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ABSTRACT
We consider a requester who acquires a set of data (e.g. images)

that is not owned by one party. In order to collect as many data

as possible, crowdsourcing mechanisms have been widely used to

seek help from the crowd. However, existing mechanisms rely on

third-party platforms, and the workers from these platforms are

not necessarily helpful and redundant data are also not properly

handled. To combat this problem, we propose a novel crowdsourc-

ing mechanism based on social networks, where the rewards of

the workers are calculated by information entropy and a modified

Shapley value. This mechanism incentivizes the workers from the

network to not only provide all data they have but also further

invite their neighbours to offer more data. Eventually, the mecha-

nism is able to acquire all data from all workers on the network and

the requester’s cost is no more than the value of the data acquired.

The experiments show that our mechanism outperforms traditional

crowdsourcing mechanisms.
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1 INTRODUCTION
Recent years witnessed the rise and development of deep learn-

ing [6]. Many laboratories and companies put emphasis on building

neural network applications such as DeepMind, Facebook AI Re-

search (FAIR) and Stanford AI Lab (SAIL). In these applications,

large-scale datasets are indispensable. Therefore, data acquisition

underpins the success of these applications. Traditionally, they may

hire voluntaries to collect data such as photos or voices, which is a

very time-consuming and labour-intensive process.

Crowdsourcing is a teamwork collaboration mode in which com-

panies use the open call format to attract potential workers to do

the task at a lower cost, which was first proposed by Howe [5].

Many companies are committed to crowdsourcing services such as

Amazon Mechanical Turk and gengo AI. Consequently, more and

more research teams turn to these platforms to acquire data. For

example, ImageNet [2] from SAIL is collected via Mechanical Turk.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

In traditional crowdsourcing models, the requester has to pay

not only the data providers but also the third-party crowdsourcing

platforms. However, the data collected in this way may be redun-

dant, but the requester still has to pay for it. Therefore, whether

the requester can benefit from the paid crowdsourcing platforms is

not clear.

In this paper, we propose a novel crowdsourcing mechanism for

data acquisition via social networks. The requester is the owner of

the mechanism and she can use it to collect data without any third-

party platforms. The mechanism requires the requester to release

the task information to her neighbours on the network. Under this

mechanism, the participants will be incentivized to provide all their

data and invite all their neighbours to do the task. They will gain

payoffs not only from their offered data but also from inviting their

neighbours. By doing so, the task information can be disseminated

through the whole social network without paying the workers in

advance.

Different from other crowdsourcing mechanisms, our mecha-

nism only distributes rewards to those who provide non-redundant

data and do effective diffusion. That is, the workers will not gain any

payoff if they do not contribute to the data acquisition task. Hence it

can eliminate redundant and irrelevant data, and avoid unnecessary

expenses for the requester. More importantly, our mechanism can

incentivize workers participated to invite all their neighbours to

join the task, which is not possible under existing mechanisms.

In the crowdsourcing literature, there are many related mech-

anisms published. Franklin et al. focused on how to use crowd-

sourcing to process difficult queries [4]. Chawla et al. proposed an

optimal crowdsourcing contest for high-quality submissions [1].

Zhou et al. studied a new method of measurement principle for

work quality [20]. Miller et al. devised a scoring system to evaluate

the feedback elicited [8]. Radanovicet al. presented a general mech-

anism to reward the workers according to peer consistency [12].

They are all different from our work. They mainly focused on the

crowdsourcing model to improve the quality of the work provided

by the workers and their settings have not considered the task

propagation between workers. In our setting, we also incentivize

the workers to propagate the task information to their neighbours

to collect more data. Naroditskiy et al. [10] initiated a formal study

of verification in crowdsourcing settings where information is prop-

agated through referrals. However, there is often a single ground

truth in their settings which is unknown to the requester. Our set-

ting is not seeking the answer for a ground truth, and we are aiming

for collecting rich data.

There also exists some interesting literature about information

diffusion on social networks. Narayanam and Narahari studied the

target set selection problem [9], which involves discovering a small

subset of influential workers in a given social network, to maxi-

mize the diffusion quality of the workers rather than incentivizing
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them to diffuse. In terms of incentivizing people to disseminate the

task information, Li et al. proposed a single-item auction diffusion

mechanism via social networks and Zhao et al. then generalized

the mechanism for multiple items [7, 19]. The problem they studied

is a non-cooperative game, while in our setting the workers may

benefit from others’ participation. Emek et al. studied the reward

mechanisms in multi-level marketing within social networks [3].

However, they focused on the false-name manipulations and in

their setting, each agent occurring in the referral tree has to pur-

chase the product, which is not required in our setting. Another

related work is the MIT winning solution under the DARPA Net-

work Challenge [11]. However, their solution only works for tree

structures. Our mechanism refers to their idea and puts forward a

modified payoff policy for workers’ diffusion contribution in single-

source directed acyclic graphs. More importantly, the reward in

the DARPA network challenge is predefined, while in our setting it

varies according to the data offered by the workers.

Our mechanism is also closely related to the strategy diffusion

mechanism proposed by Shen et al. [16]. However, they focused on

the problem of false-name attacks and did not consider data redun-

dancy. Also, their mechanism cannot guarantee that the workers

will diffuse the task information to all their neighbours. Winter [17]

proposed a coalition structure value for level structures. Their idea

is similar to our method of evaluating the data contribution. Nev-

ertheless, their structure does not take the priority of different

coalitions in the same level into consideration, which is essential

for the diffusion incentive in our setting.

