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ABSTRACT
We investigate planning and learning temporal abstractions in coop-

erative multi-agent systems using common information approach

and report the competitive performance of our proposed algorithm

with baselines in grid-world environment.
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INTRODUCTION
We leverage common information approach [3] to address tempo-

ral abstraction in cooperative multi-agent systems. In particular,

we address the planning problem in options framework [5] for

the Decentralized Partially Observable Markov Decision Process

(Dec-POMDP) and propose a model-free learning of temporally ab-

stracted policies. The common information approach circumvents

the combinatorial nature of the decentralized system by converting

it into an equivalent centralized POMDP. We provide a dynamic

programming formulation and argue the existence of an optimal

option-policy. We analyze the convergence of our proposed algo-

rithm (DOC) and validate the results with empirical experiments

using cooperative multi-agent grid-world environments.

Denote by E(𝝎𝑡 𝜇𝑡 , s𝑡 ) the event that joint-option 𝝎𝑡 is executed

at time instant 𝑡 at joint-state s𝑡 until its termination, after which a

new joint-option is chosen according to option-policy 𝜇𝑡 at the re-

sultant joint-state. The dynamic team problem that we are interested

to solve is to choose policies that maximize the the infinite-horizon

discounted reward: R𝜇𝑡
as given by

R𝜇𝑡 = sup

𝜇𝑡 ∈M

∑
𝝎𝑡 ∈Ω

𝜇𝑡 (𝝎𝑡 |s𝑡 )E
[ ∞∑
𝑡=0

𝛾𝑡𝑟𝑡+1 | E(𝝎0𝜇0, s0)
]
, (1)

DEC-POMDP PLANNINGWITH TEMPORAL
ABSTRACTION
The Common Information Approach [3] is an effective way to

solve a Dec-POMDP in which the agents share a common pool of

information, updated, for example via broadcasting, in addition

to private information available only to each individual agent. A

fictitious coordinator observes the common information and sug-

gests a prescription (in our case the Markov joint-option policy
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𝜇𝑡 ). The joint-option 𝝎𝑡 is chosen from 𝜇𝑡 and is communicated

to all agents 𝑗 , who in turn generate their own action 𝑎
𝑗
𝑡 accord-

ing to their local (private) information, and their own observation

𝑜
𝑗
𝑡 : 𝑎

𝑗
𝑡 ∼ 𝜋

𝑗
𝑡 (𝑎

𝑗
𝑡 |𝑜

𝑗
𝑡 ). A locally fully observable agent chooses its

action 𝑎
𝑗
𝑡 based on its own state 𝑠

𝑗
𝑡 or embedding 𝑒

𝑗
𝑡 according to

𝑎
𝑗
𝑡 ∼ 𝜋

𝑗
𝑡 (𝑎

𝑗
𝑡 |𝑠

𝑗
𝑡 ) The notion of a centralized fictitious coordinator

transforms the Dec-POMDP into an equivalent centralized POMDP,

so one can exploit mathematical tools from stochastic optimization

such as dynamic programming to find an optimal solution.

The common information-based belief on the joint-state s𝑡 ∈ S
is defined as 𝑏𝑐𝑡 (s) B P(s𝑡 = s | I𝑐

𝑡 ), where I𝑐
𝑡 is the common in-

formation at time 𝑡 , given by I𝑐
𝑡 = {𝒐̃1:𝑡−1,𝝎1:𝑡−1}, where 𝑜 𝑗𝑡 is the

broadcast symbol of agent 𝑗 . Consequently, I𝑐
𝑡−1 ⊆ I𝑐

𝑡 . 𝑏
𝑐
𝑡 evolves

in a Bayesian manner. Using the argument of [3, Lemma 1], we can

show that the coordinated system is a POMDP with prescriptions

𝜇𝑡 and observations

𝒐̃𝑡 = ˜ℎ𝑡 (s𝑡 , 𝜇𝑡 ), (2)

where
˜ℎ𝑡 is a Bayesian filter.

The optimal policy of the coordinated centralized system is the

solution of a suitable dynamic program which has a fixed-point.

