y if no allocation µ exists with which Y ∪ {(s,p)}
becomes feasible even though |Y (p)| is strictly less than the (current)
maximum quota of p. In other words, project p is forbidden if p
cannot accept another student due to resource contention among

projects. Formally, ADA for an SPR is defined as follows:

Mechanism 3 (Adaptive Deferred Acceptance (ADA)).

We initially assume no project is forbidden. Let L ← (s1, s2, . . .),
q1p ← qp for each p ∈ P , Y ← ∅. Proceed to Stage 1.

Stage k: Proceed to Round 1.

Round t : Select t students from the top of L. Let Y ′ denote the

matching obtained byDA for the selected students under (qkp )p∈P .

(i) If all students in L are already selected, then output Y ∪ Y ′

and terminate the mechanism.

(ii) If no project pi exists that is forbidden, then proceed to

Round t + 1.
(iii) Otherwise, Y ← Y ∪ Y ′. Remove t students from the top

of L. For each project p that is forbidden, set qk+1p to 0. For

each p ∈ P , which is not forbidden, set qk+1p to qkp − |Y
′(p)|.

Proceed to Stage k + 1.

We can assume ADA combines SD and DA, in which student

groups are sequentially allocated as SD, but within each group, stu-

dents compete with each other by DA. We show how ADAworks in

the setting of Example 2.2 The maximum quotas of projects are de-

termined as (2, 2, 1, 1). First, in Round 1 of Stage 1, running DA and

s1 is assigned to p1. Then, project p2 is forbidden. Although its max-

imum quota is two and no student is currently assigned, we cannot

allocate another student to it since r1 is taken byp1 to accommodate

s1. Thus, the assignment (s1,p1) is fixed. The maximum quotas are

reset to (1, 0, 1, 1). Then, in Round 1 of Stage 2, s2 is assigned to

p1 by DA. No project is forbidden (note that p1 already reaches

its maximum quota and it is not forbidden). In Round 2 of Stage

2, s2 is assigned to p3, and s3 is assigned to p1 by using DA. Then,

project p4 is forbidden. Although its maximum quota is one and no

student is currently assigned, we cannot allocate another student to

it since r2 is taken by p3 to accommodate s2. Thus, the assignments

(s2,p3) and (s3,p1) are fixed. The new maximum quotas become

(0, 0, 0, 0). Thus, no more student can be assigned. ADA terminates

and returns {(s1,p1), (s2,p3), (s3,p1), (s4, ∅)}. ADA is nonwasteful

because project p is forbidden only when by allocating another

student to p, there is no way to make the current matching feasible.

However, it is computationally as expensive as SD since we need

to solve Feasibility for checking whether a project is forbidden.

Table 1: Mechanism Properties

Fairness PE NW Weak NW RE

SD [17] no yes yes yes yes

ADA [17] no no yes yes yes

SVDA no no no yes yes

ACDA [17] yes no no yes no

Using these mechanisms, we can show that resource efficiency

and very weak nonwastefulness are independent properties. For

example, ACDA satisfies very weak nonwastefulness. Under re-

source allocation µ in ACDA, no student claims an empty seat

with µ, although it does not satisfy resource efficiency, i.e., it may

allocate a resource to a unanimously less preferred project. Next

assume a mechanism does not assign any student to any project,

and no resource is allocated to any project p′ if students unani-
mously prefer another project p. It is trivially strategyproof and

satisfies resource efficiency. However, this mechanism does not

always satisfy very weak nonwastefulness. Table 1 summarizes

the properties of these mechanisms (including the new mechanism

introduced in Section 4.2), where PE stands for Pareto efficiency,

NW for nonwastefulness, and RE for resource efficiency.