The contributions of our mechanism advance the state of the art

in the following ways:

• We model a crowdsourcing mechanism on social networks

without relying on third-party platforms. Our mechanism in-

centivizes the workers to not only offer their data truthfully

but also propagate the task information to all their neigh-

bours without paying them in advance. This guarantees that

more non-redundant data will be collected.

• We give a novel method to evaluate the non-redundancy of

the acquired data and distribute rewards to the workers with-

out unnecessary expenses. This is achieved by a modified

Shapley value.

• The cost of the requester will be no more than the value

of the data acquired and the payoffs are adjustable by the

requester, which incentivizes the requesters to apply our

mechanism in real-world applications.

The remainder of the paper is organized as follows. Section 2

describes the model of the problem. Section 3 shows the challenges

for directly extending traditional crowdsourcing mechanism on

social networks. Section 4 shows the negative result and gives a

description of the proposed mechanism. Section 5 gives a approach

to choose the valuation function for the mechanism. Section 6

analyzes the key properties of the mechanism. Finally, we conduct

experiments in Section 7 and discuss future work in Section 8.

2 THE MODEL
Consider a data acquisition task T that is executed on a social

network. To simplify the representation, we first model the network

as a directed acyclic graph (DAG) G = (V , E) with a single source

s ∈ V which is a special node called the requester of task T , and
later on we will consider a general graph. In the graph,V = {s}∪N
where N = {1, . . . ,n} denotes the set of n workers and E denotes

the information flow between vertices. For any i , j ∈ V , if there
is a directed edge ei j ∈ E from i to j, then i can directly propagate

the task information to j. Here, we say j is i’s child and i is j’s

parent. Let rci be the set of i’s children, r
p
i be the set of i’s parents

and ri = (r
c
i , r

p
i ) be the neighbour set of each i ∈ V . If there is a

directed path from i to j, then we say j is i’s successor and i is j’s
predecessor. For each i ∈ V , let succ(i) be the set of i’s all successors,
and pred(i) be the set of i’s all predecessors. Each worker i ∈ V has

a depth li ≥ 0 representing the length of the shortest path from the

requester s to i .
In the above network, requester s wants to collect data of task

T . Each worker i ∈ N is a potential data owner and has a private

dataset Di = {d
1

i ,d
2

i , . . . ,d
k
i } related to taskT , where each d

j
i ∈ Di

represents an atomic data (e.g. an image) and k is the number of

atomic data owned by theworker i . LetD be the space of all possible

datasets owned by workers. In our setting, we are not aiming for a

single ground truth, instead, we try to collect a dataset as rich as

possible.

Given the problem setting, without using crowdsourcing plat-

forms, it is evident that the requester can only collect data among

her neighbours with whom she can directly communicate. Tradi-

tionally, to collect as many required data as possible, the requester

tends to do propagation with the help of some paid third-party

crowdsourcing platforms (such as Amazon Mechanical Turk and

gengo AI). However, the quality of the data collected cannot be

guaranteed and users may tend to give redundant data which is

costly but not useful for the requester.

In this paper, we propose a novel diffusion mechanism for crowd-

sourcing the data. The goal of the mechanism is to incentivize the

workers on the social network to provide all the data they have

and also propagate the task information to all their neighbours.

Different from other data collection platforms, our mechanism does

not reward the redundant data providers (i.e., duplicate data will

not be paid). Furthermore, the workers’ total payoff is relevant not

only to their provided data but also to their diffusion contribution

(inviting neighbours).

For each worker i ∈ N , let θi = (Di , r
c
i ) be i’s type. Due to

the information flow constraint, we do not need to consider r
p
i

in i’s strategy space. Then the type profile of all the workers is

denoted as θ = (θ1, θ2, . . . , θn ) = (θi , θ−i ), where θ−i represents
the type profile of all workers except i . Let Θi be i’s type space, and
Θ = (Θ1, . . . ,Θn ) = (Θi ,Θ−i ) is the type profile space for all the
workers.

Our mechanism requires each worker i ∈ N participating in the

mechanism to report their type. Worker i may not report her type

θi truthfully if it is her interest to do so. Let θ ′i = (D
′
i , r

c
i
′) be the

type worker i reported, where D ′i is the data i provided and rci
′
is

the children i has invited to do the task. Let θ ′i = nil if worker i is
not invited or refuses to participate in the mechanism. In the rest

of the paper, we use θ ′ to denote the type reports of all workers,

which can be different from their true type profile θ .
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Definition 2.1. Given a report profile θ ′ of all workers, let the
network generated from θ ′ be G(θ ′) = (V ′, E ′) ⊆ G, where V ′ =
{s} ∪

⋃
i ∈N rci

′
and E ′ ⊆ E is reduced by V ′.

Definition 2.2. A report profile θ ′ is feasible if for each worker

i ∈ N with θ ′i , nil , there exists at least one path from requester s
to i on the network G(θ ′). Given workers’ true type profile θ , let
F (θ ) be the set of all feasible report profiles under θ .

S

2 3

7

5

1

4

(a) A social network.

