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ABSTRACT

We study how structural decomposition and interactive learn-
ing among multiple agents can be utilized by deep reinforce-
ment learning in order to address high dimensional robotic
control problems. We decompose the whole control space of
a certain robot into multiple independent agents according
to this robot’s physical structure. We then introduce the
concept of Degree of Interaction (DoI) to describe the level
of dependencies (i.e., the necessity of coordination) among
the learning agents. Three different methods are then pro-
posed to compute the DoI dynamically during learning. The
experimental evaluation demonstrates that the decomposed
learning method is substantially more sample efficient than
the state-of-the-art algorithms, and more explicit interpreta-
tions can be generated on the final learned policy as well as
the underlying dependencies among the learning agents.
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1 INTRODUCTION

Deep Reinforcement Learning (DRL) holds the promise of
learning a wide range of robotic behaviors in challenging
tasks such as locomotion and manipulation [1, 3, 5, 6, 9, 18].
However, directly applying DRL algorithms to real-world
robotic control problems is difficult due to the high dimen-
sional state/action space. In addition, the majority of the
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existing DRL algorithms [3, 15, 17] directly search in the
entire state/action space and output the learned policy in
an end-to-end manner. As a result, it becomes difficult to
provide any meaningful interpretations on the performance
of these learning algorithms.

In order to address these challenges, we propose a gen-
eral framework, Structure-Motivated Interactive LEarning
(SMILE), for efficient and interpretable DRL in robotic con-
trol. By considering the robot’s physical structure, the whole
robot structure is decomposed into multiple learning agents,
each of which controls its own individual actions. This decom-
position scheme avoids searching in the huge combinatorial
and continuous state/action space, thus reducing the com-
plexity required to solve the control problem [14, 21]. A
coordination graph is used in order to synchronize the inter-
actions among the agents. Each edge on this graph indicates
that the two linked agents need to coordinate over their be-
haviors for better learning performance. In this context, the
level of dependencies between any two agents is measured
by a value that we call Degree of Interaction (DoI), which
reflects the necessity of coordination. We then propose three
different ways to compute the DoI during agents’ learning
process: the ATTENTION method to compute the DoI for
a fully connected graph using an attention mechanism, the
Partially Observable Dynamics Topology (PODT) method
to compute DoI using the prediction errors in other agents’
states and builds a graph that links those agents with the
largest DoI, and Attention-PODT (A-PODT) that is able
to take advantage of both previous two methods to obtain a
trade-off between performance and complexity. The experi-
mental evaluations in typical Mujoco environments [20] verify
the effectiveness of the proposed methods.

There are a number of studies that focus on decomposed
learning for a robotic control problem [2, 4, 7, 8, 10, 11, 13,
14, 21, 24]. Unlike all the existing approaches, where agents
either learn independently without any explicit coordination,
or coordinate with each other in a fixed procedure (e.g., by
sharing a fixed amount of information), SMILE models the
dynamic dependencies among the agents through comput-
ing the continuously changing DoI. In this way, the most
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important information can be naturally taken into account
in order to increase the coordination efficiency during the
learning process. Moreover, explicit interpretations can be
derived regarding the underlying dependencies among the
components of a robot in different motion postures.

2 THE SMILE FRAMEWORK

In SMILE, a DoI value indicates the level of dependency
between two agents. Each agent uses DoI to integrate the
state information of other agents, and generates an enhanced
state, which is defined as follows:

𝑠𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑤𝑖,1*𝑠1, . . . 𝑤𝑖,𝑗 *𝑠𝑗 , . . . 𝑤𝑖,𝑛*𝑠𝑛, 𝑠𝑔) ∈ R�̂� (1)

where 𝑠𝑖 denotes the �̂� -dimensional enhanced state of the
𝑖-𝑡ℎ agent, and 𝑤𝑖,𝑗 ∈ R denotes the importance weight (i.e.,
DoI) of agent 𝐴𝑗 as considered by agent 𝐴𝑖. Each agent then
makes decisions based on its local actions and the enhanced
states using various existing DRL algorithms (e.g., PPO [16]).

The ATTENTION Method. First, the local state of agent
𝐴𝑖 is fed into a multi-layer perceptions (MLP) to obtain
a feature vector with fixed-size 𝑏: 𝑓𝑖 = 𝐹𝑖𝑛(𝑠𝑖), where 𝐹𝑖𝑛

denotes an MLP, and 𝑓𝑖 ∈ R𝑏 is the feature vector of agent
𝐴𝑖. Then, the Scaled Dot-Product Attention algorithm [22]
is used to calculate the attention value. The joint feature
between two agents ⟨𝑓𝑖, 𝑓𝑗⟩ is then fed into two MLPs: the
first one is an attention MLP that outputs the similarity value
K𝑖𝑗 ∈ Rℎ between 𝑓𝑖 and 𝑓𝑗 , and the other one is a value
MLP that outputs a mapping value V of the joint feature. A
soft-max function is used to normalize the similarity value,
and the attention of agent 𝐴𝑗 for agent 𝐴𝑖 is computed by:

