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ABSTRACT
Wepropose an innovative ensemble technique that uses voting rules
over a set of randomly-generated classifiers. Given a new input
sample, we interpret the output of each classifier as a ranking over
the set of possible classes. We then aggregate these output rankings
using a voting rule, which treats them as preferences over the
classes. We show that our approach obtains good results compared
to the state-of-the-art, both providing a theoretical analysis and an
empirical evaluation of the approach on several datasets.
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1 INTRODUCTION
It is not easy to identify the best classifier for a certain complex
task. Different classifiers may be able to exploit better the features
of different regions of the domain at hand, and consequently their
accuracy might be better only in that region [3, 11, 14]. Moreover,
fine-tuning the classifier’s hyper-parameters is a time-consuming
task, which also requires a deep knowledge of the domain and a
good expertise in tuning various kinds of classifiers. An alterna-
tive approach, useful to improve the performance of a classifier,
consists of combining several different classifiers (that is, an ensem-
ble of them) and taking the class proposed by their combination
[1, 2, 8, 9, 12, 13, 15, 17, 18, 20]. In this paper we propose a new
ensemble classifier method, called VORACE, which aggregates ran-
domly generated classifiers using voting rules in order to provide
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an accurate prediction for a supervised classification task. We in-
terpret each classifier as a voter, whose vote is its prediction over
the classes, and a voting rule aggregates such votes to identify the
"winning" class. This use of voting rules is within the framework
of maximum likelihood estimators, where each vote (that is, a clas-
sifier’s rank of all classes) is interpreted as a noisy perturbation
of the correct ranking (that is not available), so a voting rule is a
way to estimate this correct ranking [5, 6, 19]. We theoretically
and experimentally show that the usage of generic classifiers in an
ensemble environment can give results that are comparable with
other state-of-the-art ensemble methods. To study the accuracy
of our method, we performed three kinds of experiments over 25
datasets: varying the number of individual classifiers in the pro-
file and averaging the performance over all datasets; fixing the
number of individual classifiers and analyzing the performance on
each dataset and considering the introduction of more complex
classifiers as base classifiers for VORACE. We show that this ap-
proach generates ensemble classifiers that perform similarly to, or
even better than, existing ensemble methods. This is especially true
when VORACE employs Plurality or Copeland as voting rules. In
particular, Plurality has also the added advantage to require very
little information from the individual classifiers and to be tractable.
Moreover, we provide a closed formula to compute the probability
that our ensemble method chooses the correct class in the case of
Plurality, assuming that all the classifiers are independent and have
the same accuracy and we define the probability of choosing the
right class when the classifiers have different accuracy and they are
not independent. Besides the classical properties that the voting
theory community has considered (like anonymity, monotonicity,
IIA, etc.), there may be also other properties not yet considered,
such as various forms of fairness, whose study is facilitated by the
use of voting rules.

2 VORACE
VORACE generates a profile of 𝑛 classifiers (where 𝑛 is an input
parameter) by randomly choosing the type of each classifier among
a set of predefined ones. For instance, the classifier type can be
drawn between a decision tree or a neural network. For each clas-
sifier, some of its hyper-parameters values are chosen at random,
where the choice of which hyper-parameters and which values are
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randomly chosen depends on the type of the classifier. When all
classifiers are generated, they are trained using the same set of
training samples. For each classifier, the output is a vector with as
many elements as the classes, where the 𝑖-th element represents the
probability that the classifier assigns the input sample to the 𝑖-th
class. Output values are ordered from the highest to the smallest
one, and the output of each classifier is interpreted as a ranking
over the classes, where the class with higher value is the first in
the ranking, then we have the class that has the second highest
value in the output of the classifier, and so on. These rankings are
then aggregated using a voting rule. The winner of the election is
the class with higher score. This corresponds to the prediction of
VORACE. In cases of ties, the winner is elected using a tie-breaking
rule, which chooses the candidate that is most preferred by the
classifier with the highest validation accuracy in the profile.

3 EXPERIMENTAL RESULTS
We considered 23 datasets from the UCI repository [16]. To gener-
ate the individual classifiers, we use three classification algorithms:
Decision Trees (DT), Neural Networks (NN), and Support Vector
Machines (SVM). To study the accuracy of our method, we per-
formed three kinds of experiments:
1) Varying the number of individual classifiers in the profile
and averaging the performance over all datasets. The first ex-
periment shows that increasing the number of classifiers in the
profile leads to an improvement of the performance.
2) Fixing the number of individual classifiers and analyzing
the performance on each dataset. The second experiment shows
that it is possible to reach performances very close or better to the
state-of-the-art using a very simple method as VORACE is.