S

2 3

7

5

1

4

(b) The generated network.

Figure 1: Given rc
2

′ = {4} and rc
3

′ = �, θ ′
5
and θ ′

7
must all be nil

in any feasible report profile θ ′ ∈ F (θ ) since worker 2 and 3

do not invite 5.

Figure 1 shows an example of feasible report profiles. Intuitively,

feasibility means that an agent cannot join in the mechanism if she

is not invited/informed about the task, which holds naturally in

practice. In other words, infeasible cases will not happen in our

mechanism since a worker cannot know the task information if

nobody else tells her. Therefore, the following discussion will only

focus on feasible report profiles.

In the rest, we define our crowdsourcing diffusion mechanism

and its desirable properties.

Definition 2.3. A crowdsourcing diffusion mechanismM on the

social network is defined by a payoff policy p = (pi )i ∈N , where

pi : Θ 7→ R. Given a feasible report profile θ ′ ∈ F (θ ), pi (θ
′)

is the payoff of worker i for her data contribution and diffusion

contribution.

To design a crowdsourcing diffusion mechanism, we hope that

workers are incentivized to give all their data and invite all their

neighbours to offer more data. This property is called incentive

compatibility. An incentive compatible (truthful) diffusion mecha-

nism guarantees that for all workers i ∈ N , reporting her true type

is a dominant strategy, i.e., θ ′i = (Di , r
c
i ) = θi .

Definition 2.4. A crowdsourcing diffusion mechanismM = p
is incentive compatible (IC) if pi (θi , θ

′
−i ) ≥ pi (θ

′′
i , θ
′′
−i ), for all

i ∈ N , all θ ′ ∈ F (θ ), all θ ′′i ∈ Θi , where for any j , i , θ ′′j = θ ′j if

there exists a path from s to j in G(θ ′′i , θ
′
−i ), otherwise θ

′′
j = nil .

Note that in the IC definition, we need to adjust the reports of

θ ′
−i when i’s report changes because some workers may not know

the task information consequently.

Under the crowdsourcing diffusion mechanism M = p, re-
quester’s payment Ps is the sum of the payments made to the

workers. Traditionally, budget constraint requires the requester’s

payment to be always bounded by a constant. However, in our

setting, owing to the objective to acquire as many data as possible,

we extend the definition and sayM is budget constrained if Ps
is bounded by the total value of the dataset collected, which is

reasonable since the expenditure of the requester will be no more

than the value of the data acquired.

Definition 2.5. A crowdsourcing diffusion mechanismM = p
is budget constrained (BC) if for all θ ∈ Θ and all θ ′ ∈ F (θ ), we
have

Ps (θ
′) =

∑
i ∈N pi (θ

′) ≤ v(D)

where v(D) is the value of the total dataset D acquired by the

requester.

We say a mechanism is unbounded reward constrained if there is

no limitation for a worker’s payoff even if the data she owned and

the number of her neighbours are limited. To meet the requirement,

the mechanism should reward workers for their inviting, which is

essential in practice for incentivizing diffusion.

Definition 2.6. A crowdsourcing diffusion mechanismM = p
is unbounded reward constrained (URC) if there exists some

positive integer d such that for every real a, there exists a worker i
of maximum number of neighbours d and a feasible reported type

θ ′ ∈ F (θ ) in some social network such that

pi (θ
′) ≥ a

In a data acquisition problem, whether a mechanism can differ-

entiate the redundancy of data is important. A data-redundancy

differentiable mechanism will not reward more to those repeated

data, which reduces the requester’s unnecessary expenditure. Thus

we also take it into consideration.

3 TRADITIONAL CROWDSOURCING
MECHANISM

Consider the data acquisition problem based on social networks,

seemingly the traditional crowdsourcing mechanism can be easily

extended to the new setting. However, in this section, we first extend

the traditional crowdsourcing mechanism on social networks and

then show that the extended mechanism may distribute rewards

for redundant data and violate the properties.

A classic crowdsourcing mechanism gives a fixed reward to each

worker participating in the task without considering the quality of

the data they provide. In this way, the mechanism cannot differen-

tiate agents based on their capabilities and contributions. That is,

no matter what data and how many data a worker provides, she

will receive a fixed reward which is predefined by the requester.

Besides, workers will not be incentivized to give all the data they

have since their reward will not increase with the amount of the

data they provide.

A simple modification of the above mechanism is to distribute

reward according to their work. For example, a fixed reward is

predefined for an atomic of data. Then the more data a worker

provides, the more reward will be given to her. However, since the

budget is constrained and some reward will be given to redundant
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data, it will not collect enough data for the requester. Moreover, the

workers have no incentive to invite their neighbours to do the task

as there is no reward for doing so, which violates the unbounded

reward constraint property.

Therefore, diffusion contribution should also be rewarded in

order to incentivize the workers to inform their neighbours about

the task. A trivial method is to set a fixed amount of money to

be the bonus pool for inviting their neighbours. Then the money

will be shared among all the workers with diffusion contribution

by scaling down to meet the constraint of budget. However, it

may violate the property of incentive compatibility and unbounded

reward constraint since the workers’ reward for their diffusion

contribution is related to the number of workers who share the

bonus pool. Hence, the workers may refuse to invite others in order

to share more money.

