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ABSTRACT

Recently, α-Rank, a graph-based algorithm, has been proposed as a

solution to ranking joint policy proles in large scale multi-agent

systems. α-Rank claimed tractability through a polynomial time

implementation with respect to the total number of pure strategy

proles. Here, we note that inputs to the algorithm were not clearly

specied in the original presentation; as such, we deem complexity

claims as not grounded, and conjecture solving α-Rank is NP-hard.

The authors of α-Rank suggested that the input to α-Rank can be
an exponentially-sized payo matrix; a claim promised to be clari-

ed later. Even though α-Rank exhibits a polynomial-time solution

with respect to such an input, we further reect additional critical

problems. We demonstrate that due to the need of constructing an

exponentially large Markov chain, α-Rank is infeasible beyond a

small nite number of agents. We ground these claims by adopting

amount of dollars spent as a non-refutable evaluation metric. Realis-

ing such scalability issue, we present a stochastic implementation of

α-Rank with a double oracle mechanism allowing for reductions in

joint strategy spaces. Our method, αα -Rank, does not need to save

exponentially-large transition matrix, and can terminate early un-

der required precision. Although theoretically our method exhibits

similar worst-case complexity guarantees compared to α-Rank, it
allows us, for the rst time, to practically conduct large-scale multi-

agent evaluations. On 10
4×10

4
random matrices, we achieve 1000x

speed reduction. Furthermore, we also show successful results on

large joint strategy proles with a maximum size in the order of

O(225) (≈ 33million joint strategies) – a setting not evaluable using

α-Rank with reasonable computational budget.
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1 INTRODUCTION

Scalable policy evaluation and learning have been long-standing

challenges in multi-agent reinforcement learning (MARL) with

two diculties obstructing progress. First, joint-strategy spaces

exponentially explode when a large number of strategic decision-

makers is considered, and second, the underlying game dynamics

may exhibit cyclic behaviour (e.g. the game of Rock-Paper-Scissor)

rendering an appropriate evaluation criteria non-trivial. Focusing

on the second challenge, much work in multi-agent systems fol-

lowed a game-theoretic treatment proposing xed-points, e.g., Nash

[21] equilibrium, as potentially valid evaluation metrics [35, 37].

Though appealing, such measures are normative only when pre-

scribing behaviours of perfectly rational agents – an assumption

rarely met in reality [9, 16, 33, 34]. In fact, many game dynam-

ics have been proven not converge to any xed-point equilibria

[10, 32, 36], but rather to limit cycles [2, 24]. Apart from these

challenges, solving for a Nash equilibrium even for “simple” set-

tings, e.g. two-player games is known to be PPAD-complete [3]

– a demanding complexity class when it comes to computational

requirements.

To address some of the above limitations, [22] recently proposed

α-Rank as a graph-based game-theoretic solution to multi-agent

evaluation. α-Rank adopts Markov Conley Chains to highlight the

presence of cycles in game dynamics, and attempts to compute

stationary distributions as a mean for strategy prole ranking. In a

novel attempt, the authors reducemulti-agent evaluation to comput-

ing a stationary distribution of a Markov chain. Namely, consider

a set of N agents each having a strategy pool of size k , a Markov

chain is, rst, dened over the graph of joint strategy proles with

a transition matrixT ∈ Rk
N ×kN

, and then a stationary distribution

ν ∈ Rk
N
is computed solving: Tν = ν . The probability mass in ν

then represents the ranking of joint-strategy prole.

Extensions of α-Rank have been developed on various instances.

[27] adapted α-Rank to model games with incomplete information.

[20] combined α-Rank with the policy search space oracle (PSRO)

[15] and claimed their method to be a generalised training approach

for multi-agent learning. Unsurprisingly, these work inherit the

same claim of tractability from α-Rank. For example, the abstract

in [20] reads “α-Rank, which is unique (thus faces no equilibrium

selection issues, unlike Nash) and tractable to compute in general-

sum, many-player settings."
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In this work, we contribute to rene the claims made in α-Rank
dependent on its input type. We thoroughly argue that α-Rank
exhibits a prohibitive computational and memory bottleneck that is

hard to remedy even if pay-omatrices were provided as inputs. We

measure such a restriction using money spent as a non-refutable

metric to assess α-Rank’s validity scale. With this in mind, we

then present a stochastic solver that we title αα -Rank as a scalable

and memory ecient alternative. Our method reduces memory

constraints, and makes use of the oracle mechanism for reductions

in joint strategy spaces. This, in turn, allows us to run large-scale

multi-player experiments, including evaluation on self-driving cars

and Ising models where the maximum size involves tens of millions

of joint strategies.

2 A REVIEW OF α-RANK
In α-Rank, strategy proles of N agents are evaluated through

an evolutionary process of mutation and selection. Initially, agent

populations are constructed by creating multiple copies of each

learner i ∈ {1, . . . ,N } assuming that all agents (in one population)

execute the same unied policy. With this, α-Rank then simulates

a multi-agent game played by randomly sampled learners from

each population. Upon game termination, each participating agent

receives a payo to be used in policy mutation and selection af-

ter its return to the population. Here, the agent is faced with a

probabilistic choice between switching to the mutation policy, con-

tinuing to follow its current policy, or randomly selecting a novel

policy (other than the previous two) from the pool. This process

repeats with the goal of determining an evolutionary dominant

prole that spreads across the population of agents. Fig. 1 demon-

strates a simple example of a three-player game, each playing three

strategies.