In order to formulate this program, we need to show that 𝑏𝑐𝑡 is an

information state, i.e. a sufficient statistic to form, with the current

joint-option 𝜇𝑡 , a future belief 𝑏
𝑐
𝑡+1.

Common-belief based option-value
The option-value upon arrival, 𝑈 𝜇

, and the option-value, 𝑄𝜇
, are

defined below, where 𝛽
𝝎𝑡
none

(s𝑡 ) is the probability that no agent

terminates in s𝑡 .

𝑈 𝜇𝑡 (𝑏𝑐𝑡 ,𝝎𝑡 ) B
∑
s𝑡 ∈S

𝑈 𝜇𝑡 (s𝑡 ,𝝎𝑡 )𝑏𝑐𝑡 (s𝑡 ) =
∑
s𝑡 ∈S

[
𝛽
𝝎𝑡
none

(s𝑡 )𝑄𝜇𝑡 (s𝑡 ,𝝎𝑡 )𝑏𝑐𝑡 (s𝑡 )

+ (1 − 𝛽
𝝎𝑡
none

(s𝑡 )) max

T∈Pow(J)
max

𝝎′
𝑡 ∈Ω (T)

𝑄𝜇 (s𝑡 ,𝝎 ′
𝑡 )𝑏𝑐𝑡 (s𝑡 )

]
. (3)

Define operators B𝜇𝑡
as follows:

[B𝜇𝑡𝑄𝜇𝑡 ] (𝑏𝑐𝑡 ,𝝎𝑡 )

B 𝛾
∑
s𝑡 ∈S

∑
o𝑡 ∈O

( ∑
br𝑡 ∈{0,1}𝐽

∑
a𝑡 ∈A

𝜋
𝑏,𝝎𝑡

𝑡 (br𝑡 |o𝑡 )𝜋𝝎𝑡

𝑡 (a𝑡 |o𝑡 )

𝑓𝑡 (o𝑡 , s𝑡 ,𝝎𝑡−1)
∑

s𝑡+1∈S
𝑏𝑐𝑡+1 (s𝑡+1)

(
𝑝
a𝑡
𝑡 (s𝑡 , s𝑡+1)𝑈 𝜇𝑡 (s𝑡+1,𝝎𝑡 )

))
𝑏𝑐𝑡 (s𝑡 ) .

𝑟𝝎𝑡 (𝑏𝑐𝑡 ) B
∑
s𝑡 ∈S

∑
o𝑡 ∈O

∑
br𝑡 ∈{0,1}𝐽

∑
a𝑡 ∈A

𝜋
𝑏,𝝎𝑡

𝑡 (br𝑡 |o𝑡 )𝜋𝝎𝑡

𝑡 (a𝑡 |o𝑡 )

𝑟a𝑡 ,br𝑡 (s𝑡 ) 𝑓𝑡 (o𝑡 , s𝑡 ,𝝎𝑡−1)𝑏𝑐𝑡 (s𝑡 ). (4)
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(a) (b) (c)

(d) (e)

Figure 1: (a) TEAMGrid FourRooms, (b) average returns with 2 agents and 3 goals, (c) average returns with 3 agents and 5 goals
(d) DOC: increasing number of options improved average returns, (e) DOC average returnswith always broadcasting (broadcast
penalty 0.0) and intermittent broadcasting (broadcast penalty = -0.5).

𝑄𝜇𝑡
in (3) is the solution of the following Bellman update:

𝑄𝜇𝑡 (𝑏𝑐𝑡 ,𝝎𝑡 ) = 𝑟𝝎𝑡 (𝑏𝑐𝑡 ) + [B𝜇𝑡𝑄𝜇𝑡 ] (𝑏𝑐𝑡 ,𝝎𝑡 ), (5)

where 𝑓𝑡 (o𝑡 , s𝑡 ,𝝎𝑡−1) can be expressed recursively 𝑓𝑡 (o𝑡 , s𝑡 ,𝝎𝑡−1) B∑
𝑎𝑡−1∈A 𝜂 (o𝑡 |, s𝑡 , a𝑡−1)𝜋𝝎𝑡−1

𝑡−1 (a𝑡−1 |o𝑡−1) 𝑓𝑡−1 (o𝑡−1, s𝑡−1,𝝎𝑡−2) and
𝑟a𝑡 ,br𝑡 (s𝑡 ) is the immediate reward of choosing action a𝑡 and broad-
cast symbol br𝑡 in state s𝑡 . The optimal values corresponding to

𝑈 𝜇
and 𝑄𝜇

are defined as usual.