The above discussion raises a few questions: How can the mech-

anism avoid distributing the rewards to those redundant data? How

can the mechanism incentivize the workers to diffuse the task infor-

mation, without sacrificing the property of incentive compatibility,

budget constraint and unbounded reward constraint? In the next

section, we will introduce our mechanism which can handle all

these problems.

4 CROWDSOURCING DIFFUSION
MECHANISM

In this section, we first show the negative result of mechanism

design for data acquisition settings with cost. Then we focus on the

cost-free setting and present our novel diffusion mechanism with

desirable properties.

4.1 Impossibility Theorem
In what follows, we first study the data acquisition setting, where

each worker provides her data with some cost. We investigate

whether there exists any mechanism that satisfies incentive com-

patibility, individual rationality (non-negative utility), budget con-

straint and unbounded reward constraint when the cost for provid-

ing data is considered.

Let c(D ′i ) be the cost of worker i for providing her dataset D ′i ⊆
Di , which is verifiable for the requester. Then, for worker i ∈ N of

type θi , given a feasible report profile θ ′ of all buyers, i’s utility is

defined as

ui (θi , θ
′) = pi (θ

′) − c(D ′i )

where θ ′ = (θ ′i , θ
′
−i ) and θ

′
i = (D

′
i , r

c
i
′).

It is natural to require the mechanism to guarantee the non-

negative utility for eachworker nomatter what dataset she provides

and how many neighbours she invites. We say the mechanism is

individually rational if it satisfies such property.

Definition 4.1. A crowdsourcing diffusion mechanismM = p is

individually rational (IR) if ui (θi , θ ′) ≥ 0 for all i ∈ N , all θ ∈ Θ
and all θ ′ ∈ F (θ ).

Now, we show the negative result regarding the mechanism

design problem in the setting with cost.

Proposition 4.2. In the setting with cost, there exists no mecha-
nism which is individually rational and budget constrained.

Proof. Consider the social networkwith a requester andnwork-
ers. According to the definition of individual rationality, we have

ui (θi , θ
′) = pi (θ

′) − c(D ′i ) ≥ 0. Sum up the equations for all i ∈ N ,

we can infer that ∑
i ∈N

(
pi (θ

′) − c(D ′i )
)
≥ 0∑

i ∈N
pi (θ

′) ≥
∑
i ∈N

c(D ′i )

According to the definition of budget constraint, we have

∑
i ∈N pi (θ

′) ≤

v(D). Thus, we can infer the necessary condition that

nmin

i ∈N
c(D ′i ) ≤

∑
i ∈N

c(D ′i ) ≤ v(D)

n ≤
v(D)

mini ∈N c(D ′i )

However, for every
v(D)

mini∈N c(D′i )
, in which v(D) does not depend

on n, there always exists a realm such that n > v(D)
mini∈N c(D′i )

for

each n > m. □

This proposition shows that even if we do not consider IC and

URC, there is a trade-off between IR and BC for the setting with cost.

To deal with the problem, an alternative method may be preparing

extra money to compensate the cost for each worker. Thus, in the

following discussion, we only focus on the cost-free setting.

4.2 The mechanism
Next, we will introduce our novel crowdsourcing diffusion mech-

anism (CDM). Under CDM, redundant data will not be rewarded

and the workers’ reward will increase with the amount of non-

redundant data provided. Moreover, the workers are incentivized

to diffuse the task information to as many neighbours as possible to

gain more reward for their diffusion contribution. The mechanism

is also budget constrained.

The payoff policy of CDM is composed of two parts: data contri-

bution and diffusion contribution. The data contribution indicates

how the requester validates workers’ provided data, and the diffu-

sion contribution indicates how the requester validates workers’

diffusion on the social network. Finally, we will give the total payoff

policy by applying both.

4.2.1 Data Contribution. Since the data-redundancy of differen-

tiability is taken into consideration, an alternative method to evalu-

ate data contribution is Shapley value, which is a classical method

to allocate interest in collaborative games [14]. Our data acquisition

game is a kind of collaborative game. We define v : D 7→ R+ as

the valuation function that evaluates the value of a dataset D for

the requester. Here the valuation function v should be monotone

increasing and bounded, i.e., for datasets Dx and Dy , if Dx ⊆ Dy ,

then v(Dx ) ≤ v(Dy ) < ∞.

Then if we directly apply the Shapley value among all workers

on the network, the data contribution for each worker i will be:

ϕi =
∑

S ⊆N \{i }

|S |!(|N | − |S | − 1)!

|N |!

(
v(D ′S∪{i }) −v(D

′
S )
)

(1)
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Here DS is the dataset offered by the workers in set S : DS =⋃
i ∈S Di . Intuitively, the Shapley value calculates the average mar-

ginal valuation contribution of eachworker without considering the

network structure. However, with this simple application, work-

ers may not be willing to share the task information with their

neighbours.

Proposition 4.3. A crowdsourcing diffusion mechanism using
Shapley value directly as the evaluation of data contribution is not
incentive compatible.

Proof. Consider the network in Figure 3(a), if D1 = D2 = D
and workers 1 and 2 truthfully offer their data, i.e., D ′

1
= D1 and

D ′
2
= D2, we have ϕ1 = ϕ2 = v(D)/2 according to Equation (1).