Mathematical Formulation: To formalise α-Rank, we consider N
agents each, denoted by i , having access to a set of strategies of size
ki . We refer to the strategy set for agent i by Si =

{
πi,1, . . . ,πi,ki

}
,

ki = |Si |, with πi, j : X ×Ai → [0, 1] representing the jth allowed

policy of the learner. X represents the set of states and Ai is the

set of actions for agent i . A joint strategy prole is a set of policies

for all participating agents in the joint strategy set, i.e., Sjoint =

S1 ×S2 × · · · × SN : πjoint =
{
π1, j1 , ...,πN , jN

}
, with πi, ji ∈ Si and

ji ∈ {1, . . . ,ki }. We assume k = k1 = . . . = kN hereafter.

To evaluate performance, we assume each agent is additionally

equipped with a payo (reward) function Pi : Sjoint → R+. Cru-
cially, the domain of Pi is the pool of joint strategies so as to accom-

modate the eect of other learners on the ith player’s performance.

Finally, given a joint prole πjoint, we dene the corresponding joint
payo to be the collection of all individual payo functions, i.e.,

Pjoint =
{
P1

(
πjoint

)
, . . . ,PN

(
πjoint

)}
. After attaining payos from

the environment, each agent returns to its population and faces

a choice between switching the whole population to a mutation

policy, exploring a novel policy, or sticking to the current one. Such

a choice is probabilistic and dened proportional to rewards by

P(πi,a → πi,b, π−i ) =
eαPi (πi,b ,π−i )

eαPi (πi,a ,π−i ) + eαPi (πi,b ,π−i )
−
µ
2

for

(
πi,a, πi,b

)
∈ Si × Si ,

P(πi,a → πi,c , π−i ) =
µ

Ki − 2

, ∀πi,c ∈ Si \ {πi,a, πi,b },

with µ ∈ R+ being an exploration parameter
1
, π−i = π \ πi

representing policies followed by other agents, and α ∈ R+ an

ranking-intensity parameter. Large α ensures that the probability

that a sub-optimal strategy overtakes a better strategy is close to

zero.

As noted in [22], one can relate the above switching process to

a random walk on a Markov chain with states dened as elements

in Sjoint. Essentially, the Markov chain models the sink strongly
connected components (SSCC) of the response graph associated with

the game. The response graph of a game is a directed graph where

each node corresponds to each joint strategy prole, and directed

edges if the deviating player’s new strategy is a better response to

that player, and the SSCC of a directed graph are the (group of)

nodes with no out-going edges.

Each entry in the transition probabilitymatrixT ∈ R

��Sjoint

��×��Sjoint

��
of Markov chain refers to the probability of one agent switching

from one policy in a relation to attained payos. Consider any

two joint strategy proles πjoint and π̂joint that dier in only one
individual strategy for the ith agent, i.e., there exists an unique

agent such that πjoint =
{
πi,a ,π−i

}
and π̂joint =

{
π̂i,b ,π−i

}
with

πi,a , π̂i,b , we set [T ]πjoint, π̂joint

= 1∑N
l=1(kl−1)

ρπi,a, π̂i,b
(
π−i

)
, with

ρπi,a, π̂i,b
(
π−i

)
dening the probability that one copy of agent i

with strategy πi,a invades the population with all other agents (in

that population) playing π̂i,b . Following [26], for Pi
(
πi,a ,π−i

)
,

Pi
(
π̂i,b ,π−i

)
, such a probability is formalised as

ρπi,a, π̂i,b (π−i ) =
1 − e−α (Pi (πi,a,π−i )−Pi (π̂i,b ,π−i ))

1 − e−mα (Pi (πi,a,π−i )−Pi (π̂i,b ,π−i ))
, (1)

and
1

m otherwise, with m being the size of the population. So

far, we presented relevant derivations for the (πjoint, π̂joint) en-

try of the state transition matrix when exactly the ith agent dif-

fers in exactly one strategy. Having one policy change, however,

only represents a subset of allowed variations; two more cases

need to be considered. Now we restrict our attention to variations

in joint policies involving more than two individual strategies,

i.e.,

��πjoint \ π̂joint ≥ 2

��
. Here, we set

2 [T ]πjoint, π̂joint

= 0. Conse-

quently, the remaining event of self-transitions can be thus written

as [T ]πjoint, π̂joint

= 1 −
∑
π̂ [T ]πjoint, π̂ . Summarising the above three

cases, we can write the (πjoint, π̂joint)’s entry of the Markov chain’s

transition matrix as:

[T ]π
joint

, π̂
joint

=



1∑N
l=1(kl − 1)

ρπi,a , π̂i,b
(
π−i

)
, if |πjoint \ π̂joint | = 1,

1 −
∑

π̂,π
joint

[T ]π
joint

, π̂ , if πjoint = π̂joint,

0, if |πjoint \ π̂joint | ≥ 2,

(2)

The goal in α-Rank is to establish an ordering in policy proles

dependent on evolutionary stability of each joint strategy. In other

words, higher ranked strategies are these that are prevalent in popu-

lations with higher average time of survival. Formally, such a notion

can be easily derived as the limiting vectorv = limt→∞

[
[T ]T

]t
v0

of our Markov chain when evolving from an initial distribution v0.

