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ABSTRACT

We investigate planning and learning temporal abstractions in coop-
erative multi-agent systems using common information approach
and report the competitive performance of our proposed algorithm
with baselines in grid-world environment.
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INTRODUCTION

We leverage common information approach [3] to address tempo-
ral abstraction in cooperative multi-agent systems. In particular,
we address the planning problem in options framework [5] for
the Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) and propose a model-free learning of temporally ab-
stracted policies. The common information approach circumvents
the combinatorial nature of the decentralized system by converting
it into an equivalent centralized POMDP. We provide a dynamic
programming formulation and argue the existence of an optimal
option-policy. We analyze the convergence of our proposed algo-
rithm (DOC) and validate the results with empirical experiments
using cooperative multi-agent grid-world environments.

Denote by E(w;pir, s¢) the event that joint-option w; is executed
at time instant ¢ at joint-state s; until its termination, after which a
new joint-option is chosen according to option-policy p; at the re-
sultant joint-state. The dynamic team problem that we are interested
to solve is to choose policies that maximize the the infinite-horizon
discounted reward: Rt as given by

o0
RHEt = sup Z pr(w¢|sy)E Zytrmls(wo,uo,s()) , @
HEM e =0

DEC-POMDP PLANNING WITH TEMPORAL
ABSTRACTION

The Common Information Approach [3] is an effective way to
solve a Dec-POMDP in which the agents share a common pool of
information, updated, for example via broadcasting, in addition
to private information available only to each individual agent. A
fictitious coordinator observes the common information and sug-
gests a prescription (in our case the Markov joint-option policy
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t). The joint-option w; is chosen from p; and is communicated
to all agents j, who in turn generate their own action a{ accord-

ing to their local (private) information, and their own observation

ol : ai ~ n{(aﬂo{). A locally fully observable agent chooses its

action a{ based on its own state s{ or embedding e{ according to

ai ~ ﬁ{ (ai |si) The notion of a centralized fictitious coordinator

transforms the Dec-POMDP into an equivalent centralized POMDP,
so one can exploit mathematical tools from stochastic optimization
such as dynamic programming to find an optimal solution.

The common information-based belief on the joint-state s; € S
is defined as b§(s) := P(s; = s | Z), where I is the common in-
formation at time ¢, given by 7,¢ = {061:4-1, @1.4-1}, Where 6i is the
broadcast symbol of agent j. Consequently, 7, | C I°. b{ evolves
in a Bayesian manner. Using the argument of [3, Lemma 1], we can
show that the coordinated system is a POMDP with prescriptions
¢ and observations

6t = i:!t(st’ ,Ut), (2)

where h; is a Bayesian filter.

The optimal policy of the coordinated centralized system is the
solution of a suitable dynamic program which has a fixed-point.
In order to formulate this program, we need to show that b¢ is an
information state, i.e. a sufficient statistic to form, with the current
joint-option i, a future belief b¢_ ;.

Common-belief based option-value

The option-value upon arrival, U¥, and the option-value, Q+, are
defined below, where B .(s;) is the probability that no agent
terminates in s;.

U (b 1) =y UM (st,00bE(s0) = ) [ Bt (500" (51, @0)b5 (s0)

s;€S

+ (1 = Brone(st))

;€S
0¥ (51, @b (51)|. )

max max
T ePow(J) w;€Q(T)

Define operators B# as follows:
[BH QH ] (bf, wr)

=y, | DL D) @ bridon)x (aslor)

5:€50,€0 \br;e{0,1}/ a;€A

ft(os, 8¢, w¢-1) Z bf+1(st+1)(P?t(St,St+1)U”t(St+1,wt)))bf(st)~

sr41€S

rf) = DL L D (brelon) ™ (aylor)

s;€S0;€0br,€{0,1} a;€A

rPTe (s, £y (or, 1, @1-1)bE (s1). “)
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Figure 1: (a) TEAMGrid FourRooms, (b) average returns with 2 agents and 3 goals, (c) average returns with 3 agents and 5 goals
(d) DOC: increasing number of options improved average returns, (¢) DOC average returns with always broadcasting (broadcast
penalty 0.0) and intermittent broadcasting (broadcast penalty = -0.5).

QHt in (3) is the solution of the following Bellman update:

QHr (bf, @r) = r (bf) + [BH QF* ] (b, y), ®)

where f; (0, 8¢, @;—1) can be expressed recursively f; (o, s¢, 1) =
2a,ean(otl,se, at—l)ﬂﬁt{l (az-1l0¢-1) fi—1(0¢-1,8¢-1, w;—2) and
raPre (g,) is the immediate reward of choosing action a; and broad-
cast symbol br; in state s;. The optimal values corresponding to
UH* and Q¥ are defined as usual.

One can show using Cauchy-Schwartz inequality that 8/ is a
contraction, which is instrumental in showing the following theo-
rem.

THEOREM 0.1. For a cooperative Dec-POMDP with options

(1) The optimal state-value is the fixed point solution of the fol-
lowing dynamic program.

max, Z pe (¢ |b7)

w; €Q

5,€00{}

V(b)) =

re(by) +y P(6¢1b7, wr)V* (b7, )|,  (6)

where M* is the space of joint option-policies and the notations
have usual meaning.

(2) There exists a time-homogeneous Markov joint-option policy
u*, based on common information b, which is optimal.

LEARNING IN DEC-POMDPS WITH OPTIONS

Our proposed algorithm for learning options, called Distributed
Option Critic (DOC), builds on the option-critic architecture [2]
and leverages the assumption of factored actions of agents in the
distributed intra-option policy and termination function updates.
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The centralized option evaluation is presented from the coordina-
tor’s point of view. The agents learn to complete a cooperative
task by learning in a model-free manner. In the centralized option
evaluation step, the centralized critic (coordinator) evaluates in tem-
poral difference (TD) manner [1] the performance of all agents via
a shared reward (plus a broadcast penalty in case of costly commu-
nication) using the common information. Each agent updates its
parameterized intra-option policy, broadcast policy and termina-
tion function through distributed option improvement using their
private information.

Following [4, Theorem 1], one can show Distributed gradient
descent in a cooperative Dec-POMDP with options and with factored
agents leads to local optima. DOC uses one-step off policy tem-
poral difference in centralized option evaluation and the conver-
gence of DOC relies on showing that the expected value of TD-
error § = r®(s) + yU(sgy1, o) — Q(sg, w) equals r“’f(blcc) +
VEIU (G, @0) |51 = Q5% o).

Next, note that the by definition of intra-option Q-learning with
full observability (e.g. see [5, Theorem 3]), we have that for any ¢ €
R0, maxgr g [Q(s”, 0’")—Q*(s”, w"")| < ¢. The rest of the proof
follows by showing that the expected value of r®* (s)+yU(s]’c o ©K)
converges to Q™.

EXPERIMENTS

We evaluate empirically the merits of DOC in cooperative multi-
agent tasks, and compare it to its single-agent counterpart, option-
critic (OC), advantage actor-critic (A2C), A2C with central critic
(A2C2) and proximal policy optimization (PPO). We created TEAM-
Grid FourRooms where the agents need to uncover multiple un-
known targets and collect reward when all targets are uncovered.
Fig. 1 shows that DOC performs competitively in this environment.
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