However, if the worker 1 choose to not propagate the task in-

formation to worker 2, then her data contribution becomes ϕ ′
1
=

v(D) > ϕ1. □

Intuitively, the reason why Shapley value fails is that it divides

the rewards equally among all the workers who provide the same

data whatever the network structure. Then, the workers will not be

willing to invite their neighbours to the task as the neighbours who

have the same data will compete with the worker to reduce her pay-

off, which againsts what we want to achieve with the mechanism.

All the other methods which cannot differentiate the invitation

relationship will run into such problem.

To combat the diffusion issue with Shapley value, we design a

novel payoff sharing policy called layered Shapley value. Let Li
be the set of all the workers with depth i: Li = {j |j ∈ N and lj = i},

and L∗i be all theworkers in the first i layers: L
∗
i =

⋃i
k=1 Lk . Suppose

there are totally K layers on the network, then for each worker i ,
the layered Shapley value is defined as follows:

ˆϕi =
∑

S ⊆Lli \{i }

|S |!(|Lli | − |S | − 1)!

|Lli |!
·(

v

(
D ′L∗li −1∪S∪{i }

)
−v

(
D ′L∗li −1∪S

))
(2)

Intuitively speaking, Equation (2) calculates the average mar-

ginal contribution of the workers in the layer using the standard

Shapley value, but assumes that all the workers in the prior layers

have already joined the coalition before them. More specifically,

for the first layer (i.e., the requester’s neighbours), the standard

Shapley value is applied to calculate their data contribution among

the workers in the first layer only. Then for the workers in the

second layer, we also apply the Shapley value to compute their data

contribution, under the condition that all the workers in the first

layer have already been in the coalition. The calculation of workers

in the second layer will not change the Shapley value of those in

the first layer. This continues for all the other layers. This ensures

that workers close to the requester will have a higher priority to

get rewards for their data contributions. More importantly, with

the layered Shapley value, we can still ensure the following key

properties:

(1) The sum of all workers’ layered Shapley value is equal to the

valuation of the whole dataset given by workers, i.e.

∑
i ∈N

ˆϕi =
v(D ′N ).

S
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(a)
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(b)

Figure 2: (a) layers in a diffusion network; (b) an example of
diffusion contribution

(2) If i and j are two workers in the same layer Ll who are equiva-

lent in the sense that v(D ′L∗l−1∪S∪{i }
) = v(D ′L∗l−1∪S∪{j }

) for all

S ⊆ Ll s .t . i, j < S , then ˆϕi = ˆϕ j .
(3) If there is a worker i who has v(D ′L∗li −1∪S∪{i }

) = v(D ′L∗li −1∪S
)

for all S ⊆ Lli , which indicates that she does not provide any

extra information, then
ˆϕi = 0.

Therefore, we will not reward redundant data which has been

provided by others in the prior layers. The reason is that in this way

child agents cannot decrease the utility of their parents and then

all the workers are incentivized to propagate the task information

to their neighbours.

Take the network in Figure 2(a) as an example. Worker 1, 2 and 3

are in layer 1; worker 4, 5 and 6 are in layer 2; worker 7 and 8 are in

layer 3; worker 9 is in layer 4. The layered Shapley value of worker 1

is:
ˆϕ1 =

1

6
·(v(D ′

1
)+v(D ′

1
)+(v(D ′

{1,2}
)−v(D ′

2
))+(v(D ′

{1,3}
)−v(D ′

3
))+

(v(D ′
{1,2,3}

)−v(D ′
{2,3}
))+(v(D ′

{1,2,3}
)−v(D ′

{2,3}
))) = 1

6
·(2v(D ′

1
)−

v(D ′
2
) −v(D ′

3
)+v(D ′

{1,2}
)+v(D ′

{1,3}
) − 2v(D ′

{2,3}
)+ 2v(D ′

{1,2,3}
)).

This is consistent with intuition that what non-redundant data

should be.

4.2.2 Diffusion Contribution. In traditional crowdsourcingmech-

anisms, only those who are aware of the task information can com-

pete for some rewards. So the participants who have been informed

have no reason to invite their neighbours to do the task. Therefore,

to incentivize workers to propagate the information, CDM will give

them payoffs for their diffusion contribution. In other words, the

workers will gain benefits by spreading the task information to

their neighbours effectively.

In our mechanism, the diffusion contribution of a worker i for
her successor j is recursively computed as:

πi , j =


∑
k ∈rpi

′ πk , j · γ ·
1

m j
k

if i ∈ pred(j)\s

α · ˆϕ j if i = s
0 otherwise

(3)

where 0 < γ ≤ 1

2
and 0 < α ≤ 1.

Here, the parameters are interpreted as: m
j
k is the number of

worker k’s child neighbours which has a path to j. For example, in
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Figure 3: Basic cases in crowdsourcing diffusionmechanism

Figure 2(b), among all the child neighbours of the requester, only

worker 2 and worker 3 have a path to worker 7. Hence,m7

s = 2.

Similarly,m7

2
= m7

3
= 1. Factor γ is a discount factor and α is the

proportion factor, which are predefined coefficients. Note that πs , j
is a virtual payoff of the requester to simplify the calculation, which

will not be paid actually.