𝐴𝑡𝑡(𝑓𝑖, 𝑓𝑗) =
𝑒K

T
𝑖𝑖·K𝑖𝑗∑︀𝑛

𝑘=1 𝑒
KT

𝑖𝑖·K𝑖𝑘
. (2)

Given the values of 𝐴𝑡𝑡(𝑓𝑖, 𝑓𝑗) and V𝑖𝑗 , the enhanced state
𝑠𝑖 of agent 𝐴𝑖 is computed as follows:

𝑠𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡(𝑓𝑖, 𝑓1) *V⊤
𝑖1, . . . 𝐴𝑡𝑡(𝑓𝑖, 𝑓𝑗) *V⊤

𝑖𝑗 , . . . 𝑠𝑔). (3)

where V𝑖𝑗 ∈ R𝑚 is the mapping value of joint feature ⟨𝑓𝑖, 𝑓𝑗⟩.

The PODT Method. The PODT method computes the
DoI using the prediction errors of other agents’ states. Each
agent predicts the states of other agents in the next step
based on its own state and action using a predictor (e.g.,
a neural network). Then, it utilizes the difference between
the predicted states and the real states of the other agents
to measure the DoI values for these agents. A coordination
graph then can be built with a topology that links the agents
with the top largest DoI values. By building a sparser graph,
the PODT method can only achieve approximated solutions
due to the loss of information of other agents.

The A-PODT Method. In this method, we first use the
ATTENTION method to generate the coordination graph,
and the gradient of the ATTENTION method can be further
corrected to keep the graph closer to that using the PODT
method. Denote adjacency matrices of the coordination graph
using the ATTENTION method and the PODT method as

Figure 1: Interpretation of the learned policy while
walking (a), jumping (b) and landing (c).

𝒲𝑎 and 𝒲𝑝, respectively. Denote 𝑙𝑜𝑠𝑠𝑎→𝑝 = ‖𝒲𝑎 −𝒲𝑝‖2
as the distance between these two graphs. 𝑙𝑜𝑠𝑠𝑎→𝑝 is only
related to the parameters of the PODT method. Let Θ denote
the parameters of the whole policy, Θ𝑎 denote the parameters
of the ATTENTION method, Θ−Θ𝑎 denote the parameters
that are not in the ATTENTION method, and 𝑙𝑜𝑠𝑠𝑝𝑜𝑙𝑖𝑐𝑦
denote the loss of the PPO algorithm. The gradients of these
parameters can be computed as follows:

𝑔𝜃 =
𝜕𝑙𝑜𝑠𝑠𝑝𝑜𝑙𝑖𝑐𝑦

𝜕𝜃
, for 𝜃 ∈ Θ−Θ𝑎 (4)

𝑔𝜃 = (1− 𝜏)
𝜕𝑙𝑜𝑠𝑠𝑝𝑜𝑙𝑖𝑐𝑦

𝜕𝜃
+ 𝜏

𝜕𝑙𝑜𝑠𝑠𝑎→𝑝

𝜕𝜃
, for 𝜃 ∈ Θ𝑎 (5)

where 𝜏 denotes a trade-off hyper-parameter, which controls
the proportion of correction.

3 EXPERIMENTS AND RESULTS

We evaluate the proposed methods in Swimmer, Hopper,
Walker and Half-Cheetah. The experimental evaluations show
that the ATTENTION method is more suitable in dealing
with lower-dimensional robot control problems, however, it
has high computational complexity. Meanwhile, the PODT
method can reduce this computational complexity by reduc-
ing the topology of the graph, but it is easy to fall into
local optimum solutions. By combining the benefits of both
methods, the A-PODT method is able to reduce the com-
putational complexity to a certain extent, and at the same
time, avoid falling into local optimum solutions. We also
compare A-PODT to some state-of-the-art DRL algorithms
including PPO [16], DDPG [9], AC [12], REINFORCE [23]
and CEM [19]. In Swimmer, A-PODT performs slightly bet-
ter than PPO, but much better than the other algorithms.
The distinction of A-PODT becomes more apparent in high-
er dimensional environments, which fully demonstrates the
effectiveness of our proposed method. Figure 1 shows an
illustration of the coordination graph in Half-Cheetah using
the A-PODT method, where the yellow arrow represents a
bidirectional connection indicating that both agents are con-
cerned with each other, the white arrow represents a one-way
connection, and the red circle represents the most important
joint with the highest attention by other agents. As we can
see, reasonable interpretations can be derived regarding the
underlying dependencies among the components of a robot
in different motion postures.
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