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ABSTRACT
Numerous deep reinforcement learning methods have been pro-
posed, including deterministic, stochastic, and evolutionary-based
hybrid methods. However, among these various methodologies,
there is no clear winner that consistently outperforms the others in
every task in terms of eective exploration, sample eciency, and
stability. In this work, we present a competitive and cooperative het-
erogeneous deep reinforcement learning framework called C2HRL.
C2HRL aims to learn a superior agent that exceeds the capabilities
of the individual agent in an agent pool through two agent man-
agement mechanisms: one competitive, the other cooperative. The
competitive mechanism forces agents to compete for computing
resources and to explore and exploit diverse regions of the solution
space. To support this strategy, resources are distributed to the
most suitable agent for that specic task and random seed setting,
which results in better sample eciency and stability. The other
mechanic, cooperation, asks heterogeneous agents to share their
exploration experiences so that all agents can learn from a diverse
set of policies. The experiences are stored in a two-level replay
buer and the result is an overall more eective exploration strat-
egy. We evaluated C2HRL on a range of continuous control tasks
from the benchmark Mujoco. The experimental results demonstrate
that C2HRL has better sample eciency and greater stability than
three state-of-the-art DRL baselines.

KEYWORDS
deep reinforcement learning, heterogeneous agents, competition
and cooperation

ACM Reference Format:

Han Zheng, Jing Jiang, Pengfei Wei, Guodong Long, and Chengqi Zhang.
2020. Competitive and Cooperative Heterogeneous Deep Reinforcement
Learning. In Proc. of the 19th International Conference on Autonomous Agents

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13,
2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Deep reinforcement learning (DRL) is a learning strategy combining
deep learning [39] and reinforcement learning [36]. It has achieved
promising results in numerous challenging real-world problems,
e.g., AI games [23], constraint satisfaction problems [33] and robotic
control [1]. However, existing DRL algorithms usually require a
huge training cost (including large amount of training data, the
powerful computing resources, and long training phase) to achieve
satisfactory performance. This is because they suer from two
major limitations: (1) the lack of eective exploration and (2) high
sample complexity.

Exploration is a key component of an agent’s ability to learn a
good policy and avoid converging to the local optima prematurely.
Various exploration strategies have been proposed, e.g., noise-based
exploration [8], information maximizing exploration [14], count-
based exploration [24, 37], curiosity-driven exploration [25] and
intrinsic motivation exploration [3]. Each of them has achieved
promising exploration eciency in some specic tasks. However,
it is unclear which strategy should be given the priority since none
of them consistently outperforms the others in various tasks. This
is probably because these exploration strategies are eective for
some tasks but not for other tasks. A general exploration strategy
that is universally appropriate across dierent tasks and learning
algorithms remains a big outstanding challenge.

Sample complexity and stability are other signicant challenges
for the DRL agent. Policy-based DRL methods, e.g., TRPO [29],
PPO [30], and A3C [22], are spectacularly sample-expensive due
to on-policy learning. They require new samples to be collected in
each gradient step. O-policy learning methods [36] improve the
sample eciency by reusing the past experiences. Nevertheless, the
combination of o-policy learning with high-dimensional and non-
linear function approximation by deep neural networks presents
a signicant challenge for convergence and stability [4]. What
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Figure 1: The high-level structure of C2HRL for one itera-
tion

is more problematic is that some researchers have demonstrated
that deceptive gradient information and random seeds drastically
aect learning performance [12, 26]. Given a learning task, how
to achieve high sample eciency while maintain stability across
dierent random seeds is not well studied.