To show the intuition behind our mechanism, we study three

basic cases and only consider the diffusion contribution of worker

3 for her successor worker 4 in Figure 3(b), 3(c) and 3(d). Firstly,

we have πs ,4 = α · ˆϕ4 for all three cases. In Figure 3(b), since the

network is a chain, the contribution of a worker is her parent’s

contribution multiplied by a discount factor γ , then we have π2,4 =

γ · πs ,4 = γ · α · ˆϕ4 and π3,4 = γ · π2,4 = γ
2 · α · ˆϕ4. In Figure 3(c),

since the requester has two children who are connected to worker

4, the worker 1 and 2 have to share the discounted contribution

from their parent, then we have π1,4 = π3,4 =
1

2
γ ·πs ,4 =

1

2
γ ·α · ˆϕ4.

In Figure 3(d), since the diffusion path from 1 to 4 and from 2 to

4 both contains worker 3, worker 3’s contribution are the sum

of the discounted contribution from her parents. Then we have

π3,4 = γ · π1,4 + γ · π2,4 = γ · α · ˆϕ4. Therefore, all the workers’
contribution can be computed by Equation (3). Finally, the total

diffusion contribution of worker i is defined as:

πi =
∑
j ∈N

πi , j

The intuition behind the diffusion contribution of CDM is that

if a worker’s successor provides some non-redundant data, then

the worker will be rewarded for her diffusion. Furthermore, from

Equation (3), we can easily conclude that the diffusion contribution

is evaluated along the path layer by layer.

The requester can adjust the two factors α and γ for different

demands. A higher α implies that the requester is willing to give

more rewards for diffusion contribution, which will also bring

greater expenses. A higher γ means that the diffusion contribution

will decrease rapidly with depth.

Lemma 4.4. Given a data contribution ˆϕ j related to task T from
worker j , the diffusion contribution distributed to all her predecessors
is bounded.

Proof. According to the definition of diffusion contribution in

Equation (3), we can calculate the total contribution of j’s prede-
cessors as: ∑

i ∈N
πi , j ≤

∞∑
k=1

γk · α · ˆϕ j ≤
γ

1 − γ
· α · ˆϕ j

Since
ˆϕ j is bounded according to the properties of Equation (2), the

total contribution of j’s predecessors is also bounded. □

Take the network in Figure 2(b) as an example. Let α = 1 and

γ = 1

2
. If worker 7 has a data contribution

ˆϕ7, then we can calculate

all the corresponding diffusion contribution: πs ,7 = ˆϕ7; π2,7 =

π3,7 = ˆϕ7/4; π5,7 = ˆϕ7/4.

4.3 Total Payoff
At last, we can get our total payoff policy:

pi = λ ˆϕi + µπi

where 0 < α · µ ≤ λ ≤ 1

2
are predefined factors. This is to ensure

that the payoff for data contribution is greater than that for diffu-

sion contribution. Otherwise, the workers may not want to offer

their data. Another important observation is pi ≥ 0 and bounded

since
ˆϕi ≥ 0 and bounded. The detailed proof will be illustrated in

Section 6.

The total procedure of the mechanism is shown below.

Crowdsourcing Diffusion Mechanism (CDM)

Input:
A feasible θ ′ ∈ F (θ ) and parameters λ, µ, α and γ s.t. 0 <

α · µ ≤ λ ≤ 1

2
, 0 < γ ≤ 1

2
and 0 < α ≤ 1.

(1) Construct the generated social network graph G(θ ′).
(2) Run breadth first search on the graphG(θ ′) and get the

layer sets L1, L2, . . . , LK .
(3) For i in 1 . . .K , consider workers in Li :

Compute the layered Shapley value
ˆϕ j for each worker

j in Li by Equation (2).

(4) Initialize πi , j = 0 for all i , j ∈ N .

(5) For each worker i ∈ N , start from the requester s , set

B = {s}, πs ,i = α ˆϕi . Until B = {i}, do:
(a) For each worker j ∈ B, consider each k ∈ rcj

′ ∩

pred(i), update the diffusion contribution πk ,i ←
πk ,i + γ · πj ,i/m, wherem = |rcj

′ ∩ pred(i)|.

(b) Set B =
⋃
rcj
′ ∩ pred(i).

(6) For each worker i , calculate πi =
∑
j ∈N πi , j .

Output:
Return total payoff λ ˆϕi + µπi for each worker i .

In general, CDM is a centralized data acquisition mechanism. In

the beginning, the requester does not know all the workers except

her neighbours, so she can only inform her neighbours about the

task. Under CDM, the workers informed are incentivized to invite

their neighbours to join in the task and to provide all the data they

owned to the requester directly. In this way, the requester can know

the whole network and collect data as rich as possible without any

third-party platforms.