4.2 Sample and Vote Deferred Acceptance
Mechanism

ACDA is too inefficient, and SD and ADA are too unfair (many

students have justified envy) and computationally expensive (fea-

sibility must be verified O(|S × P |) times). Moreover, Theorem 3.7

shows that fairness cannot be achieved without significantly sacri-

ficing efficiency. In this section, we introduce a new strategyproof

mechanism called Sample and Vote Deferred Acceptance (SVDA),

which strikes a good balance between fairness and efficiency by

slightly sacrificing fairness to improve efficiency. Its basic idea is

to determine resource allocation µ based on the preferences of the

sampled students. Then we run DA based on µ. The entire mecha-

nism is carefully designed to guarantee strategyproofness. The idea

of dividing students/participants into two groups and utilizing the

information obtained by one group to appropriately set parameters

for the mechanism applied to another group is a popular technique

to guarantee strategyproofness in auction domains [7, 15]. To the

best of our knowledge, applying this idea in two-sided matching to

develop a strategyproof mechanism is novel.

Mechanism 4 (Sample andVoteDeferredAcceptance (SVDA)).

Step 1: Select S ′ ⊆ S , which we call the sampled students. We

call S \ S ′ the regular students. Then run SD and find (partial)

matching YS ′ for S
′
.

Step 2: Allocate R′ ⊆ R to projects such that YS ′ is feasible and
R′ is minimal: no R′′ ⊊ R′ makes YS ′ feasible. Then allocate

R \ R′ based on the preferences of S ′.
Step 3: Run DA for S \ S ′. The capacity of p is qµ (p) − |YS ′(p)|,

where µ is the resource allocation determined in Step 2.

We use the following simple method to decide allocation R \ R′

based on the preferences of S ′. For each r , each s ∈ S ′ (hypo-
thetically) votes for candidates Tr based on ≻s , where each project

obtains a Borda score based on ≻s . Then r is allocated to the winner.
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The details of this voting procedure do not affect SVDA’s theoretical

properties, e.g., whether a student can vote for a project to which

she is unacceptable or not, or how ties are broken. Thus, they can be

arbitrarily determined. An appropriate way for choosing sampled

students is domain dependent. If we want “ex-ante fairness”, we

might choose sampled students uniformly at random. If there exists

a distinguished class of students, e.g., scholarship students, they

would be reasonable candidates as sampled students.

We show an example how SVDA works. Assume the setting in

Example 2.2. In Step 1, assume S ′ = {s1}, i.e., s1 is the only sampled

student. In SD, s1 is matched to her first-choice project, p1. In Step

2, the minimal allocation to make {(s1,p1)} feasible is allocating
r1 to p1. Thus, R

′ = {r1}. Next the allocation of R \ R′ = {r2}
is determined by the preference of s1. Then r2 is allocated to p4
based onTr2 . In Step 3, since s1 is fixed, the remaining capacities of

p1,p2,p3, and p4 are 1, 0, 0, and 1. S \ S ′ = {s2, s3, s4} are matched

by DA. Thus, s2 is matched to p4, s3 is matched to p1, and s4 is

unmatched. The result is not fair since s2 has justified envy toward

s1. Nonwastefulness is not satisfied either since s2 possibly claims

an empty seat in p3.
We show that SVDA satisfies several fundamental desiderata.

Theorem 4.4. SVDA is strategyproof, resource efficient, weakly

nonwasteful, fair among students in S \ S ′, and no sampled student

has justified envy toward another regular student.

Proof. SVDA is clearly strategyproof for S ′ since SD is strat-

egyproof [17]. SVDA is also strategyproof for S \ S ′ since DA is

strategyproof [9, 43] and the capacity of each project is determined

exogenously for S \ S ′.
Assume students unanimously prefer p over p′. When assigning

S ′, any resource r such that p,p′ ∈ Tr is never allocated to p′ since
students apply to p before applying to p′. It also never wins in the

voting procedure. Consequently, SVDA satisfies resource efficiency.

Assume student s is matched to p (which can be ∅). She applied

to any project p′, which is ranked higher than p, and was rejected.

If s ∈ S ′, then no feasible allocation µ ′ exists such that s can be

assigned to p′. If s ∈ S \ S ′, s cannot be assigned to p′ with current

allocation µ. Hence, SVDA satisfies weak nonwastefulness.