In this paper, we explore how to design an ecient and stable
algorithm for continuous state and action spaces across dierent
tasks and random seed settings. Our aim is to propose a learning
diagram that consistently enables eective exploration and sam-
ple eciency in various learning tasks. To this end, we introduce
a Competitive and Cooperative Heterogeneous Deep Reinforce-
ment Learning (C2HRL) framework. C2HRL is a scalable frame-
work that leverages the advantages of dierent state-of-the-art
gradient-based DRL agents including deterministic-policy agent[9],
stochastic-policy[11] agent as well as gradient-free agent (learning
based on Evolutionary-Algorithms(EAs)[7]) to handle diverse DRL
tasks. Specically, we propose a cooperative exploration mecha-
nism that forces dierent agents to explore the action and state
space in a collaborative way. This is done by sharing the explo-
ration experiences among dierent agents. Moreover, to guarantee
sample eciency, we propose a competitive mechanism to dynam-
ically select the most promising agent in each training iteration,
and distribute the most computing resources to it. To implement
this strategy, we propose a new metric, called growth capacity, that
measures the potential of the agent on the growth of the cumulative
returns. Using this growth capacity metric, the resource manager
continually evaluates dierent agents and selects the best one in
each training iteration. Note that this competition mechanism also
leads to more stable performance across various random seeds.

Figure 1 illustrates the high-level structure of the C2HRL frame-
work. The agent pool contains a selection of heterogeneous agents,
e.g., TD3 [9], SAC [11], and EAs [21]. During the cooperative ex-
ploration phase, all the agents store their exploration experience to
a global shared memory buer using their own exploration poli-
cies. At the same time, we store episode with high value into a
high value memory to make agents learn more eectively from
diverse experiences. Regarding the competitive phase, an agent
manager calculates the growth capacity of all the agents and selects
the current best agent to exploit for the next iteration. This above
procedure iterates until termination.

In experiments to evaluate the eciency of C2HRL, we nd our
method outperformed three state-of-the-art baselines – SAC [11],

TD3 [9], and CERL [15] – in a range of continuous control bench-
mark tasks.

In summary, the contributions of this research are as follows:

(1) We propose a scalable framework: C2HRL, that takes advan-
tages of diverse agents, including o-policy RL agents and EA
agents, to achieve a better performance.

(2) We propose a combined cooperative and competitive mech-
anism among heterogeneous agents to improve the model’s
exploration eectiveness and stability.

(3) We present empirical results that show our model outperforms
three baselines in a range of continuous control benchmarks.

2 BACKGROUND
This section begins with an introduction to the basic concept of RL
and evolutionary algorithms. We then review two state-of-the-art
RL methods: twin delayed deep deterministic policy gradients (TD3)
[9], soft actor-critic (SAC) [11].

2.1 Reinforcement Learning
In a standard RL problem, the interaction between an agent and an
environment e is modeled as a Markov decision process. At each
time step t , the agent observes a state st and chooses an action
at ∈ A using a policy π (at |st ) that maps states to a distribution
over possible actions. In this paper, we are concerned with high-
dimensional, continuous state and action spaces. After performing
an action at in each time step, the agent collects a reward r (st ,at ) ∈
R. The objective in RL is to learn a policy that maximizes the
expected sum of discounted rewards starting from the initial state.
The objective is shown below:

J (π ) = E(st ,at )∼e ,π


∞∑
t=0

γ t r (st ,at )

 (1)

where st represents the state that is sampled from the environ-
ment e at time step t using an unknown system dynamic model
p(st+1 |st ,at ) and an initial state distribution p(s0) ,and at repre-
sents the action that is sampled from the policy π (at |st ) at time
step t . γ ∈ (0, 1] is the discount factor used to compute the sum of
all rewards ever obtained by the agent, but discounted by how far
o in the future they are obtained.

2.2 Evolutionary Algorithms
Evolutionary algorithms (EAs) are a class of black-box search algo-
rithms that apply heuristic search procedures inspired by natural
evolution. EAs typically consist of three main operators: new solu-
tion generation, solution alteration, and selection [7, 34]. In general,
these operations are applied to a population of candidate solutions,
which produce next-generation solutions while keeping the promis-
ing ones from the previous generation. The selection operation
is probabilistic, where solutions with higher tness values have a
higher probability of being selected. Assuming the higher tness
values are representative of good solution quality, the overall qual-
ity of solutions should improve with each passing generation. In
this work, each individual in EA denes a deep neural network.
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“Mutations” are random perturbations to the parameters of these
neural networks. The evolutionary framework used here is closely
related to evolving neural networks and is often referred to neu-
roevolution [6, 21, 35].

