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ABSTRACT
We study the controlled school choice problem where students may

belong to overlapping types and schools have soft target quotas

for each type. We formalize fairness concepts for the setting that

extends fairness concepts considered for restricted settings without

overlapping types. Our central contribution is presenting a new

class of algorithms that takes into account the representations of

combinations of student types. The algorithms return matchings

that are non-wasteful and satisfy fairness for same types.We further

prove that the algorithms are strategyproof for the students and

yield a fair outcome with respect to the induced quotas for type

combinations. We experimentally compare our algorithms with

two existing approaches in terms of achieving diversity goals and

satisfying fairness.
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1 INTRODUCTION
Incorporating diversity constraints, transparency and fairness into

systems and mechanisms are some of the prominent concerns in

artificial intelligence. These concerns are also prevalent in match-

ing markets where there has been increased attention to school

choice problems that take into account affirmative action and diver-

sity concerns when matching students to schools. One particular

model of school choice with diversity constraints is controlled school
choice [1], in which students are associated with a set of types. In re-

cent years, algorithms for matching with diversity goals have been

deployed in many places including in Israel [5] and India [3, 10].

Typically, the diversity goals are achieved by setting minimum and

maximum target representation of students [4, 7].

If diversity constraints are considered as hard bounds, there may

not exist an outcome that fulfills all minimum quotas, and a funda-

mental tension between fairness and non-wastefulness arises [4].
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There are challenges on the computational front as well: it is NP-

hard to check whether there exists a feasible or stable matching for

the school choice problem with diversity constraints [2]. The re-

cent literature on controlled school choice problems treats diversity

constraints as soft bounds which are soft goals that schools attempt

to achieve [4, 6, 8, 9].

Most papers in controlled school choice assume that each stu-

dent is associated with only one type. In reality, students may be

associated with multiple types. For example, a student could be both

female and aboriginal. In this paper, we study the controlled school

choice problem where students may have overlapping types, and

diversity constraints are viewed as soft bounds. The research ques-

tion we consider is how to design mechanisms that cater to diversity
objectives while still satisfying desirable fairness, non-wastefulness
and strategy-proofness properties?

2 PRELIMINARIES
An instance IT of the school choice problem with diversity con-

straints consists of a tuple (S,C,qC ,T ,η,X,≻S ,≻C ) where S and

C denote the set of students and schools respectively
1
. The capac-

ity vector qC = (qc )c ∈C assigns each school c a capacity qc . The
type space is denoted by T = {t1, ..., tk }. For each student s , we use
T (s ) ⊆ T to represent the subset of types to which student s belongs.
For each school c , we use ηt

c
to represent the minimum quota for

type t . Let η
c
= (ηt

c
)t ∈T denote the type-specific minimum quota

vector of school c and let η be a matrix consisting of all schools’

type-specific minimum quotas.

Each contract x = (s, c ) consists of a student-school pair rep-

resenting that student s is matched to school c . Let X ⊆ S × C
denote the set of available contracts. Given any X ⊆ X, let Xs be
the set of contracts involving student s , letXc be the set of contracts
involving school c and let X t

c be the set of contracts involving type

t and school c .
Each student s has a strict preference ordering ≻s over Xs ∪

{∅} where ∅ is a null contract representing the option of being

unmatched for student s . A contract (s, c ) is acceptable to student

s if (s, c ) ≻s ∅. Let ≻S= {≻s1 , ...,≻sn } be the preference profile of
all students S . Each school c has a strict priority ordering ≻c over

Xc ∪ {∅} where ∅ represents the option of leaving seats vacant for

school c . A contract (s, c ) is acceptable to school c if (s, c ) ≻c ∅. Let
≻C= {≻c1 , ...,≻cm } be the priority profile of all schools.

1
To simplify the presentation, we focus on minimum quotas only for the rest of the

paper, as was the focus of Kurata et al. [8]. The impossibility result in Theorem 2.1

carries over to maximum quotas, and our new algorithms can be extended to cater to

maximum quotas.
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An outcome (or a matching) X is a subset of X. An outcome X
is feasible (under soft bounds) for IT if i) each student s is matched

with at most one school, i.e., |Xs | ≤ 1, and ii) the number of students

matched to each school c does not exceed its capacity, i.e., |Xc | ≤
qc . A feasible outcome X is individually rational if each contract

(s, c ) ∈ X is acceptable to both student s and school c . Without loss

of generality, we focus on acceptable contracts. Given a feasible

outcomeX , student s claims an empty seat of school c if (s, c ) ≻s Xs
and |Xc | < qc . A feasible outcome is non-wasteful if no student

claims an empty seat.