1
In α -Rank, µ is heuristically set to a small positive constant to ensure at maximum

two varying policies per-each population. Theoretical justication can be found in [6].

2
This assumption signicantly reduces the analysis complexity as detailed in [6].
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Figure 1: Example of α-Rank evaluation on N = 3 players (star, triangle, circle) each with |s | = 3 strategies (denoted by the

colours) andm = 5 copies. a) Each population obtains a tness value Pi depending on the strategies chosen, b) one mutation

strategy (red star) occurs, and c) the population either selects the original strategy, or being xated by the mutation strategy.

Algorithm 1 α-Rank (see Section 3.1.1 in [22])

1: (Unspecied) Inputs: Sjoint, Multi-agent Simulator

2: Listing all possible joint-strategy proles, for each prole, run

the multi-agent simulator to get the payo values for all players

Pjoint =
{
P1

(
πjoint

)
, . . . ,PN

(
πjoint

)}
,∀πjoint ∈ Sjoint.

3: Construct Markov chain’s transition matrixT by Eqn. 2.

4: Compute the stationary distributionv by Eqn. 3.

5: Rank all πjoint inv based on their probability masses.

6: Outputs: The ranked list ofv (each element refers to the time

that players spend in playing that πjoint during evolution).

Knowing that the limiting vector is a stationary distribution, one

can calculate the solution to the following eigenvector problem:

[T ]T v = v . (3)

We summarised the pseudo-code of α-Rank in Algorithm 1. As

the input to α-Rank is unclear and turns out to be controversial

later, we point the readers to the original description in Section

3.1.1 of [22], and the practical implementation of α-Rank from [14]

for self-judgement. In what comes next, we demonstrate that the

tractability claim of α-Rank needs to be relaxed as the algorithm

exhibits exponential time and memory complexities in number of

players dependent on the input type considered. This, consequently,

renders α-Rank inapplicable to large-scale multi-agent systems

contrary to the original presentation.

3 CLAIMS & REFINEMENTS

Original presentation of α-Rank claims to be tractable in the sense

that it runs in polynomial time with respect to the total number

of joint-strategy proles. Unfortunately, such a claim is not clear

without a formal specication of the inputs to Algorithm 3.1.1 in

[22]. In fact, we, next, demonstrate that α-Rank’s can easily exhibit

exponential complexity under the input of N ×k table, rendering it

inapplicable beyond nite small number of players. We also present

a conjecture stating that determining the top-rank joint strategy

prole in α-Rank is in fact NP-hard.

3.1 On α-Rank’s Computational Complexity

Before diving into the details of our arguments, it is rst instructive

to note that tractable algorithms are these that exhibit a worst-case

polynomial running time in the size of their input [25]. Mathemati-

cally, for a size I input, a polynomial time algorithm adheres to an

O(Id ) complexity for some constant d independent of I.

Following the presentation in Section 3.1.1 in [22], α-Rank as-

sumes availability of a game simulator to construct a payo matrix

quantifying performance of joint strategy proles. As such, we

deem that necessary inputs for such a construction is of the size

I = N ×k , where N is the total number of agents and k is the total

number of strategies per agent, where we assumed k = ki = kj for
simplicity.

Following the denition above, if α-Rank possesses polynomial

complexity then it should attain a time proportional toO

(
(N × k)d

)
with d being a constant independent of N and k . As the algorithm
requires to compute a stationary distribution of a Markov chain

described by a transition matrixT with kN rows and columns, the

time complexity of α-Rank amounts to O

(
kN

)
. Clearly, this result

demonstrates exponential, thus intractable, complexity in the num-

ber of agent N . In fact, we conjecture that determining top rank

joint strategy prole using α-Rank with an N × k input is NP-hard.

Conjecture 3.1 (α-Rank isNP-hard). ConsiderN agents each

with k strategies. Computing top-rank joint strategy prole with re-

spect to the stationary distribution of the Markov chain’s transition

matrix,T , is NP-hard.

Reasoning: To illustrate the point of the conjecture above, imagine

N agents each with k strategies. Following the certicate argument

for determining complexity classes, we ask the question:

“Assume we are given a joint strategy prole πjoint, is πjoint top rank
w.r.t the stationary distribution of the Markov chain?"

To determine an answer to the above question, one requires an

evaluation mechanism of some sort. If the time complexity of this

mechanism is polynomial with respect to the input size, i.e., N × k ,
then one can claim that the problem belongs to the NP complexity

class. However, if the aforementioned mechanism exhibits an expo-

nential time complexity, then the problem belongs to the NP-hard
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Table 1: Time and space complexity comparison given

N (number of agents) × k (number of strategies) as inputs.