One can show using Cauchy-Schwartz inequality that B𝜇𝑡
is a

contraction, which is instrumental in showing the following theo-

rem.

Theorem 0.1. For a cooperative Dec-POMDP with options

(1) The optimal state-value is the fixed point solution of the fol-
lowing dynamic program.

𝑉 ∗ (𝑏𝑐𝑡 ) B max

𝜇𝑡 ∈M+

∑
𝝎𝑡 ∈Ω

𝜇𝑡 (𝝎𝑡 |𝑏𝑐𝑡 )[
𝑟𝝎𝑡 (𝑏𝑐𝑡 ) + 𝛾

∑
𝒐̃𝒕 ∈O∪{∅}

P(𝒐̃𝒕 |𝑏𝑐𝑡 ,𝝎𝑡 )𝑉 ∗ (𝑏𝑐𝑡+1)
]
, (6)

whereM+ is the space of joint option-policies and the notations
have usual meaning.

(2) There exists a time-homogeneous Markov joint-option policy
𝜇∗, based on common information 𝑏𝑐𝑡 , which is optimal.

LEARNING IN DEC-POMDPS WITH OPTIONS
Our proposed algorithm for learning options, called Distributed
Option Critic (DOC), builds on the option-critic architecture [2]

and leverages the assumption of factored actions of agents in the

distributed intra-option policy and termination function updates.

The centralized option evaluation is presented from the coordina-

tor’s point of view. The agents learn to complete a cooperative

task by learning in a model-free manner. In the centralized option
evaluation step, the centralized critic (coordinator) evaluates in tem-
poral difference (TD) manner [1] the performance of all agents via

a shared reward (plus a broadcast penalty in case of costly commu-

nication) using the common information. Each agent updates its

parameterized intra-option policy, broadcast policy and termina-

tion function through distributed option improvement using their
private information.

Following [4, Theorem 1], one can show Distributed gradient
descent in a cooperative Dec-POMDP with options and with factored
agents leads to local optima. DOC uses one-step off policy tem-

poral difference in centralized option evaluation and the conver-
gence of DOC relies on showing that the expected value of TD-

error 𝛿 B 𝑟𝝎𝑘 (s) + 𝛾𝑈 (s𝑘+1,𝝎𝑘 ) − 𝑄 (s𝑘 ,𝝎𝑘 ) equals 𝑟𝝎𝑡 (𝑏𝑐
𝑘
) +

𝛾E[𝑈 (𝑏𝑐
𝑘+1,𝝎𝑡 ) | 𝑏𝑐𝑘 ] −𝑄 (𝑏𝑐

𝑘
,𝝎𝑘 ).

Next, note that the by definition of intra-option 𝑄-learning with

full observability (e.g. see [5, Theorem 3]), we have that for any 𝜀 ∈
R>0, maxs′′,𝝎′′ |𝑄 (s′′,𝝎 ′′)−𝑄∗ (s′′,𝝎 ′′) | < 𝜀. The rest of the proof

follows by showing that the expected value of 𝑟𝝎𝑘 (s)+𝛾𝑈 (s′
𝑘+1,𝝎𝑘 )

converges to 𝑄∗
.

EXPERIMENTS
We evaluate empirically the merits of DOC in cooperative multi-

agent tasks, and compare it to its single-agent counterpart, option-

critic (OC), advantage actor-critic (A2C), A2C with central critic

(A2C2) and proximal policy optimization (PPO). We created TEAM-
Grid FourRooms where the agents need to uncover multiple un-

known targets and collect reward when all targets are uncovered.

Fig. 1 shows that DOC performs competitively in this environment.
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