2.3 Twin Delayed Deep Deterministic Policy
Gradients(TD3)

TD3 [9] is a method based on an actor-critic architecture that alle-
viates the issue of overestimating values and sub-optimal policies
caused by function approximation errors. TD3 is an extension to
DDPG [19] that learns two Q-functions, i.e., Q1 and Q2, by mini-
mizing the mean square Bellman error. It improves upon DDPG in
the following three respects.

Target policy smoothing regularization. TD3 adds a clipped
noise to each dimension of the target action that is based on a
target policy µθtarд . Then, the noisy target action is clipped to stay
in the valid action range:

a′(s ′) = clip(µθtarд (s
′) + clip(ϵ,−c, c),aLow ,aHiдh ), ϵ ∼ N(0,σ ).

(2)
This regularization method addresses the concerns that determin-
istic policies may overt to narrow peaks in the value estimation.
This can be avoided by smoothing out the Q-value over similar
actions.

Clipped double-Q learning. TD3 uses the smaller Q-value for
the target:

y(r , s ′,d) = r + γ (1 − d)mini=1,2Qϕi ,tarд(s
′,a′(s ′)). (3)

By doing so, TD3 avoids the overestimating the Q-value function.

Delayed policy updates. An overestimated or inaccurate value
makes the value estimation diverge, resulting in poor policy learn-
ing. Hence, TD3 only updates the policy when the error in value is
suciently small. The update is done by maximizing Qϕ1 :

max
θ

Es∼D [Qϕ1 (s, µθ (s))]. (4)

2.4 Soft Actor-critic(SAC)
SAC [11] incorporates an entropy measure of the policy into the
reward to encourage exploration. The intuition is to learn a policy
that acts as randomly as possible while still being able to succeed
in the task. It is an o-policy actor-critic model that follows the
maximum entropy RL framework. The policy is trained with the
objective of maximizing the expected return and the entropy at the
same time:

J (π ) =
T∑
t=0

E(st ,at ) ∼ ρπ [r (st ,at ) + αH(π (·|st ))] (5)

whereH(·) is the entropy measure and α controls how important
the entropy term is, known as temperature parameter. Entropy
maximization leads to policies that can: (1) explore more space and
(2) capture multiple modes of near-optimal strategies. For example,
if there exist multiple options that seem to be equally good, the
policy should assign each with an equal probability of being chosen.

3 RELATEDWORK
Our method incorporates two key elements: cooperative explo-
ration and competitive exploitation. Cooperative exploration is
mainly implemented through an experience replay mechanism
[20], which is widely-used in o-policy reinforcement learning.
DQN [23] randomly and uniformly samples the experience from
a replay memory. [28] subsequently expanded DQN to develop
prioritized experience replay (PER), which uses a temporal dier-
ence error to prioritize the experiences. Ape-x [13] extends PER to
the distributed setting. [1] introduces a technique called Hindsight
Experience Replay (HER), which allows sample-ecient learning
from sparer and binary rewards. CERL [15] and ERL [16] employ a
shared memory to collect data generated by a diverse set of actors.
In[40], the authors introduce an episodic control experience replay
method to latch on good trajectories rapidly. However, these meth-
ods only study the shared experiences of one type of agent, i.e.,
the same behaviour policy architecture. In other words, all experi-
ences are generated by the same type of policy actor. Our method
explores agents with dierent policy architectures and dierent
learning algorithms. Through this, we can achieve a more eective
exploration.

C2HRL’s competitive mechanism can be discussed in terms of al-
gorithm selection [10, 27, 32], which has been widely examined in
the literature. In [17], Lagoudakis and Littman described an algo-
rithm selection method that formulates the problem as a Markov
decision process and draws on ideas from RL to solve that prob-
lem. Cauwet et al. [5] provide a noisy optimization method for a
portfolio of solvers, achieving a similar result to the best solver.
In [31], the authors apply a goal-switching method for policy se-
lection. Laroche and Feraud [18] formalized the problem of online
algorithm selection in the context of RL, presenting a selection
algorithm: epochal stochastic bandit algorithm selection. The com-
mon thread in these works is that they solely focus on RL-based
methods, whereas our C2HRL framework combines gradient-based
RL agents with a gradient-free EA agent.

