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ABSTRACT
In this paper, we study a variant of hedonic games, called Seat Ar-
rangement. The model is defined by a bijection from agents with
preferences to vertices in a graph. The utility of an agent depends
on the neighbors in the graph. In this paper, we study the price
of stability and fairness in Seat Arrangement, and the computa-
tional complexity and the parameterized complexity of finding cer-
tain “good” seat arrangements, say Maximum Welfare Arrange-
ment,Maximin Utility Arrangement, Stable Arrangement,
and Envy-free Arrangement.
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1 INTRODUCTION
Given a set of n agents with preferences for each other and an n-
vertex graph, called the seat graph, we consider to assign each agent
to a vertex in the graph. Each agent has a utility that depends on
the agents assigned to neighbors vertices in the graph. Intuitively,
if a neighbor is preferable for the agent, his/her utility is high. This
models several situations such as seat arrangements in classrooms,
offices, restaurants, or vehicles. Here, a vertex corresponds to a
seat and an assignment corresponds to a seat arrangement. If we
arrange seats in a classroom, the seat graph is a grid. As another
example, if we consider a round table in a restaurant, the seat graph
is a cycle. We name the model Seat Arrangement.
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Seat Arrangement is related to hedonic games [7]. If the seat
graph in a Seat Arrangement instance is a disjoint union of cliques,
then each clique may be viewed as a potential coalition. Hence an
arrangement on that graph naturally corresponds to a coalition
forming. In that sense, this model is considered a hedonic game of
arrangement on topological structures.

In this paper, we consider the following problems to find four
types of desirable seat arrangements:MaximumWelfare Arrange-
ment (MWA), Maximin Utility Arrangement (MUA), Stable
Arrangement (STA), and Envy-free Arrangement (EFA).MWA
is the problem to find a seat arrangement that maximizes the sum
of utilities of agents, which is called the social welfare.

The concept of MWA is a macroscopic optimality, and hence
it may ignore individual utilities. Complementarily, MUA is the
problem to find a seat arrangement that maximizes the least utility
of an agent. From the viewpoint of economics, the maximin utility
of an arrangement can be interpreted as a measure of fairness [3,
10, 18].

Stability is one of the central topics in the field of hedonic games
including Stable Matching [2, 7, 14, 19]. Motivated by this, we
define a stable arrangement as an arrangement with no pair of
agents that has an incentive of swapping their seats (i.e., vertices),
called a blocking pair. This corresponds to the definition of exchange-
stability proposed by Alcalde in the context of stable matchings [1].
In Seat Arrangement, STA is the problem of deciding whether
there is a stable arrangement in a graph.

Finally, we consider the envy-freeness of Seat Arrangement.
The envy-freeness is also a natural and well-considered concept in
hedonic games.

2 THE MODEL
Let G = (V ,E) be a graph where n = |V | andm = |E |. We denote
by P the set of agents, and define an arrangement as follows.

Definition 2.1 (Arrangement). For a set of agents P and a graph
G, a bijection π : P → V (G) is called an arrangement in G.

We denote by Π the set of all arrangements in G. Note that
|Π | = n!. We call graph G the seat graph.

Definition 2.2 ((p,q)-swap arrangement). For a pair of agents
p,q ∈ P, we say that π ′ is the (p,q)-swap arrangement if π ′ can
obtained from swapping the arrangement of p and q.
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Next, we define the preference of an agent.

Definition 2.3 (Preference). The preference of p ∈ P is defined by
fp : P \ {p} → R.

We denote by FP the set of preferences of all agents in P. Here,
we say the preferences are binary if fp : P \ {p} → {0, 1} for every
agent p, are nonnegative if fp : P \ {p} → R+0 , and are positive

if fp : P \ {p} → R+. Furthermore, we say they are symmetric if
fp (q) = fq (p) holds for any pair of agents p,q ∈ P and strict if for
any p ∈ P there is no pair of distinct q, r ∈ P such that fp (q) = fp (r ).

Finally, we define the utility of an agent and the social welfare of
an arrangement π .

Definition 2.4 (Utility and social welfare). Given an arrangement
π and the preference of p, the utility of p is defined by Up (π ) =∑
v ∈N (π (p)) fp (π

−1(v)). Moreover, the social welfare of π for P is
defined by the sum of all utilities of agents and denoted by sw(π ) =∑
p∈PUp (π ).

We define four types of Seat Arrangement problems. An ar-
rangement π∗ is maximum if it satisfies sw(π∗) ≥ sw(π ) for any
arrangement π . Also, an arrangement π∗ is amaximin arrangement
if π∗ satisfiesminp∈PUp (π∗) ≥ minp∈PUp (π ) for any arrangement
π . Then,Maximum Welfare Arrangement (MWA) andMaximin
Utility Arrangement (MUA) are the problems to find a maximum
(maximin) arrangement in G.

