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1 INTRODUCTION
Partially observable Markov decision processes (POMDPs) define
discrete-time sequential control problems [3, 11, 20]. In partially
observable reinforcement learning (RL), an agent lacks access to
the system state or domain model, and has to rely on the observable
past (aka history-state) for decision making [20]. History-states are
intrinsically complex, and extracting more appropriate representa-
tions is very challenging albeit necessary for general POMDPs. We
refer to this as the history representation learning problem.

Part of the difficulty of learning history representations is intrin-
sic to RL and its characteristically weak learning signal. Inspired by
recent efforts in complementing RL with auxiliary tasks [10, 14, 18],
we argue that auxiliary tasks can be used to learn richer and more
structured history representations, which in turn benefit the agent.

2 BACKGROUND
We use calligraphy X to indicate sets, lowercase x ∈ X to indicate
set elements, uppercase X to indicate random variables which take
values from X, and ∆X to denote the set of distributions on X.

POMDPs. APOMDP is composed of state-, action-, and observation-
spaces S, A, and O; dynamics D: S × A → ∆ (S × O); reward
function R: S × A → R; and discount factor γ ∈ [0, 1]. We de-
fine the reward-space R � {R(s,a) | s ∈ S,a ∈ A}. A return
дt �

∑∞
k=0 γ

krt+k is defined as the discounted sum of future re-
wards. A history h ∈ H is a sequence of past interactions, and a be-
lief b(h) � Pr(S | h) is the distribution over states given a history. In
model-free partially observable RL, a history-policy πH : H → ∆A
is trained to maximize the expected episodic return E [G0].

Internal State Representations. We view the history-policy as the
composition πH ≡ πX ◦ϕ of a feature extraction model ϕ : H → X
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(a) Generative model (decoder)
p(z, o, r ;h, a)
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(b) Inference model (encoder)
q(z ;h, a, o, r )

Figure 1: VAEmodels for the one-step prediction task, which
train a shared irepresentation model IDYN.

and a policy model πX : X → ∆A. We refer to X as the internal-
state (istate) set. Consequently, we refer to ϕ as the istate representa-
tion (irepresentation), and to πX as the istate policy (istate-policy).

Reactive irepresentations [15, 16] concatenate them most recent
actions and observations. They are easy to use, require a minimal
number of trainable parameters, and have inherent temporal struc-
ture. However, they generalize poorly, and performance is critically
dependent on the memory parameterm.

Recurrent representations are modeled by recurrent neural net-
works (RNNs) [6, 12, 22]. They theoretically can exhibit infinite-
term memory and generalize well. However, training them to ex-
hibit either property remains challenging. In practice, they usually
exhibit some mid-term memory and some form of generalization.

Advantage Actor Critic. Advantage Actor Critic (A2C) [5, 21] is
a policy gradient variant which trains actor π (h;θπ ) ∈ ∆A and
critic v(h;θv ) ∈ R models. The overall objective LA2C(θπ , θv ) =
Lπ (θπ ) + Lv (θv ) + αLS (θπ ), is composed of policy, critic, and
weighed entropy losses,

∇Lπ (θπ ) ∝ −E
[∑∞

t=0 γ
tδt∇ logπ (At ;Ht , θπ )

]
(1)

∇Lv (θv ) ≈ E
[∑∞

t=0 γ
t∇δ2t

]
(2)

∇LS (θπ ) = −E
[∑∞

t=0 γ
t∇H [π ( · ;Ht , θπ )]

]
(3)

where δt � Rt + γv(Ht+1;θv ) −v(Ht ;θv ) is the TD error.

3 ONE-STEP PREDICTION TASK
Interactions with the environment contain a certain “learning po-
tential” not fully captured by the RL problem alone; Auxiliary
learning tasks can exploit this potential to train richer irepresenta-
tions [7, 10, 17, 18], ultimately helping the RL agent. In the context
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(c) Rocksample-5-6.