Method Time Memory

Power Method O
(
kN+1N

)
O

(
kN+1N

)
PageRank O

(
kN+1N

)
O

(
kN+1N

)
Eig. Decomp. O

(
kNω ) O

(
kN+1N

)
Mirror Descent O

(
kN+1 logk

)
O

(
kN+1N

)
class. When it comes to α-Rank, we believe a mechanism answering

the above question would require computing a holistic solution of

the problem, which, unfortunately, is exponential (i.e., O(kN )). Cru-

cially, if our conjecture proves correct, we do not see how α-Rank
can handle more than a nite small number of agents. �

3.2 On Optimisation-Based Techniques

Given exponential complexity as derived above, we can resort to

approximations of stationary distributions that aim at determining

ϵ-close solution for some precision parameter ϵ > 0. Here, we note

that a problem of this type is a long-standing classical problem

from linear algebra. Various techniques including Power method,

PageRank, eigenvalue decomposition, and mirror descent can be

utilised. Briey surveying this literature, we demonstrate that any

such implementation (unfortunately) scales exponentially in the

number of players. For a quick summary, please consult Table 1.

Power Method. One of the most common approaches to com-

puting a stationary distribution is the power method that computes

the stationary vectorv by constructing a sequence

{
vj

}
j≥0 from a

non-zero initialisationv0 by applyingvj+1 = 1/
����T ,Tvj

����T Tvj . Though

viable, we rst note that the power method exhibits an exponential

memory complexity in terms of the number of agents. To formally

derive the bound, dene n to represent the total number of joint

strategy proles, i.e., n = kN , andm the total number of transitions

between the states of the Markov chain. By construction, one can

easily see thatm = n
(
kN − N + 1

)
as each row and column in T

contains kN −N +1 non-zero elements. Hence, memory complexity

of such implementation is in the order of

O(m) = O
(
n
[
kN − N + 1

] )
≈ O

(
kN kN

)
.

The time complexity of a power method, furthermore, is given

by O(m × T), where T is the total number of iterations. Sincem is

of the order n logn, the total complexity of such an implementation

is also exponential.

PageRank. Inspired by ranking web-pages on the internet, one
can consider PageRank [23] for computing the solution to the eigen-

value problem presented above. Applied to our setting, we rst

realise that the memory is analogous to the power method that is

O(m) = O
(
KN+1N

)
, and the time complexity are in the order of

O(m + n) ≈ O
(
KN+1N

)
.

Eigenvalue Decomposition. Apart from the above, we can

also consider the problem as a standard eigenvalue decomposition

task (also what is used to implement α-Rank in [14]) and adopt

the method in [4] to compute the stationary distribution. Unfortu-

nately, state-of-the-art techniques for eigenvalue decomposition

also require exponential memory (O

(
KN+1N

)
) and exhibit a time

complexity of the form O(nω ) = O(kNω ) with ω ∈ [2, 2.376] [4].

Clearly, these bounds restrict α-Rank to small agent number N .

Mirror Descent. Another optimisation-based alternative is the

ordered subsets mirror descent algorithm [1]. This is an iterative

procedure requiring projection step on the standard n-dimensional

simplex on every iteration: ∆n = {x ∈ Rn : xT1 = 1 & x � 0}.
As mentioned in [1], computing this projection requires O(n logn)
time. Hence, the projection step is exponential in the number of

agents N . This makes mirror descent inapplicable to α-Rank when

N is large.

Apart from the methods listed above, we are aware of other

approaches that could solve the leading eigenvector for big matrices,

for example the online learning approach [7], the sketchingmethods

[30], and the subspace iteration with Rayleigh-Ritz acceleration [8].

The trade-o of these methods is that they usually assume special

structure of the matrix, such as being Hermitian or at least positive

semi-denite, which α-Rank however does not t. Importantly, they

can not oer any advantages on the time complexity either.

4 RECONSIDERING α-RANK’S INPUTS

Having discussed our results with the authors, we were suggested

that “inputs” to α-Rank are exponentially-sized payo matrices,

i.e., assuming line 2 in Algorithm 1 as an input . Though polynomial

in an exponentially-sized input, this consideration does not resolve

problems mentioned above. In this section, we further demonstrate

additional theoretical and practical problems when considering the

advised “input" by the authors.

4.1 On the Denition of Agents
α-Rank redenes a strategy to correspond to the agents under

evaluation dierentiating them from players in the game (see line 4

in Section 3.1.1 and also Fig. 2a in [22]). Complexity results are then

given in terms of these “agents", where tractability is claimed. We

would like to clarify that such denitions do not necessarily reect

the true underlying time complexity, whereby without formal input

denitions, it is dicult to claim tractability.

To illustrate, consider solving a travelling salesman problem in

which a traveller needs to visit a set of cities while returning to the

origin following the shortest route. Although it is well-known that

the travelling salesman problem is NP-hard, following the line of

thought presented in α-Rank, one can show that such a problem

reduces to a polynomial time (linear, i.e., tractable) problem in the

size of “meta-cities”, which is not a valid claim.

So what are the “meta-cities”, and what is

wrong with the above argument?