Aggregation Multiclass Binary All

Borda 0.9382 0.8726 0.9068
Plurality 0.9469 0.8726 0.9114
Copeland 0.9451 0.8726 0.9104
HalfAppr 0.9056 0.8726 0.8898

Sum 0.9456 0.8550 0.9023
RF 0.8492 0.8661 0.8573
XGBoost 0.9264 0.8605 0.8949

Table 1: Average F1-score on binary and multiclass datasets.
For binary datasets, all the voting rules collapse to Majority.

In Table 1 we can see the results for this experiment averaged on:
the multiclass datasets; the binary datasets and on all the considered
datasets. Here VORACE is used in combination with 4 different
voting rules (Borda, Plurality, Copeland and Half Approval) and
compared to 3 state-of-the-art methods: Sum method1, Random
Forest [10] and XGBoost [4].
3) Considering the introduction of more complex classifiers
as base classifiers for VORACE. In the third experiment instead
we study a more complex version of VORACE (allowing more com-
plex classifiers as base classifiers). The results show that introducing
this additional level of complexity does not provide any significant
advantage in terms of performance.
1It computes 𝑥Sum

𝑗
=
∑𝑛

𝑖 𝑥 𝑗,𝑖 for each individual classifier 𝑖 and for each class 𝑗 , where
𝑥 𝑗,𝑖 is the probability that the sample belongs to class 𝑗 predicted by classifier 𝑖 .

4 THEORETICAL ANALYSIS
Weare interested in computing the probability that VORACE chooses
the correct class, using Plurality voting rule.

Independent classifiers with same accuracy. Initially, we
consider a scenario with𝑚 classes (the candidates) and a profile of
𝑛 independent classifiers (the voters), where each classifier has the
same probability 𝑝 of classifying a given instance correctly.

Theorem 4.1. The probability of electing the correct class 𝑐∗,
among 𝑚 classes, with a profile of 𝑛 classifiers, each one with ac-
curacy 𝑝 ∈ [0, 1] , using Plurality is given by:

T (𝑝) = 1
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where 𝜑𝑖 is the coefficient of the monomial 𝑥𝑛−𝑖 in the expansion of
the generating function G𝑚
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Independent classifiers with different accuracy. Consider-
ing the same accuracy 𝑝 for all classifiers is not realistic, thus we
consider the general case where each classifier in the profile can
have a different accuracy 𝑝𝑖 , while still considering them indepen-
dent. The probability of choosing the correct class 𝑐∗ is:

1
𝐾

∑
(𝑆1,...,𝑆𝑚) ∈Ω𝑐∗

[ ∏
𝑖∈𝑆∗

(1 − 𝑝𝑖 ) ·
∏
𝑖∈𝑆∗

𝑝𝑖
]

where 𝐾 is the normalization function, 𝑆 is the set of all classifiers
𝑆 = {1, 2, . . . , 𝑛}; 𝑆𝑖 is the set of classifiers that elect candidate 𝑐𝑖 ;
𝑆∗ is the set of classifiers that elect 𝑐∗; 𝑆∗ is the complement of 𝑆∗

in S (𝑆∗ = 𝑆 \ 𝑆∗); and Ω𝑐∗ is the set of all possible partitions of 𝑆 in
which 𝑐∗ is chosen:

Ω𝑐∗ = {(𝑆1, . . . , 𝑆𝑚−1) | partitions of 𝑆∗ s.t. |𝑆𝑖 | < |𝑆∗ | ∀𝑖 : 𝑐𝑖 ≠ 𝑐∗}.
Dependent classifiers. We now relax the independence as-

sumption between classifiers by taking into account the presence
of areas of the domain that are correctly classified by at least half of
the classifiers simultaneously. We denote by 𝜚 the ratio of the exam-
ples that are in the easy-to-classify part of the domain. 𝜚 is bounded
by the probability of the correct classification of an example by at
least half of the classifiers (which are correctly classified by the en-
semble). Removing the easy-to-classify examples from the training
dataset, we obtain the accuracy 𝑝 = ( (𝑝 − 𝜚 )/(1 − 𝜚 ) ) < 𝑝 for the
other examples, leading to a generalization of Theorem 4.1:

Theorem 4.2. The probability of choosing the correct class 𝑐∗ in a
profile of 𝑛 classifiers with accuracy 𝑝 ∈ [0, 1[,𝑚 classes, overlapping
value 𝜚 and using Plurality to compute the winner, is larger than:

(1 − 𝜚 )T (𝑝) + 𝜚 . (2)

5 CONCLUSIONS
We have proposed the use of voting rules in the context of ensemble
classifiers, in line with the MLE approach to voting. Via a theoreti-
cal and experimental analysis, we have shown that this approach
generates ensemble classifiers that perform similarly to, or even
better than, existing ensemble methods.
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