Next, we propose a binary relation to facilitate the comparison

of the contribution made by two students in terms of meeting

minimum targets of schools. Given a feasible outcome X , let VX
c =

{t ∈ T | ηt
c
> |X t

c |} denote the set of types that are undersubscribed

at school c . Given a feasible outcome X and two students s , s ′ with
(s, c ) < X and (s ′, c ) < X , i) s ⊵Xc s ′ ⇔ T (s ) ∩VX

c ⊇ T (s
′) ∩VX

c ; ii)

s ▷Xc s ′ ⇔ s ⊵Xc s ′ and s ′ ⋭Xc s ; iii) s ∼Xc s ′ ⇔ s ⊵Xc s ′ and s ′ ⊵Xc s .

Given an instance IT and a feasible outcome X , student s has
justified envy towards student s ′ if i) (s, c ) ≻s {Xs }, (s

′, c ) ∈ X

and ii) for the outcome X ′ = X \ {(s ′, c )}, either (a) s ▷X
′

c s ′, or (b)

s ′ ⋫X
′

c s and (s, c ) ≻c (s ′, c ) holds. An outcome is fair if no student
has justified envy towards any student.

Theorem 2.1. When each student has multiple types, the set of
fair and non-wasteful outcomes could be empty, even if there are only
two types.

3 A CLASS OF ALGORITHMS GDA-TC
In this section, we propose a new class of algorithms Generalized
Deferred Acceptance for Type Combinations (GDA-TC) that yield
non-wasteful and fair outcomes for students of same types. The

general idea is to eliminate overlapping types by creating a new set

U corresponding to type combinations of T so that each student is

associated with exactly one type combination. Then we establish

new quotas δ for type combinationsU and incorporate the induced

quotas into the choice function ChTCc of schools. We employ the

GDA algorithm with choice function ChTCc to determine the out-

come. All these procedures consist of our new class of algorithms

GDA-TC, as shown in Algorithm 1.

Require: IT=(S,C,qC ,T ,η, X,≻S ,≻C )
Ensure: An outcome X ⊆ X

1: Create a set of type combinations U from types T .
2: Determine quotas δ for type combinations U .

3: Incorporate quotas δ into choice function ChTCc .

4: Run GDA with choice function ChTCc .

Algorithm 1: GDA-TC

The GDA algorithm works in much the same way as the original

deferred acceptance algorithm does: each student first selects one

contract involving her favorite school that has not rejected her

yet; then schools choose a set of contracts among the proposals

and reject others. Repeat this procedure until no more contract is

rejected by any school. There are different ways to establish quotas

for type combinationsU and each different method specifies one

particular algorithm of GDA-TC. For instance, we can invoke linear

programming to divide minimum quotas η for types T into mini-

mum quotas δ for type combinations U . We refer to this algorithm

as GDA-TC-LP that makes use of linear programming.

Determining quotas for type combinations Letδc=(δ
u
c )u ∈U

denote a minimum target vector of school c where each element δuc
is the minimum target quota of type combination u. Let δ=(δc )c ∈C
be a matrix consisting of minimum target quota of each type com-

bination for each school. We can calculate the vector δc through
the following linear programming:

min

∑
u ∈U

δuc (1)∑
u ∈U t δ

u
c ≥ ηt

c
, ∀c ∈ C,∀t ∈ T (2)

δuc ≥ 0, ∀u ∈ U (3)

δuc × |S
v | = δvc × |S

u |, ∀c ∈ C,∀u,v ∈ U (4)

Specifying choice functions for schools Next we briefly ex-

plain how the choice function ChTCc of schools works: Given a set

of contracts X , the choice function ChUc traverses the set of con-

tracts Xc involving school c twice in accordance with the priority

order of school c: in the first round, it selects a set of contracts

without exceeding any minimum quota for type combinations and

the capacity qc of school c; in the second round, it selects a set of

contracts without exceeding the capacity only.

GDA-TC GDA-PMA DA-OT

Fairness ✗ ✗ ✗

KHIY-fairness ✗ ✗ ✓

Fairness for same types ✓ ✗ ✓

KHIY-non-wastefulness ✗ ✗ ✗

Non-wastefulness ✓ ✓ ✓

Strategy-proofness ✓ ✗ ✓

Table 1: Comparison of our newalgorithmGDA-TCwith two
existing algorithms GDA-PMA and DA-OT.

We compare with two existing algorithms designed for school

choice with multiple types by Kurata et al. [8] and Gonczarowski

et al. [5]. Table 1 summarizes the properties satisfied by each algo-

rithm. We also undertake the experimental comparative analysis

of school choice algorithms with overlapping types allowed. Our

generated data uses similar features as the private data set used by

Gonczarowski et al. [5]. The experimental results show that our

new algorithm performs well across several axes, including fairness,

diversity goals as well as running time. Especially, it outperforms

the other two algorithms in terms of consistently satisfying a rea-

sonable relaxation of targets representations. Note that although

DA-OT additionally satisfies KHIY-fairness, it performs the worst

in achieving diversity goals and running time.

In conclusion, GDA-TC-LP is a suitable alternative algorithm to

GDA-PMA and DA-OT. It outperforms DA-OT in terms of achieving

diversity goals and returns a much more balanced outcome. It also

has satisfies several important properties that GDA-PMA does not.
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