A strategy in the travelling salesman problem corresponds to a per-

mutation in the order of cities. Rather than operating with number

of cities, following α-Rank, we can construct the space of all permu-

tation calling each a “meta-city” (or agent)
3
. Having enumerated all

permutations, somehow, searching for the shortest route can be per-

formed in polynomial time. Even though, one can state that solving

the travelling salesman problem is polynomial in the size of permu-

tations, it is incorrect to claim that any such algorithm is tractable.

3
How to enumerate all these permutations of cities is analogous to enumerating an

exponentially sized matrix in α -Rank if N × k was not the input to α -Rank.
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Figure 2: Money cost of constructing the transition matrix

T in computing α-Rank (line 3 in Algorithm 1). Note that

one trillion dollar is the world’s total hardware budget [5].

The projected contours shows that due to the exponentially-

growing size of α-Rank’s "input", under reasonable budget,

α-Rank is infeasible to handle more than ten agents.

The same exact argument can be made for α-Rank, whereby having
a polynomial time algorithm in an exponentially-sized space does

not at all imply tractability
4
. It is for this reason, that reporting

complexity results needs to be done with respect to the size of the

input without any redenition (i.e. agents in multi-agent systems,

and cities in the travelling salesman problem).

As is clear so-far, inputs to α-Rank lack clarity. Confused on the

form of the input, we realise that the we are left with two choices:

1) list of all joint strategy proles, or 2) a table of the size N × k –

collection of all of the players’ strategy pools. If we are to follow the

rst direction, the claims made in the paper are of course correct;

however, this by nomeans resolves the problem as it is not clear how

one would construct such an input in a tractable manner. Precisely,

given an N ×k table (collection of all of the players’ strategy pools)

as input, constructing the aforementioned list requires exponential

time (kN ). In other words, providing α-Rank with such a list only

hides the exponential complexity burden in a pre-processing step.

Analogously, applying this idea to the travelling salesman problem

described above would hide the exponential complexity under a

pre-processing step used to construct all possible permutations.

Provided as inputs, the travelling salesman problem can now be

solved in linear time, i.e., transforming an intractable problem to a

tractable one by a mere redenition.

4.2 Dollars Spent: A Non-Refutable Metric

Admittedly, our arguments have been mostly theoretical and can

become controversial dependent on the setting one considers. To

abolish any doubts, we followed the advice given by the authors and

considered the input of α-Rank to be exponentially-sized payo

4
Note that this claim does not apply on the complexity of solving Nash equilibrium.

For example, in solving zero-sum games, polynomial tractability is never claimed on

the number of players, whereas α -Rank claims tractable in the number of players.

Table 2: Cost of getting the payo table Pjoint (line 2 in Algo-

rithm 1) for the experiments conducted in Omidshaei et al.

[22]. We list the numbers by the cost of running one joint-

strategy prole × the number of joint-strategy proles con-

sidered. Detailed computation can be found here.

Game Env. PetaFlop/s-days Cost ($) Time (days)

AlphaZero Go [29] 1, 413 × 7 207M 1.9M

AlphaGo Zero [28] 1, 181 × 7 172M 1.6M

AlphaZero Chess [29] 17 × 1 352K 3.2K

MuJoCo Soccer [18] 0.053 × 10 4.1K 72

Leduc Poker [15] 0.006 × 9 420 7

Kuhn Poker [11] < 10
−4 × 256 < 1 −

AlphaStar [31] 52, 425 244M 1.3M

matrices. We then conducted an experiment measuring dollars

spent to evaluate scalability of running just line 3 in Algorithm 1,

while considering the tasks reported in [22].

AssumingPjoint =
{
P1

(
πjoint

)
, . . . ,PN

(
πjoint

)}
,∀πjoint ∈ Sjoint

is given at no cost, the total amount of oating point operations

(FLOPS) needed for constructingT given in Eqn. 2 is 9kNN (k −1)+

kNN (k − 1)+ 0 = 10kNN (k − 1). In terms of money cost needed for

just buildingT , we plot the dollar amount in Fig. 2 considering the

Nvidia Tesla K80 GPU
5
which can process under single precision

at maximum 5.6 TFlop/s at a price of 0.9 $/hour6. Clearly, Fig. 2

shows that due to the fact that α-Rank needs to construct a Markov

chain with an exponential size in the number of agents, it is only

“money” feasible on tasks with at most tens of agents. It is also

worth noting that our analysis is optimistic in the sense that we

have not considered costs of storingT nor computing Eqn. 3.

Conclusion I: Given exponentially-sized payo matrices, construct-
ing transition matrices in α-Rank for about 20 agents each with 8

strategies requires about one trillion dollars in budget.
Though assumed given, in reality, the payo values Pjoint come

at a non-trivial cost themselves, which is particularly true in re-

inforcement learning tasks [28]. Here, we take a closer look at

the amount of money it takes to attain payo matrices for the ex-

periments listed in [22] that we present in Table 2. Following the

methodology in here, we rst count the total FLOPS each model

uses under the unit of PetaFlop/s-day that consists of performing

10
20

operations per second in one day. For each experiment, if the

answer to “how many GPUs were trained and for how long” was

not available, we then traced back to the neural architecture used

and counted the operations needed for both forward and back-

ward propagation. The cost in time was then transformed from

PetaFlop/s-day using Tesla K80 as discussed above. In addition, we

also list the cost of attaining payo values from the most recent

AlphaStar model [31]. It is obvious that although α-Rank could

take the payo values as “input” at a hefty price, the cost of acquir-

ing such values is not negligible, e.g., payo values from GO cost

about 207M $, and require a single GPU to run for more than ve

thousand years
7
!