4 MOTIVATING EXAMPLE
4.1 Eective Exploratioin
In some random seed settings, some RL agents, such as TD3, may fail
to learn because they cannot explore the solution space eectively.
Figure 2 shows how a TD3 agent prematurely converges to a local
minimum because of its ineective initial exploration. In this case,
we set the Mujoco’ action-space seed to make TD3’s initial sample
actions are deterministic too. However, if the TD3 agent were to
cooperate by learning from the shared exploration experiences of
all agents, that TD3 agent may have a chance to succeed in learning
and so perform well.

4.2 Sample Eciency
The sample eciency of algorithms varies greatly among tasks.
Here, the sample eciency is a concept to explain that how good
an agent can utilize the exploration samples. Higher sample ef-
ciency means a higher nal average return. Table 1 shows the
nal performance of three algorithms on three dierent tasks. The
gradient-free method, i.e., EA, learns more eciently than other
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Figure 2: Hopper, Td3 fails to learn in a random seed setting,
but does learn eectively within the C2HRL framework.

agents on the Swimmer task, while TD3 is the most ecient on
Walker2d, and SAC is best on Humanoid. This demonstrates how a
competition mechanism would be useful for distributing available
resources to the most suitable learning method based on the current
context, whether a task, random seed setting, etc.

Name Swimmer Humanoid Walker2d

TD3 69 457 5701
SAC 45 5686 5087
EA 350 1100 1200

Table 1: The eciency of dierent algorithms on one seed
of three dierent tasks. The score is the maximum average
return over 5 episodes trials for 1 million training steps.

5 COMPETITIVE AND COOPERATIVE
HETEROGENEOUS DEEP REINFORCEMENT
LEARNING(C2HRL)

The principal idea behind this work is to combine the strengths of
multiple heterogeneous agents, where dierent agents may have
dierent exploration and learning strategies. For instance, TD3
exploits a deterministic policy learning strategy, while SAC em-
ploys a stochastic one. Given diverse continuous tasks in a dynamic
environment, a specic agent is unlikely to always be optimal for
all the tasks. Even for a single task, it is highly preferable to dy-
namically adapt the agent to the environment to suit the learning
task. To accomplish our goal, we propose C2HRL – a competitive
and cooperative heterogeneous reinforcement learning framework.
C2HRL is built on two fundamental mechanisms, namely, com-
petitive exploitation and cooperative exploration. The competitive
exploitation mechanism leverages the fact that dierent agents
posses dierent learning potentials – some agents learn quickly
and prematurely converge to a local optima, while other agents
learn slowly in the beginning but yield much better performance in
the end. To incorporate the benets of dierent learning potentials,
C2HRL dynamically and adaptively selects the best agent among
multiple alternatives in each training iteration. The cooperative
exploration mechanism ensures that the dierent agents benet

from all the dierent exploration policies. As dierent exploration
policies may cover dierent crucial parts of the search space, a
collaborative approach promotes a more ecient and complete
exploration. C2HRL is presented in detail in Algorithm 1.

5.1 Competitive Exploitation
In this section, we explain the competition mechanism in C2HRL.
The rst step is to create an agent pool containing n agents. This
agent pool not only includes heterogeneous agents that use dier-
ent exploration and learning strategies, e.g., TD3, SAC, and EA, but
it may also contain homogeneous agents where multiple agents
use the same learning strategy but with dierent hyperparame-
ters, e.g., TD3 with dierent discount factors. Note that the latest
work, CERL, only works for the latter. Within a xed number of
timesteps T , i.e., one iteration, where one timestep represents one
interaction with the environment, the best agent is selected. Note
that one iteration contains p roll-outs, i.e., p episodes of interaction
with the environment. To identify the best agent in each iteration,
the performance of every agent needs to be evaluated for its ex-
ploration and exploitation eciencies. A widely-used metric that
provides a good trade-o between exploration and exploitation is
the upper condence bound (UCB) [2]. The classic UCB, used in
[15], is formally dened as:

U
j
i = v̂

j
i + c ∗

√√√
log(

∑b
i=1 y

j
i )

y
j
i

v
j
i ← α ∗ r

j
i + (1 − α) ∗v

j−1
i

(6)

whereU j
i is the UCB score of the i-th agent in the j-th iteration, b is

the number of agents, y ji is the number of cumulative roll-outs the
i-th agent has run in the j iterations, v̂ ji is the discounted sum of the
cumulative returns received from y

j
i roll-outs and it is normalized

to be ∈ (0, 1), r ji is the return of the j-th iteration, and α and c are
the balancing parameters.