5 INFORMATION ENTROPY
Till now, we have qualified the data contribution by the layered

Shapley value and presented the mechanism. There is one remain-

ing problem when we apply it to a real-world application, which

is how to choose the valuation function v . Here we will give a

possible approach using information entropy. Information entropy

is a function which was first proposed by Shannon [13]. Now it
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becomes a traditional method to measure the amount of the infor-

mation of data [15, 18]. Information entropy is defined in terms of

distributions q on some space X with finite dimension |X |:

H (q) = −E[log q]
To evaluate a dataset D related to the data acquisition task T by

information entropy, we can assume the overall dataset required

by the requester s can be classified inm independent target classes,

denoted by X = {X1, . . . ,Xm }. For each class X j ∈ X, let X j
be

its feature space with a predefined finite dimension |X j |. Then for

a dataset D, every atomic data d ∈ D can be expressed as a feature

vector d = (x1d , . . . , x
m
d ), where x

j
d ∈ X

j
is the specific feature in

class X j
for 1 ≤ j ≤ m. For example, if the task is to collect images

of nature, let the two target classes be animals and plants. The
space of animals is defined as {doд, cat, others} and the space of

plants is defined as {tree, f lower , дrass, tree and f lower , others}.
Suppose a datasetD has two imagesd1 andd2, whered1 is an image

with a dog beside a tree while d2 is an image with a cat lying on

the lawn. Then d1 = (doд, tree) and d2 = (cat,дrass).
We also need to define a distribution functionQ : D 7→ q, where

q = (q1, . . . , qm ) is the distribution vector of the dataset D. Each qj

represents the distribution over the feature space X j
of the dataset

D. In the example above, the distribution of the class animals is
q1 = (0.5, 0.5, 0) and the distribution of the class plants is q2 =
(0.5, 0, 0.5, 0, 0). Therefore, Q(D) = ((0.5, 0.5, 0), (0.5, 0, 0.5, 0, 0)).

Now we can use information entropy to evaluate a dataset D
using the joint entropy defined onm independent target classes:

v(D) ≜ H (Q(D)) = H (q1, . . . , qm) =
m∑
i=1

H (qi) (4)

Lemma 5.1. Given a dataset D related to task T , the valuation of
the dataset D by information entropy is bounded.

Proof. According to the definition of information entropy, we

can calculate the valuation of D as:

v(D) =
m∑
i=1

H (qi) ≤
m∑
i=1

log |X i |

Since the dimensions of feature spaces of the task T are prede-

fined and finite, the valuation v(D) is bounded. □

6 PROPERTIES OF CDM
In this section, we will prove that our crowdsourcing diffusion

mechanism is incentive compatible, unbounded reward constrained

and budget constrained. The mechanism also helps the requester

collect more non-redundant data. With these properties, a requester

is incentivized to apply our mechanism.

Theorem 6.1. The data collected from the crowdsourcing diffusion
mechanism is no less than only doing the crowdsourcing among the
requester’s neighbours.

Proof. Traditionally, the participants in crowdsourcing mech-

anism are those whom the requester can directly communicate

with (i.e., the requester is a platform and participants are the reg-

istered users of the platform). These users can be viewed as the

requester’s child neighbours in CDM, denoted as rcs ∈ N , which is

a subset of all the workers on the social network. Then we have:

DCDM
N =

⋃
i ∈N Di ⊃

⋃
r cs Di . Therefore, the amount of data col-

lected in CDM is always equal to or greater than that of traditional

crowdsourcing. □

As is proved in Theorem 6.1, more non-redundant data will be

acquired by CDM, which incentivizes the requester to apply our

mechanism.

Theorem 6.2. The crowdsourcing diffusion mechanism is incentive
compatible.

Proof. For each worker i , her private data Di is composed of

three parts (D
f
i ,D

i
i ,D

b
i ), where D

f
i , D

i
i and D

b
i respectively means

the data has been offered by the workers in the previous layers,

the data can be only offered by the workers in the same layer as i
and the data can be offered by the workers in the succedent layers.

Obviously, we can discuss the three parts separately.

(1) For D
f
i , the worker i will receive zero payoffs in our mecha-

nism. She cannot enlarge this payoff by reporting a D
f
i
′
⊆

D
f
i or by inviting fewer workers since it has nothing to do

with the workers in previous layers.

(2) For Di
i , suppose in the layer where i is, there are k work-

ers (including i) own this data where 1 ≤ k ≤ |Lli |. Then
according to the property of Shapley value, if i truthfully
offers Di

i , these k workers will share the payoffs for this data.

Therefore, the payoff the worker i will receive is λv(Di
i )/k .

If she offers a Di
i
′
⊆ Di

i , then the payoff will become to

λv(Di
i
′
)/k ≤ λv(Di

i )/k . If she invites fewer workers, it has
nothing to do with her payoffs.

(3) For Db
i , suppose worker i is the predecessor of the first

worker j in the succedent layers who also owns this data;

otherwise, she will not be rewarded if not offering this data

or inviting fewer neighbours. If she reports Db
i
′
⊂ Db

i , she

transfers some of her data payoffs to diffusion payoffs. Then

the payoff for her diffusion contribution is µπi , j < µ ·α · ˆϕ j ≤

λ ˆϕ j = λv(Db
i − D

b
i
′
), where λv(Db

i − D
b
i
′
) is the payoff if i

offers this part of data by herself. Hence, she will be likely

to offer the whole Db
i by herself.

Therefore, for each worker i , truthfully reporting her type is the

dominant strategy, i.e., θ ′i = θi = (Di , r
c
i ). □

Theorem 6.2 shows that all the agents’ dominant strategy is to

provide all the data they owned and invite all their neighbours for

their interests. Then we show that workers’ reward is unbounded

and the requester’s expenditure will be no more than the value of

the data acquired, which incentivizes both the requester and the

workers to take part in the mechanism.