Conclusion II:Acquiring necessary inputs to α -Rank easily becomes
intractable giving credence to our arguments in Section 4.1.

5
https://en.wikipedia.org/wiki/Nvidia_Tesla

6
https://aws.amazon.com/ec2/instance-types/p2/

7
In practice, the game outcomes are noisy, multiple runs are often needed (check

Theorem 3.2 in [27]), which will turn the numbers in Table 2 to an even larger scale.
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5 A PRACTICAL SOLUTION TO α-RANK
One can consider approximate solutions to the problem in Eqn. 3. As

briey surveyed in Section 3, most current methods, unfortunately,

require exponential time and memory complexities. We believe

achieving a solution that aims at reducing time complexity is an

interesting and open question in linear algebra in general, and

leave such a study to future work. Here, we rather contribute by a

stochastic optimisation method that can attain a solution through

random sampling of payo matrices without the need to store

exponential-size input. Contrary to memory requirements reported

in Table 1, our method requires a linear (in number of agents) per-

iteration complexity of the form O(Nk). It is worth noting that most

other techniques need to store exponentially-sized matrices before

commencing with any numerical instructions. Though we do not

theoretically contribute to reductions in time complexities, we do,

however, augment our algorithm with a double-oracle heuristic

for joint strategy space reduction. In fact, our experiments reveal

that αα -Rank can converge to the correct top-rank strategies in

hundreds of iterations in large strategy spaces, i.e., spaces with ≈

33 million proles.

Optimisation Problem Formulation: Computing the station-

ary distribution can be rewritten as an optimisation problem:

min

x

1

n

����T T x − x
����2
2

s.t. xT 1 = 1, and x � 0, (4)

where the constrained objective in Eqn. 4 simply seeks a vector x
minimising the distance between x , itself, andTT x while ensuring

that x lies on an n-dimensional. To handle exponential complexities

needed for acquiring exact solutions, we pose a relaxation the

problem in Eqn. 4 and focus on computing an approximate solution

vector x̃ instead, where x̃ solves:

min

x

1

n

����T T x − x
����2
2

s.t.

��xT 1 − 1

�� ≤ δ for 0 < δ < 1, and x � 0. (5)

Before proceeding, however, it is worth investigating the rela-

tion between the solutions of the original (Eqn. 4) and relaxed

(Eqn. 5) problems. We summarise such a relation in the following

proposition that shows that determining x̃ suces for computing

a stationary distribution of α-Rank’s Markov chain:

Proposition 5.1 (Connections to Markov Chain). Let x̃ be

a solution to the relaxed optimisation problem in Eqn. 5. Then,

x̃/| |x̃ | |1 = v is the stationary distribution of Eqn. 3 in Section 2.

Importantly, the above proposition, additionally, allows us to

focus on solving the problem in Eqn. 5 that only exhibits inequality

constraints. Problems of this nature can be solved by considering a

barrier function leading to an unconstrained nite sum minimisa-

tion problem. By denoting bi to be the i
th

row ofTT − I , we can,

thus, write:
1

n
����TT x − x

����2
2
= 1

n
∑n
i=1

(
xTbi

)
2

. Introducing loga-

rithmic barrier-functions, with λ > 0 being a penalty parameter,

we have:

min

x ∈Rn

1

n

n∑
i=1

(
xT bi

)
2

− λ log
(
δ 2 −

[
xT 1 − 1

]
2

)
−
λ
n

n∑
i=1

log(xi ). (6)

Eqn. 6 represents a standard nite minimisation problem, which

can be solved using any o-the-shelf stochastic optimisation meth-

ods, e.g., stochastic gradients, ADAM [13]. A stochastic gradient

execution involves sampling a strategy prole it ∼ [1, . . . ,n] at iter-
ation t , and then executing a descent step: xt+1 = xt −ηt∇x fit (xt ),

Algorithm 2 αα -Oracle: Practical Multi-Agent Evaluation

1: Inputs: Number of trails N , total number of iterations T , de-

caying learning rate {ηt }
T
t=1, penalty parameter λ, λ decay rate

γ > 1, and a constraint relaxation term δ , initialise p = 0.