As seen from Eq. (6), the UCB only uses the cumulative return of
the existing iterations to evaluate agent performance; it ignores
potential performance variations in the following iterations. For
instance, some agents start with a very promising cumulative return,
but quickly converge. In this case, it is desirable to select only these
agents in the rst several iterations, and make adjustments to other
agents that may have a lower cumulative return but higher return
growth in the following iterations. To take the return growth into
account in the evaluation, we dened a value metric, called growth
capacity, that measures the potential of an agent to increase the
cumulative returns. Formally, this metric is dened as the temporal
dierence between the returns in adjacent iterations:

д
j
i = µ ∗ (r

j
i − r

j−1
i ) (7)

where µ is a normalization factor to avoid extremely large values.
Note that Eq. (7) calculates growth capacity uniformly in all itera-
tions. However, for more intensive exploration, it is usually much
more desirable to increase the diversity of the selected best agent in
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the early stages, while maintaining the stability of the selected best
agent in the later stages to guarantee convergence. This motivated
us to rene the growth capacity measure as follows:

д̂
j
i = t

j
i /Tm ∗ д

j
i (8)

whereTm is the number of complete time steps and t ji is the number
of steps that the i-th agent has run in the j iterations. The more
times the i-th agent is selected as the best agent in the j iterations,
the larger t ji is. In the early stages, all the agents have a small t ,
and thus C2HRL encourages the variety in the best agent selected.
During the training process, those agents that are selected more
times in the previous steps accumulate larger t , and thus C2HRL
tends to preserve these agents. With the growth capacity dened
in Eq. (8), the UCB score is rened as follows:

u
j
i = p̂

j
i + c ∗

√√√
log(

∑b
i=1 y

j
i )

y
j
i

,

p
j
i ← α ∗ д̂

j
i + (1 − α) ∗ p

j−1
i .

(9)

We then use Eq. (9) as the evaluation metric to measure the per-
formance of an agent in one iteration. A greedy strategy is then
applied to select the agent with the largest UCB score. The selected
agent is allocated the computing resources that it needs, e.g., TD3
or SAC only needs one actor, and the other agents will free the
computing resources.

5.2 Cooperative Exploration
Although C2HRL encourages dierent agents to compete for the
same resources, it also incorporates a cooperation mechanism to
make exploration more eective through a two-level shared mem-
ory buer that stores the experiences of dierent agents in the
learning procedure. It is worth noting that these experiences come
from dierent exploration policies. Any of them alone may be ill-
suited to solving the current task, but they may also provide crucial
knowledge on specic parts of the search space. Integrating all these
experiences together helps to generate a diverse and complete view
of the search space, which may be the key to learning a task well.
With this approach, C2HRL not only learns more eectively, it also
helps to expose elite agents more quickly, which leads to a higher
sample eciency.

With AEDDPG, Sunehag et al. [40] introduced the concept of
episodic memory to o-policy DRL. The strategy is to store an
episode in a new high-value memory buer if the episode has a
higher return than the historical maximum return. However, AED-
DPG only works with one type of DRL agent and would likely fail
with a diverse group of agents and learning strategies. Additionally,
in a setting with multiple heterogeneous agents, the population
for a gradient-free EA could grow very quickly, generating a very
high episodic return reward in the early stages. But this would lead
to a high-value memory buer lled with the experiences of EA
agents and very few experiences from the others. Hence, rather
than using the historical maximum return, we have opted to exploit