Next, we define the stability and the envy-freeness of Seat Ar-
rangement.

Definition 2.5 (Stablility). Given an arrangement π , a pair of
agents p and q is called a blocking pair for π if it satisfies that
Up (π

′) > Up (π ) and Uq (π ′) > Uq (π ) where π ′ is the (p,q)-swap
arrangement for π . If there is no blocking pair in π , it is said to be
stable.

Definition 2.6 (Envy-free). An arrangement π is envy-free if
there is no agent p such that there exists q ∈ P \ {p} that satisfies
Up (π

′) > Up (π ) where π ′ is the (p,q)-swap arrangement for π .

Stable Arrangement (STA) and Envy-free Arrangement
(EFA) are the problems to decide whether there is a stable (envy-
free) arrangement in G.

3 OUR CONTRIBUTION
In this paper, we first investigate the price of stability (PoS) and the
price of fairness (PoF) of Seat Arrangement, which are defined
as the ratio of the maximum social welfare over the social welfare
of a maximum stable solution and a maximin solution, respectively.
For the price of stability, we can say the PoS is 1 under symmetric
preferences by a result in [17]. For the price of fairness, we show
that there is a family of instances such that PoF is unbounded. For
the binary case, we show an upper bound of d̃(G) of PoF, where d̃(G)
is the average degree of the seat graph G. On the other hand, we
present an almost tight lower bound d̃(G)−1/4 of PoF. Furthermore,
we give a lower bound d̃(G)/2 + 1/12 for the cases with symmetric
preferences.

Next, we give dichotomies of computational complexity of four
Seat Arrangement problems from the perspective of the maxi-
mum order of connected components in the seat graph. For MWA,

MUA, and symmetric EFA, we show that they are solvable in poly-
nomial time if the order of each connected component in the seat
graph is at most 2 whereas they are NP-hard even if the order of
each connected component of the seat graph is 3. Since a maximum
arrangement is always stable under symmetric preferences, sym-
metric STA can also be solved in polynomial time if the order of
each connected component is at most 2. On the other hand, STA
is NP-complete even if the order of each connected component in
the seat graph is at most 2. Note that if each connected component
in the seat graph is of order at most 1, it consists of only isolated
vertices, and hence STA is trivially solvable.

For the parameterized complexity, we show that MWA can be
solved in time nO (γ ) whereas it is W[1]-hard with respect to vertex
cover number γ of the seat graph and cannot be solved in time
no(n) and f (γ )no(γ ) under ETH. Moreover, we prove thatMUA and
symmetric EFA are weakly NP-hard even on seat graphs with γ = 2.

Finally, we study the parameterized complexity of local search of
finding a stable arrangement. We show that determining whether
a stable arrangement can be obtained from a given arrangement by
k swaps is W[1]-hard when parameterized by k +γ , whereas it can
be solved in time nO (k).

4 RELATEDWORK
A hedonic game is a non-transferable utility game regarding coali-
tion forming, where each agent’s utility depends on the identity of
the other agents in the same coalition [6, 11]. It includes the Stable
Matching problem [7]. Seat Arrangement can be considered a
hedonic game of arrangement on a graph.

Several graph-based variants of hedonic games have been pro-
posed in the literature, see e.g. [2, 8, 9, 12, 16]. However, they typi-
cally utilize graphs to define the preferences of agents, and both
the preferences and coalitions define the utilities of agents. On the
other hand, in Seat Arrangement, the preferences are defined
independently of a graph and the utility of an agent is determined
by an arrangement in a graph (more precisely, the preferences for
the assigned neighbors in the graph).

A major direction of research about hedonic games is the com-
putational complexity of finding desirable solutions such as a so-
lution with maximum social welfare and a stable solution [2, 6].
Peters [20] and Hanaka et al. [15] investigate the parameterized
complexity of hedonic games for several graph parameters (e.g.,
treewidth). For the local search complexity, Gairing and Savani
study the PLS-completeness of finding a stable solution [12, 13]. In
terms of mechanism design and algorithmic game theory, many
researchers study the price of anarchy, the price of stability, and
the price of fairness [3, 4, 7, 19].

Very recently, in the context of one-sided markets, Massand and
Simon consider the problem of allocating indivisible objects to a set
of rational agents where each agent’s final utility depends on the
intrinsic valuation of the allocated item as well as the allocation
within the agent’s local neighbourhood [17]. Although the problem
is motivated from different contexts, it has a quite similar nature to
Seat Arrangement, and they also considered stable and envy-free
allocation on the problem.
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