2: while p ≤ N do:

3: Set the counter of running oracles, k = 0

4: Initialise the strategy set {S
[0]

i } by sub-sampling from {Si }

5: while {S
[k ]
i } , {S

[k−1]
i } AND k ≥ 1 do:

6: Compute total number of joint proles n =
∏N

i=1 |S
[k ]
i |

7: Initial a vector x0 = 1/n1
8: for t = 0 → T − 1 do: // αα

-Rank update

9: Uniformly sample one strategy prole i
[k ]
t ∼ {1, . . . ,n}

10: Construct b
[k]
it

as the i
[k ]
t row ofT [k ],T − I

11: Update x [k]t+1 = x [k ]t − ηt∇x fi [k ]t
(x [k ]t ) by Eqn. 7

12: Set λt+1 = λt /γ

13: Get π
[p], top
joint

by ranking the prob. mass ofv[k ] =
x [k ]
T

| |x [k ]
T | |1

14: Set k = k + 1
15: for each agent i do: // The oracles (Section 5.1)

16: Compute the best response π∗
i to π

[p], top
joint

by Eqn. 8

17: Update the strategy set by S
[k ]
i = S

[k−1]
i ∪ π?i

18: Set p = p + 1
19: Return: The best performing joint-strategy prole πjoint,?

among {π
[1:N], top
joint

}.

with ∇x fit (xt ) being a sub-sampled gradient of Eqn. 6, and λ being

a scheduled penalty parameter with λt+1 = λt/γ for some γ > 1:

∇x fit (xt ) = 2

(
bTit 1

)
bit +

2λt
(
xTt 1 − 1

)
δ 2 −

(
xTt 1 − 1

)
2
− λt/n

[
1

[xt ]1
, . . . ,

1

[xt ]n

]T
.

(7)

To avoid any confusion, we name the above stochastic approach

of solving α-Rank via Eqn. 6 & 7 as αα
-Rank and present its

pseudo-code in Algorithm 2. When comparing our algorithm to

these reported in Table 1, it is worth highlighting that computing

updates using Eqn. 7 requires no storage of the full transition or

payo matrices as updates are performed only using sub-sampled

columns as shown in line 11 in Algorithm 2.

5.1 Ecient Exploration via Oracles

Stochastic sampling enables to solve α-Rank with no need to store

the transition matrix T ; however, the size of the column bi (i.e.,∏N
i=1 ki ) can still be prohibitively large. Here we further boost

scalability of our method by introducing an oracle mechanism. The

heuristic of oracles was rst proposed in solving large-scale zero-

sum matrix games [19]. The idea is to rst create a sub-game in

which all players are only allowed to play a restricted number of

strategies, which are then expanded by adding each of the players’

best-responses to their opponents; the sub-game will be replayed

with agents’ augmented strategy sets before a new round of best

responses is computed.

The best response is assumed to be given by an oracle that can
be simply implemented by a grid search, where given the top-rank

prole π
top

−i at iteration k , the goal for agent i is to select the optimal
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Figure 3: Ranking intensity sweep on (a) Battle of Sexes (b) Biased RPS (c) Prisoner’s Dilemma.

Figure 4: Comparisons of time and memory complexities on varying sizes of random matrices.

π∗
i from a pre-dened strategy set Si to maximise its reward:

π?
i = arg max

πi ∈Si
E
πi ,π

top

−i

[∑
h≥0

γ hi Pi (xh, ui,h, u−i,h )
]
, (8)

with xh denoting the state, ui,h ∼ πi (·|xi,h ), u−i,h ∼ π
top

−i (·|x−i,h )

denoting the actions from agent i and the opponents, respectively.

Though worse-case scenario of introducing oracles would require

solving the original evaluation problem, our experimental results

on large-scale systems demonstrate eciency by converging early.

For a complete exposition, we summarise the pseudo-code of our

proposed method, named asαα
-Oracle, in Algorithm 1. αα -Oracle

degenerates to αα -Rank (lines 6 − 13) if one initialises strategy sets

of agents by the full size at the beginning, i.e., {S
[0]

i } , {Si }.

Providing valid convergence guarantee for αα -Oracle is an in-

teresting direction for future work. In fact, recently [20] proposed

a close idea of adopting an oracle mechanism into α-Rank without

any stochastic solver however. Interestingly, it is reported that bad

initialisation can lead to failures in recovering top-rank strategies.

Contrary to the results reported in [20], we rather demonstrate the

eectiveness of our approach through running multiple trails of

initialisation for {S
[0]

i }. In addition, we also believe the stochastic

nature of αα -Oracle potentially prevents from being trapped by

the local minimal from sub-games.

6 EXPERIMENTS

In this section, we demonstrate the scalability of αα -Rank in suc-

cessfully recovering optimal policies in self-driving car simulations

and in the Ising model–a setting with tens-of-millions of possible

strategies. We note that these sizes are far beyond the capability

of state-of-the-art methods; α-Rank [22] considers at maximum 4

agents with 4 strategies. All of our experiments were run only on a

single machine with 64 GB memory and 10-core Intel i9 CPU.

Sparsity Data Structure: During the implementation phase,

we realised that the transition probability, T [k]
, of the Markov

chain induces a sparsity pattern (each row and column in T [k ]

contains

∑N
i=1 k

[k ]
i −N +1 non-zero elements, check Section 5) that

if exploited can lead to signicant speed-up. To fully leverage such

sparsity, we tailored a novel data structure for sparse storage and

computations needed by Algorithm 2. More details are in Appendix.