Figure 2: Training performance averaged over 40 independent runs, with shaded areas showing 2 standard errors of the mean.

of the representation learning problem, we argue that the ideal
auxiliary task satisfies the following properties:

a) To kick-start and accelerate learning, it should constitute an
easy learning problem;we primarily consider self-supervision.

b) To promote sample efficiency, a single trajectory should
constitute multiple input-output data-points; the task should
be well-defined for every time-step.

c) To further promote sample efficiency, the task should be sta-
tionary and invariant w.r.t. a non-stationary agent; a replay
memory could then be used to exploit off-policy experiences.

d) To promote generalization, belief-states should be a sufficient
statistic for histories; we can exclude task like the recon-
struction of histories via autoencoders, since they require
considerably more information than given by the belief-state.

The theory of predictive state representations (PSRs) proves [13,
19] that an irepresentation which encodes sufficient information
for the prediction of observable futures is a sufficient statistic of
the observable past and, equivalently, of the underlying belief-state.
Taking inspiration from PSRs, we define the one-step prediction task
(PRED) as the problem of training a predictive model p : H ×A →

∆(O×R) to estimate Pr(o, r | h,a); To simplify the reward prediction
problem, we treat it as a classification of discrete rewards.

A Variational Autoencoder for One-Step Predictions. We address
the PRED task with variational autoencoders [2, 4, 8] (VAEs). VAEs
are used to train stochastic generative models, and have been used
formodel-based RL [1, 9]. In a VAE, generative and inferencemodels
p and q are trained to maximize the evidence lower bound (ELBO):

LELBO(h,a,o, r ) = E
z∼q(z ;h,a,o,r )

[
log p(o, r ; z,h,a)

q(z;h,a,o, r )

]
(4)

Figure 1 shows our VAE model. Our use of VAEs is unconven-
tional in that our primary interest is that of training the irepresen-
tation model, and we do not fully use the generative model.

Training with RL and PRED. We consider two schemes for repre-
sentation learning. In the first, a single representation is trained on
both tasks (RAux). In the second, two complementary representa-
tions are trained (CRAux) as described below.

Consider a hypothetical: assuming access to a useful black-box
irepresentation, how this benefit the RL agent? One option is to
concatenate the black-box features with the features of a trainable
irepresentation. If done like so, we expect the black-box features
to not only kick-start the policy learning, but also allow the train-
able irepresentation to focus on complementary features. While we
cannot reasonably assume access to a black-box irepresentation in
RL, we propose treating an irepresentation trained on one task as
a black-box for to the other task (i.e. blocking gradients), and vice
versa. Each irepresentation is then encouraged to learn features
not provided by the other task. We believe this will result in the
RL task bootstrapping its own learning by encouraging the PRED
representation to learn features which are not easily learned by the
RL task, which are thus more useful for the RL task.

4 EVALUATION
We evaluate the effectiveness of the PRED task, and both the RAux
and the CRAux training schemes, comparing with standard reactive
and recurrent baselines. We use 3 domains, each posing a qualita-
tively different type of representation learning problem: Shopping-5
poses a more flexible task, and can be solved by a variety of irepre-
sentations. Heavenhell-3 poses a more rigid task, which can only
be solved with mid-term memorization. Rocksample-5-6 poses a
significantly larger and mildly more stochastic task.

We compare the following irepresentations: TrueBelief is the
belief-state representation, used as a reference for good perfor-
mance. React-{1,2,4} are reactive irepresentations with associated
memory parameters, trained on the RL objective. GRU is a recur-
rent irepresentation based on a GRU trained on the RL objective.
GRU-RAux is a recurrent irepresentation based on a GRU trained
with the RAux scheme.GRU-CRAux is a recurrent irepresentation
based on two GRUs trained with the CRAux scheme. The RL task
is solved using A2C, and the PRED task using the VAE model.

Results. Figure 2 shows selected results. To summarize, GRU-
RAux andGRU-CRAux learn irepresentations which consistently
outperform not only the baselines, but also the belief-state itself.
This implies that the irepresentations learned through the PRED
task have richer structure which can be exploited by the policy.
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