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ABSTRACT

Realistically modelling behaviour and interaction of mixed road
users (pedestrians and vehicles) in shared spaces are challenging
due to the heterogeneity of transport modes and the absence of clas-
sical traffic rules. Existing models have mostly used the expert-based
approach, combining symbolic modelling and reasoning paradigm
with the hand-crafted encoding of the decision logic. Recently, deep
learning (DL) models have been largely used to predict trajecto-
ries based on e.g. video data. Studies comparing expert-based and
DL-based micro-simulation of shared spaces concerning their accu-
racy are missing, and so are proven methodologies for combining
these approaches into a single agent-based system. In this paper,
we propose and compare an expert-based and a DL model and then
combine them for trajectory prediction in shared spaces. Simula-
tion results show the combined model to outperform both pure
approaches in predicting realistic and collision-free trajectories.
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1 INTRODUCTION

Shared space, introduced by Monderman [8] as an alternative to
classical traffic design, largely removes road signs, signals, and
markings to prompt direct interaction among mixed traffic partici-
pants, guided by social protocols and negotiation. The absence of
explicit traffic rules and thereby caused vagueness makes it critical
to investigate safeness and traffic efficiency of shared spaces [11].

Understanding how road users behave and how their actions
can be predicted is far from trivial. There is a considerable body of
research to tackle these challenges. In particular, we can distinguish
two classes of methodologies: expert-based approaches [3, 13, 16,
20, 23, 26, 29] and data-driven approaches [1, 5, 6, 10, 15, 18, 24].
Expert approaches involve human design crafting explicit decision
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rules to tackle the modelling problem [13, 26], which makes it diffi-
cult to scale up for large or new problems. Whereas, data-driven
approaches can be trained by processing the data extracted from
real-world situations and deriving a complex neural network struc-
ture with associated parameters or weights optimised via training
[17]. These models are often black boxes, difficult to understand and
explain for humans; adding human modeller’s intention to guide
the models to capture specific desired patterns is difficult [14] and
computational cost can also be a bottleneck [25].

To our knowledge, there are no studies that compare and analyse
the strengths and weaknesses of these two types of approaches for
microscopically modelling shared spaces. To address this gap, in
this work, we firstly propose an expert-based model called GSFM
that combines Social Force Model (SFM) and Game (G) theory and
a DL model called LSTM-DBSCAN that manipulates Long Short-
Term Memories (LSTM) with Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [9] for multi-agent trajectory
prediction. Their accuracy (in terms of realistic behaviour) is tested
on real-world shared-space scenarios, using the same evaluation
metrics. Secondly, based on our empirical results and motivated by
some initial studies [7, 14, 22], we proposed a combined model to
hoard the collective advantages of both kinds of approaches.

2 METHODOLOGY

The prediction task is to generate realistic and collision-free future
trajectories of multi-agents, mathematically, to predict the locations
);i’ of agent i € N for N agents at prediction time ¢t € {k+1,---,m}
based on the locations Xit at observation time ¢ € {1, - - - k} for both
expert-based and DL models. The objective is to minimise L(Y, N9
for all agents, where Y = £(X) and Y is the ground truth, f(.)
stands for the prediction models, and L(., .) the loss function.

The expert-based GSFM model consists of three modules with
different roles: trajectory planning, force-based modelling, and game-
theoretic decision-making. GSFM is built on a BDI (Belief, Desire,
Intention) platform, LightJason [2], to design and explain the con-
trol flow among the modules. The BDI controller acts as the brain
of the agent to perceive the environment and activate one of these
modules based on the situation. Each module triggers the con-
troller on the completion of their task(s). The GSFM component in
Fig. 1 visualises the overall structure of GSFM. The trajectory plan-
ning module computes free-flow trajectories. The force-based and
game modules model interactions among agents. In GSFM, these
interactions are classified into two categories: simple interaction
(percept — act) and complex interaction (percept — choose an
action among many alternatives — act). The force-based module
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Figure 1: The structure of the combined model GSFM-w-
LSTM of GSFM and LSTM-DBSCAN. A conflict checking box
selects the final prediction from either of the two models.

handles simple interactions by using and extending the classical

SFM and the game module conduct complex interactions using a

sequential leader-follower game, a.k.a. Stackelberg game, to guar-

antee collision-free trajectories explicitly. The overall process of

GSFM for predicting the movement of any target agent i in any time
— —

step t is: f/i”At = f(Z;, (ddL;’ +Xl.t)). Here, Z;, ddL;", Xl.t, and YAt
depict the input to the model, change in velocity of i (measured
by force/game modules), the position of i in current and next time
step, respectively. Z; contains start, predicted goal, speed profile,
and minimum distance acceptance of i with others, derived from
the observation of X;. More details of GSFM in [16].