Concerning fairness, since DA is fair [13], no regular student

has justified envy toward another regular student. Assume sampled

student s ∈ S ′ is rejected by p. Then no more students can be

assigned to p. Thus, s never has justified envy toward a regular

student who is assigned after s . □

Theorem 4.5. SVDA is weakly Pareto efficient.

Proof. Assume s is the first sampled student. In other words,

s is ordered first in SD. She is eventually assigned to her favorite

project p among all projects such that at least one resource r can be

allocated with respect to Tr . If another project p
′
exists such that

p′ ≻s p holds, p′ has no compatible resource. Thus, it is impossible

to assign s to p′, and we cannot strictly improve s’s allocation.
Hence, no feasible matching exists that strongly Pareto dominates

the matching obtained by SVDA. □

Theorem 4.6. SVDA is weakly group strategyproof.

Proof. Since SD is group strategyproof [35], a sampled student

cannot benefit by joining a coalition of sampled students. Further-

more, regular students never affect the assignment of sampled stu-

dents. Thus, a sampled student cannot benefit by joining a coalition

of sampled and regular students.

Furthermore, since DA is weakly group strategyproof [5] and

project quotas are exogenously given by the preferences of sampled

students, no coalition of regular students can collude to misreport

their preferences. Hence, no group of students has an incentive to

collude and weak group strategyproofness holds for SVDA. □

Indeed, a coalition can be formed such that a subset of students

benefits while the assignments of other students do not change, e.g.,

a sampled student can manipulate her vote to favor some regular

students even though doing so is not beneficial for her. Since weak

group strategyproofness requires that all members must benefit,

the existence of such a coalition does not contradict the fact that

SVDA is weakly group strategyproof.

Next we show that SVDA satisfies additional properties (i.e.,

Pareto efficiency and fairness) in special cases where student or

project preferences are identical.

Theorem 4.7. SVDA is Pareto efficient if all student preferences

are identical and each project assumes that all students are acceptable.

Proof. W.l.o.g., assume the preference of each student is p1 ≻s
p2 ≻s . . . . Since SD is Pareto efficient, it is impossible to assign sam-

pled student s to a better project without disadvantaging another

sampled student s ′ who was assigned before s . According to the

votes of the sampled students, resource allocation µ is determined.

In µ, any resource r is allocated to pi such that it has the smallest

identifier in all the projects within Tr . Since all student preferences
are identical and each project assumes that all students are accept-

able, no better allocation exists that can improve the assignment of

the regular students. In DA, all regular students S \ S ′ first apply
to p1. Assume a set of regular students S1 is accepted to p1 and the

remaining students are rejected. By repeating a similar procedure,

students in Sk are accepted to pk . Assigning a student in Sk to a

better project is impossible without affecting the students in S ′

or Sk ′ (where k
′ < k). Thus, no matching Pareto dominates the

matching obtained by SVDA. □

Theorem 4.8. SVDA is fair if all the projects have an identical

preference and the sampled students are selected based on it.

Proof. From Theorem 4.4, in SVDA, if s has justified envy to-

ward s ′, then there are two cases: (i) s is a regular student and s ′ is a
sampled student, or (ii) both s and s ′ are sampled students. Assume

student s , who is assigned to project p, has justified envy toward

another student s ′, who is assigned to p′ (i.e., s ≻p′ s
′
and p′ ≻s p

hold). For case (i), s ′ ≻p′ s must hold from the assumption that

every project unanimously prefers a sampled student over a regular

student, but this contradicts our assumption that s ≻p′ s
′
holds. For

case (ii), s ′ must be assigned before s , which means every project

unanimously prefers s ′ over s . This contradicts with s ≻p′ s
′
. □

SVDA needs to verify feasibilityO(|S ′×P |) times in Step 1. How-

ever, when |S ′ | is small, such a feasibility problem is trivially yes

in most cases, assuming projects are equipped with a reasonable
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(a) Scatter plot (ϕ = 0.7, ρ = 0.1)
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(b) Effect of ρ (ϕ = 0.7)
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(c) Effect of ϕ (ρ = 0.1)

Figure 2: Trade-off between efficiency and fairness

amount of resources, which is sufficient for the demand of sampled

students. Furthermore, state-of-the-art MIP solvers, e.g., Gurobi op-

timizer [18], can also handle fairly large-scale feasibility problems.