Algorithm 1: C2HRL Algorithm
1 ‘ Initialize the agents pool P: a0,a1, ...an , RL sample

probability p0, ...pn from high-value memory, initial
explore timesteps t0, ..., tn , maximum steps Tm

2 Initialize iteration steps to T ,normalization factor µ,a
random number generator r () ∈ [0, 1]

3 Initialize agents’ status S, shared memoryM , high value
memory HM , high-value threshold ht

4 Initialize agents’ current max tness F , start-competition
generations G, generations д, EA threshold value Ft

5 while not nished do
6 for ai ∈ P, i ∈ [0,n] do
7 if ai chosen or д < G then
8 Explore one iteration T steps and get

experiences E, cumulative return f

9 Update explore steps ti+ = T
10 Store_Experiences(E, f ,M,HM)
11 Learn(ai , ti ,M,HM)

12 Update_Status(S, i, f , t )
13 end
14 Choose the agent with max UCB score for next iteration
15 д+ = 1
16 end
17 Store_Experiences (E, f ,M,HM):
18 Store E toM
19 if RL agent then
20 if f >=min(F ) then
21 Store E to HM

22 else
23 get maximum value of last generation: f ′

24 if f >=min(F ) and (f − f ′) > Ft then
25 Store E to HM

26 return
27 Update_Status (S,i ,f ,t ):
28 f = (f − F [i]) ∗ µ

29 д̂i = f ∗ (t/Tm )

30 if д̂i > S[i][”дrowth”] then
31 S[i][”дrowth”] ← α ∗ д̂i + (1 − α) ∗ S[i][”дrowth”]
32 F [i] = f

33 return
34 Learn (ai ,pi ,M,HM):
35 if ai is RL agent then
36 for each learning step do
37 if r () < pi and HM size > ht then
38 Sample mini-batch experiences b from HM

39 else
40 Sample mini-batch experiences b fromM

41 Using b to update agent ai based on its
gradient-based learning method

42 end
43 else
44 Update agent ai based on its gradient-free learning

method
45 return
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(a) Hopper (b) Humanoid (c) Walker2d

(d) HalfCheetah (e) Ant (f) Swimmer

Figure 3: Training curves on Mujoco continuous control tasks.

Environment C2HRL CERL SAC TD3

Humanoid-v2 5300±98 3417±1514 5206±131 249±142
Ant-v2 5680±283 1767±516 3561±2319 4608±1199
Walker2d-v2 5818±212 1928±580 4566±513 4778±724
Hopper-v2 3741±125 2800±831 3599±139 2126±1923
HalfCheetah-v2 11969±207 6786±355 11346±445 9980±957
Swimmer-v2 245±43 227±41 43±3 55±9

Table 2: Max average return over 5 trials of 1 million time steps. Bold indicates the maximum average value for each task. ±
indicates the standard deviation.

the minimum return of all the agents in each episode as the value
to decide whether to store an episode into high-value memory or
not.

On the other hand, the EA population maintains the elite individu-
als, which may have the same parameters compared with the last
generation’s elites. To avoid storing similar experiences into high-
value memory, a threshold value Ft is used to determine whether
to save the current experiences to high-value memory. Particu-
larly, if the current tness is greater than the maximum of the last
generation more than Ft , current experiences will be stored in high-
value memory. Moreover, the sample probability from high-value
memory is dierent from [40]. In our method, dierent agents sam-
ple from high-value memory according to a dierent probability
instead of using the same one used in [40]. We found that the de-
terministic RL agent learns better from high-value memory than
the stochastic agent. Therefore, the sample probability of TD3 is
higher than SAC in our setting. To make exploration more eective,

there is no competition during the initial G generations, and RL
agents learn from high-value memory only when high-value stores
enough experiences (> ht ).

6 EXPERIMENTS
The goal of our experimental evaluation was to verify the sample
eciency and stability of C2HRL. To that end, we compared C2HRL
with several state-of-the-art DRL methods. We also conducted an
ablation study to investigate the inuence of each component in
C2HRL. All the evaluations were conducted on continuous control
benchmark: Mujoco [38].