Theorem 6.3. The crowdsourcing diffusionmechanism is unbounded
reward constrained and budget constrained.

Proof. According to the payoff policy, a worker’s total payoff is

composed of data contribution and diffusion contribution, which is

a monotone increasing function of non-redundant data her descen-

dants provided. Then, a worker’s reward will always be increasing
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as long as her neighbours are invited and they also invite their

neighbours. Thus, CDM is unbounded reward constrained.

The total dataset collected by our crowdsourcing diffusion mech-

anism is DN =
⋃
i ∈N Di . In Lemma 4.4, we have that

∑
i ∈N πi , j

is bounded. Since the requester’s expenses Ps is the sum of the

payoffs, then we have:

Ps =
∑
i ∈N

pi =
∑
i ∈N
(λ ˆϕi + µπi )

=
∑
i ∈N

λ ˆϕi +
∑
j ∈N

µ
∑
i ∈N

πi , j

≤
∑
i ∈N

λ ˆϕi +
∑
j ∈N

µ ·
γ

1 − γ
· α · ˆϕ j

=

(
λ + µ · α ·

γ

1 − γ

) ∑
i ∈N

ˆϕi

≤

(
λ + λ ·

γ

1 − γ

) ∑
i ∈N

ˆϕi

≤
λ

1 − γ

∑
i ∈N

ˆϕi

≤ 2λv(DN )

≤ v(DN )

Then, we can conclude that the expenses for a data acquisition

task T will not exceed v(DN ), which is bounded. Moreover, the

requester can control the expenses by adjusting the factors. □

At last, we show that our mechanism can work on any social

networks rather than DAGs. Since CDM is executed layer by layer,

we can first run breadth first traversal on the network and then

reduce the edges between the workers in the same layer. After

reduction, an arbitrary network can be transferred to a DAG with

all the properties remained.

7 EXPERIMENTS
In this section, we conduct experiments to demonstrate the per-

formance difference between CDM and three classic mechanisms.

Our experiments shed light on the advantage of data acquisition

through social networks for both the data non-redundancy and the

requester’s expenditure.

In our experiments, we compare the performance of four mech-

anisms:

• NonDiff_eps: The requester only collects data from her

neighbours and distributes each of worker a fixed reward ϵ
as a reward.

• NonDiff_shapley: The requester only collects data from

her neighbours and calculates each worker’s reward by the

standard Shapley value.

• Diff_eps: The requester collects data from all the workers

on social networks and distributes each of worker a fixed

reward ϵ .
• CDM: The requester collects data from all the workers on so-

cial networks and calculates each worker’s reward by CDM.

We set the number of workers as 15, the size of whole data as 100,

the maximum amount of data for each worker as 20, and randomly

generate social networks and the data each worker owned. We

set ϵ as the mean of the data from all the workers, which can be

viewed as the statistical expectation in real-world applications; we

set α = 0.1, γ = 0.5 and λ = µ = 1 in the setting of CDM. For each

graph, we ran the experiments 20 times. All the experiments were

performed using python 3.7 on a machine with a 2.9GHz processor

and 16GB RAM.

NonDiff_eps NonDiff_shapley Diff_eps CDM
Mechanisms

0

10

20

30

40

50

No
n-

re
du

nd
an

t D
at

a

Non-redundant data collected in different mechanisms

(a)

NonDiff_eps NonDiff_shapley Diff_eps CDM
Mechanisms

0

10

20

30

40

50

60

70

80

Ex
pe

nd
itu

re

Expenditure in different mechanisms

(b)

Figure 4: Given a social network,mechanismswith diffusion
collectmore data than those without diffusion. For the same
amount of data, rewards computed by Shapley value leads to
a lower expenditure.

In Section 3, we have discussed the limitations for traditional

crowdsourcing mechanisms, i.e., violating some theoretical prop-

erties. Here we move our attention to the practice of these mech-

anisms and compare their performance difference. As shown in

Figure 4, experimental results suggest that more workers can be

involved in the data acquisition task with diffusion and more data

can be collected consequently. Reward distribution with Shapley

value can avoid unnecessary expenses to redundant data, which

leads to a lower expenditure for the requester, which advances the

state of the art for data acquisition tasks.

8 CONCLUSION
In this paper, we have proposed a novel crowdsourcing mechanism

via social networks. The mechanism is run by the task requester,

and she does not need to pay in advance for the propagation. The

prominent contribution of our mechanism is that it incentivizes

participants to propagate the task information to their neighbours

and to involve more workers in the task. Besides, all workers will

also offer as many data as they have. One of the keys to guarantee

these properties is that workers close to the requester will have

a higher priority to win rewards than their children according to

layered Shapley value. We also conducted experiments to further

demonstrate the advantages of our mechanism.

Our work has several interesting aspects for future investigation.

First of all, the false-name attack is typical in a crowdsourcing sys-

tem. Hence, designing an advanced mechanism which is false-name

proof is a vital successor work. An interesting scene can be con-

sidered where workers’ action will be affected by their neighbours.

Another valuable further work can be generalising our mechanism

to other crowdsourcing tasks rather than data acquisition. Although

we have shown the impossibility theorem for the setting with cost,

it would also be a direction to study the problem after relaxing

some assumptions.
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