5 EXPERIMENTAL EVALUATION
We consider a market with |S | = 200 students, |P | = 10 projects,

and |R | = 20 resources.
5
For each resource r , we randomly generate

Tr such that each project p is included in Tr with probability 0.2.

The capacity of each resource is 1, 5, 10, 15, or 20 (the number of

resources for each capacity is 4). Student preferences are gener-

ated with the Mallows model [8, 36, 37, 48]. In this model, student

preference ≻s is drawn with probability Pr(≻s ):

Pr(≻s ) =
exp(−ϕ · d(≻s ,≻ŝ ))∑
≻′s

exp(−ϕ · d(≻′s ,≻ŝ ))
.

Here ϕ ∈ R denotes a spread parameter, ≻ŝ is a central preference

(uniformly randomly chosen from all possible preferences in our ex-

periment), and d(≻s ,≻ŝ ) represents the Kendall tau distance, which
is the number of pairwise inversions between ≻s and ≻ŝ . In short,

student preferences are distributed around a central preference

with spread parameter ϕ. When ϕ = 0, the Mallows model becomes

identical to uniform distribution (which is equivalent to impartial

culture [14, 40] in our setting), and as ϕ increases, it quickly con-

verges to the constant distribution that returns ≻ŝ . The preference

of each project ≻p is drawn uniformly at random. We create 100

instances for each parameter setting and compare SVDA with other

mechanisms. ADA needs a capacity limit for each project p. As de-
scribed earlier, we set this value to

∑
r |Tr ∋p qr , which is the largest

capacity when all of the shared resources are allocated to it. Since

this capacity is large and not binding in many cases, ADA resembles

SD. We use Gurobi optimizer to solve Feasibility in SD and SVDA.

To illustrate the trade-off between efficiency and fairness, we

plot the results of the obtained matching in a two-dimensional

space in Figure 2, where the x-axis shows the average Borda scores
of the students; if a student is assigned to her i-th choice project,

her score is |P | − i + 1, and the y-axis shows the ratio of the student

5
Since SD and ADA are computationally expensive, running experiments for larger

markets is time-consuming while SVDA (and ACDA) can handle much larger markets.

pairs without any justified envy. Thus, the points located north-

east are preferable. For SVDA, we set the ratio of sampled students

ρ = |S ′ |/|S | to 0.1. Figure 2 (a) illustrates that SVDA strikes a good

balance between efficiency and fairness. Each point represents the

result of one instance for one mechanism. Figure 2 (b) shows the

average for 100 problem instances for each mechanism. We vary

ρ from 0.1 to 0.4. When it is small, SVDA resembles ACDA. By

increasing ρ, it gradually resembles SD. Thus, by controlling pa-

rameter ρ, we can further fine-tune the balance. In Figure 2 (c),

we vary spread parameter ϕ from 0.1 to 0.7. When it is large, the

competition among students becomes more severe and resource

allocation significantly affects their welfare. When ϕ is small, the

difference among mechanisms becomes smaller. One might argue

that SVDA works only when the sampled students resemble reg-

ular students. Although this is true to some extent, when student

preferences are diverse, all the mechanisms work reasonably well.

We also ran experiments with different voting procedures (simple

majority and Copeland) and found quite similar results.

6 CONCLUSION AND FUTUREWORK
We introduced a student-to-project matching problem that endoge-

nously handles the resource allocation problem that defines the

capacity of projects. We showed that it is impossible to design a

mechanism that is fair, strategyproof, and satisfies very mild effi-

ciency properties. Then we developed a strategyproof mechanism

called SVDA and proved that it is resource efficient, weakly non-

wasteful, fair among some students, weakly Pareto efficient, and

weakly group strategyproof. Finally, we numerically showed that

it strikes a good balance between fairness and efficiency.

Our future works include theoretically identifying the optimal

sample size and dealing with the case where various constraints

are imposed on the allocation of resources, e.g., the total number

of resources that can be allocated to each project is bounded.
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