6.1 Comparative Evaluation
We rst evaluated C2HRL’s performance on six continuous control
tasks from Mujoco in comparison to three state-of-the-art baselines
– SAC [11], TD3 [9], and CERL [15]. For SAC, we use the code
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from OpenAISpinningUp 1. For TD3 and CERL, we used the author-
provided implementation, and we used the default hyperparameters
as outlined in the corresponding papers. Note that we also used
SAC and TD3 as candidate agents in our agent pool for C2HRL in
addition to the EA method and associated hyperparameters in [16].
For C2HRL’s specic hyperparamters, the TD3 sample probability
pt from high-value memory is 0.4, while SAC’s ps is 0.3. The size
of high-value memory size is 20000. The initial fairly competition
generations G is 2. The threshold size ht of high-value memory is
10000. EA threshold value Ft is 10. Iteration time steps T is 10000.
maximum time steps Tm is 1e6.

We ran the training process for all the methods over 1 million
time steps on each task with ve dierent seeds. One time step
represents one interaction between the agent and the environment.
Learning performance is reported as the average return of ve
independent trials of each seed, taking the mean of the ve seeds as
the nal score. For C2HRL, we set 10000 time steps as one iteration
for the best agent selection. We report the scores of all the methods
compared against the number of time steps.

Figure 3 shows the comparative results for all methods on all six
Mujoco learning tasks. From the results, we rst observe that there
was no clear winner among the existing state-of-the-art baselines
SAC, TD3, and CERL. None consistently outperforms the others
on the six learning tasks. Specically, SAC outperforms on the
rst, second and fourth tasks, TD3 wins on the third and fth
tasks, while CERL only yields the best performance on the last
task but achieves signicant improvements compared with the
other two. This veries the challenging issue in the current DRL
study, that is, it lacks of a general exploration strategy universally
appropriate across dierent tasks. Fortunately, Figure 3 further
demonstrates that C2HRL consistently performs better results than
the best baseline methods on all six tasks, which highly alleviates
the above issue. At the beginning of the learning phrase, C2HRL
concentrates on intensive exploration by encouraging competition
among dierent candidate agents. This leads to a relatively slow
learning speed, but results in a better nal performance due to a
more diverse and eective exploration eort.

Table 2 provides the max average return as well as the correspond-
ing standard deviation of the ve independent trials across ve
random seeds. As can be seen from the results, C2HRL achieved
the best average performance and smallest standard deviation in
almost all six tasks, which again veries that C2HRL provides a
more stable learning performance among dierent random seed
settings.

6.2 Competitive Resource Redistribution
In this section, we investigated how C2HRL distributes resources
across dierent random seeds. In C2HRL, computing resources are
dynamically distributed to dierent agent throughout the entire
learning process. This distribution can dier dramatically in dier-
ent random seed, even within the same learning task. This enables
C2HRL to maintain a stable performance across dierent random
seeds.

1https://github.com/openai/spinningup

For this experiment, we again included three dierent agents in
C2HRL – EA, SAC, and TD3 – and analyzed the resource distri-
bution rate across dierent random seeds (from 0 to 4) and across
the six learning tasks. The results are given in Table 3. From the
table, we can see clear diversity in the resource distribution. In
the test with the dierent tasks but the same random seed, C2HRL
distributed the most resources to dierent agents. For instance,
in seed 0 of all tasks, SAC received the most computing resource
for the Humanoid, Ant, and HalfCheetah tasks, followed by TD3,
which was allocated the most for the Walker2d and Hopper tasks.
EA only received the most resources for the Swimmer task. We
also observed that C2HRL distributed the resources in a dierent
manner when dierent random seeds were asked to perform the
same task. Here, in the Hopper task, C2HRL distributed the most
resources to TD3 in seeds 0, 1, and 4, but to SAC in seeds 2 and 3.
This supports Henderson et al.’s [12] conclusion that random seeds
indeed have a signicant impact on agent performance. All the
results demonstrate that C2HRL can adaptively distribute the re-
sources among dierent agents in order to achieve the best learning
performance.