Correctness of Ranking Results: As Algorithm 2 is a general-

isation (in terms of scalability) of α-Rank, it is instructive to validate
the correctness of our results on three simple matrix games. Due

to space constraints, we refrain the full description of these tasks

to Appendix. Fig. 3, however, shows that, in fact, results generated

by αα -Rank are consistent with these reported in [22].

Complexity Comparisons on RandomMatrices: To further

assess scalability, we measured the time and memory needed by

our method for computing stationary distributions of varying sizes

of simulated random matrices. Baselines included eigenvalue de-

composition from Numpy, optimisation tools from PyTorch, and

α-Rank from OpenSpiel [14]. We terminated execution of αα -Rank
when gradient norms fell-short a predened threshold of 0.01. Ac-

cording to Fig. 4, αα -Rank can achieve three orders of magnitude

reduction in time (i.e. 1000x faster) compared to default α-Rank
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Figure 5: Large-scale multi-agent evaluations. (a) Convergence of the optimal joint-strategy prole in self-driving simulation.

(b) Status of the Ising-model equilibrium measured by ξ =
|N↑−N↓ |

|N |
. (c) Change of the top-rank prole from αα -Oracle.

implementation from [14]. Memory-wise, our method uses only

half of the space when considering, for instance, 10
4 × 10

4
matrices.

Autonomous Driving on Highway: Having assessed correct-

ness and scalability, we now present novel application domains

on large-scale multi-agent/multi-player systems. For that we made

used of high-way [17]; an environment for simulating self-driving

scenarios with social vehicles designed to mimic real-world trac

ow. We conducted a ranking experiment involving 5 agents each

with 5 strategies, i.e., a strategy space in the order of O(55) (3125

possible strategy proles). Agent strategies varied between “ratio-

nal” and “dangerous” drivers, which we encoded using dierent

reward functions during training (complete details of reward func-

tions are in Appendix). Under this setting, we knew, upfront, that

optimal prole corresponds to all agents being ve rational drivers.

We considered both αα -Rank and αα -Oracle, and reported the

results by running 1000 random seeds. We set αα -Oracle to run

200 iterations of gradient updates in solving the top-rank strategy

prole (lines 8 − 12 in Algorithm 2). Results depicted in Fig. 5(a)

clearly demonstrate that both our proposed methods are capable of

recovering the correct highest ranking strategy prole. αα -Oracle
converges faster than αα -Rank, which we believe is due to the

oraclemechanism saving time in ineciently exploring “dangerous"

drivers upon one observation. We also note that although such size

of problem are feasible using α-Rank and the Power Method, our

results achieve 4 orders of reduction in number of iterations.

Ising Model Experiment: We repeated the above experiment

on the Ising model [12] that is typically used for describing ferro-

magnetism in statistical mechanics. It assumes a system of magnetic

spins, where each spin aj is either an up-spin, ↑, or down-spin, ↓.

The system energy is dened by E(a, h) = −
∑
j (h ja j +

λ
2

∑
k,j a jak )

with hj and λ being constant coecients. The probability of one

spin conguration is P (a) = exp(−E(a,h)/τ )∑
a exp(−E(a,h)/τ ) where τ is the envi-

ronmental temperature. Finding the equilibrium of the system is

notoriously hard because it is needed to enumerate all possible

congurations in computing P(a). Traditional approaches include
Markov Chain Monte Carlo (MCMC). An interesting phenome-

non is the phase change, i.e., the spins will reach an equilibrium in

the low temperatures, with the increasing τ , such equilibrium will

suddenly break and the system becomes chaotic.

Here we try to observe the phase change through multi-agent

evaluation methods. We assume each spins as an agent, and the

reward to be r j = hjaj + λ
2

∑
k,j a

jak . We consider the top-rank

strategy prole from αα -Oracle as the system equilibrium and

compare it against the ground truth from MCMC. We consider a

5 × 5 2D model which induces a prohibitively-large strategy space

of the size 225 (≈ 33 million strategies) to which existing methods

are inapplicable. Fig. 5(b) illustrates that our method identies the

same phase change as that of MCMC. We also show an example of

how αα -Oracle’s top-ranked prole nds the system’s equilibrium

when τ = α = 1 in Fig. 5(c). Note that the problem of 25 agent with

2 strategies goes far beyond the capability of α-Rank on one single

machine (billions of elements inT ).

7 CONCLUSIONS & FUTUREWORK

In this paper, we presented major bottlenecks prohibiting α-Rank
from scaling beyond tens of agents. Dependent on the type of

input, α-Rank’s time and memory complexities can easily become

exponential. We further argued that notions introduced in α-Rank
can lead to confusing tractability results on notoriously dicult NP-

hard problems. To eradicate any doubts, we empirically validated

our claims by presenting dollars spent as a non-refutable metric.

Realising these problems, we proposed a scalable alternative

for multi-agent evaluation based on stochastic optimisation and

double oracles, along with rigorous scalability results on a variety

of benchmarks. For future work, we plan to understand the relation

between α-Rank’s solution and that of a Nash equilibrium. Second,

we will attempt to conduct a theoretical study on the convergence

of our proposed αα -Oracle algorithm.
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