The DL model LSTM-DBSCAN takes X; as input and outputs Y;.
It has a mapping module for interaction pooling and an LSTM module
for motion planning. The mapping module pools the interactions
between the target and other neighbourhood agents at each time
step. It maps the collision probability based on safety distance main-
tained by each other, denoted as probability density mapping (PDM)
[6]. Similar to the repulsive force in SFM [13], if two agents ap-
proach each other, PDM increases exponentially. To differentiate the
impact from non-group and group members (if any) on the target
agent [23, 27], a density-based cluster DBSCAN [9] is incorporated
to detect pedestrian groups so as to cancel out erroneous collision
and relax on close interactions for group members [4]. A neighbour-
hood agent is defined as a group member for the target agent if they
co-exist in the same cluster over a certain duration. PDM is then
reset to zero for group members. The LSTM module is used for mo-
tion planning, which takes the target agent’s coordinates and PDM
as input at each observed time step to predict the distribution of the
next positions [1]. The prediction process for the target agent i is
denoted as Yien = f(Xien, #(V(Xien. Xjen, j#i))), where f(.,.)
stands for LSTM, ¢( .) for PDM, and ¢/(.,.) for DBSCAN.

The combined model GSFM-w-LSTM of the expert and DL mod-
els is visualised in Fig.1. Its workflow is as follows: (1) GSFM and
LSTM-DBSCAN predict the trajectories of respective road users
by sharing the same observation. (2) The predicted trajectories of
LSTM-DBSCAN are then cross-checked for collision avoidance. If
the time to collision (TTC [12]) of the predicted trajectories of two
users is less than one second, the prediction is considered as collided.
(3) If the predicted trajectories of LSTM-DBSCAN are collision-free
then these trajectories will be executed, otherwise the predicted
trajectories of GSFM will be selected to execute.
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Figure 2: The performance of each model, validated on HBS
[21] (row 1) and DUT [28] (row 2) data sets.

3 EXPERIMENTS AND RESULTS

Data sets: We use the train station data set (HBS) from Germany
[21] and the DUT data set from a university campus in China [28].
HBS was recorded in a street with pedestrian crossing and DUT
was recorded in a roundabout and an intersection. 89 scenarios
that involve interactions between pedestrians and vehicles were
manually extracted from the data sets for evaluating and the rest of
the data sets are used for calibrating/training the proposed models.

Evaluation Metrics: The average Euclidean distance error mea-
sures the aligned error for each time step and we report the value
averaged over the path [1, 10]. For the accumulated error, we use
Hausdorff distance to measure the largest distance from the set of
the predicted positions of a trajectory to the set of true positions
[19]. Heading (from the previous position to the next position) error
measures the pairwise absolute heading difference over all positions
between the predicted and ground truth trajectories.

Results: In general, as the time step increases, the performance
of all models decreases on both data sets, shown by Fig. 2. While,
the errors of GSFM-w-LSTM increase with a much slower speed
compared with GSFM and, especially, LSTM-DBSCAN. In com-
parison with GSFM, GSFM-w-LSTM makes smaller errors by all
evaluation metrics and shows a similar pattern on both data sets.
In comparison with LSTM-DBSCAN, GSFM-w-LSTM falls behind
for short-term trajectory prediction. However, with the increment
of steps i.e. after 25 time steps on HBS and 13 on DUT, the gain of
the combined model becomes more profound.

Unlike GSFM, LSTM-DBSCAN learns collision avoidance from
the training data with PDM automatically, which does not guar-
antee collision-free predictions due to incomplete data. Thanks to
the collision checking mechanism of the combined model in the
post-processing, any collisions in the predictions are prevented by
switching to the expert-based model. On the other hand, rather
than having a limited number of behaviour patterns like GSFM
(e.g. a Gaussian distribution of speed), the DL model generates het-
erogeneous trajectories using the motion planing module with the
encoded information from the observation of the respective agent.

To conclude, the combined model hoards the collective advan-
tages of both models and outperforms the expert-based and DL
models in terms of more realistic and collision-free trajectories.
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