6.3 Ablation Studies
In this section, we conducted ablation studies to understand the
contributions of each individual key component of C2HRL: coop-
erative exploration and competitive exploitation. To do this, we
built two variants of C2HRL: C2HRL without the shared high-value
memory (C2HRL-HM) and C2HRL without our growth capacity
(C2HRL-GC). As mentioned, C2HRL achieves cooperative explo-
ration by integrating the exploration experiences of all agents into
two memory buers, i.e., shared high-value memory and shared
memory, so as to reuse these experiences in subsequent learning
phases. Thus, C2HRL-HM is C2HRL without the shared high-value
memory. C2HRL-GC is C2HRL without our growth capacity metric
driving the competition mechanic but with conventional UCB in-
stead, which only considers the immediate tness. These variants
plus the full C2HRL were tested on the Walker2d and Hopper tasks,
and the comparative results are provided in Table 4; the perfor-
mance metric used is the same as in Table 2.

As shown in Figure 4, C2HRL achieved better results than both
C2HRL-HM and C2HRL-GC in terms of both average performance
and standard derivation. This indicates the superiority of combining
the two key elements, i.e., the cooperative exploration and compet-
itive exploitation. We further draw the learning curves for C2HRL-
HMandC2HRL-GC, and compared themwith that of C2HRL. Figure
4a and Figure 4b show the comparison of C2HRL-HM with C2HRL,
and Figure 4c and Figure 4d show that of C2HRL-GC with C2HRL.
It can be observed that C2HRL achieves slightly worse results than
C2HRL-HM and C2HRL-GC at very rst learning steps (before
0.2 million steps). This may be because C2HRL needs to distribute
similar computing resources to dierent agents for better explo-
ration in the beginning, and thus is less sample-ecient. Afterwards,
C2HRL became better and better in comparison to C2HRL-HM and
C2HRL-GC for the remainder of the learning phase. This veries
the eectiveness of the cooperative exploration and competitive
exploitation across the entire dynamic learning process.
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(a) Hopper-HM (b) Walker2d-HM (c) Hopper-GC (d) Walker2d-GC

Figure 4: C2HRL-HM and C2HRL-GC

Agents Humanoid Ant Walker2d Hopper HalfCheetah Swimmer

Seed 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

EA 0.07 0.09 0.08 0.09 0.07 0.05 0.05 0.05 0.06 0.06 0.12 0.03 0.06 0.05 0.05 0.03 0.02 0.12 0.07 0.04 0.01 0.01 0.01 0.01 0.01 0.64 0.78 0.65 0.75 0.58
SAC 0.87 0.82 0.85 0.83 0.87 0.86 0.88 0.07 0.81 0.81 0.07 0.04 0.05 0.05 0.09 0.02 0.02 0.82 0.88 0.05 0.97 0.97 0.01 0.01 0.98 0.18 0.11 0.17 0.12 0.21
TD3 0.06 0.09 0.08 0.08 0.06 0.09 0.07 0.87 0.13 0.13 0.81 0.93 0.88 0.89 0.86 0.95 0.97 0.05 0.04 0.90 0.01 0.01 0.98 0.97 0.01 0.18 0.11 0.18 0.13 0.21

Table 3: Resource distribution rate for C2HRL across tasks and random seeds.

Environment Walker2d Hopper

C2HRL 5818±212 3741±125
C2HRL-HM 4511±917 3530±140
C2HRL-GC 3270±2030 2490±1323

Table 4: The comparative results of C2HRLwithC2HRL-HM
and C2HRL-GC. The performance is themax average return
over 5 trials of 1 million time steps. The best result for each
task is highlighted in bold.

7 CONCLUSION
In this paper, we presented C2HRL, a scalable framework that al-
lows gradient-based RL learners and gradient-free EA learners to
jointly explore and exploit solutions for DRL problems. Experiments
in a range of continuous control tasks demonstrate that C2HRL
can outperform other baselines in both sample-eciency and sta-
bility. In terms of the limitations of C2HRL, as C2HRL is trained
based on multiple selected agents, its nal performance depends on
the construction of agent pool. Moreover, C2HRL introduces new
hyperparameters, such as the sample probability from high-value
memory. Future work will extend it to an adaptive setting method.
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