
Efficient Hybrid Fault Detection for Autonomous Robots
Extended Abstract

Eliahu Khalastchi
College of Management Academic Studies

Rishon LeZion, Israel
eliahukh@colman.ac.il

Meir Kalech
Ben-Gurion University of the Negev

Beer-Sheva, SRAEL
kalech@bgu.ac.il

ABSTRACT
The use of robots has increased significantly in the recent years;
rapidly expending to numerous applications. Yet, these sophisti-
cated and sometimes expensive machines are susceptible to faults
that might endanger the robot or its surroundings (e.g., a crash of
an Unmanned Aerial Vehicle (UAV)). To prevent such faults, the
robot’s operation needs to be monitored by Fault Detection (FD)
algorithms. An autonomous robot, which is already engaged with
heavy computational tasks, has to continuously apply FD on its
own. Thus, the impact of a FD process on the robot’s resources
should be minimized. Unfortunately, the computational load of
existing FD approaches, which may be very accurate, might be
impractical for an autonomous robot. To solve this problem, we
suggest to use a hybrid approach. A very efficient FD algorithm is
applied continuously and is used to trigger a heavier, more accurate,
FD approach that determines the occurrence of a fault. In this paper
we focus on the efficient FD algorithm. We test the algorithm in
several real-world and simulated domains and we show and discuss
the promising results.

KEYWORDS
[ROB] Failure recovery for robots; [ROB] Long-term (or lifelong)
autonomy for robotic systems

ACM Reference Format:
Eliahu Khalastchi and Meir Kalech. 2020. Efficient Hybrid Fault Detection
for Autonomous Robots. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 A SIMPLE AND EFFICIENT FAULT
DETECTOR - SEFD

We present a Hybrid FD approach which consists of two parts: (1)
a Simple, very Efficient FD algorithm (SEFD), and (2) any other
FD algorithm that is more accurate but might be too heavy to
continuously run on the robot. SEFD has a very low computational
impact and thus can continuously run in the background without
interfering the other computational tasks of the robot. Upon the
detection of a suspected fault SEFD triggers the other FD algorithm
to determine whether indeed a fault has occurred.

The SEFD algorithm relies on correlated features for fault detec-
tion. The domain of robots is reach with sensors that are redundant
or affected in the same way by the robot’s behavior. For instance,

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

consider an Unmanned Aerial Vehicle (UAV). The UAV’s pitch indi-
cator is correlated to the UAV’s elevators and to the vertical speed
sensor; all these features cause or respond to the change in the
UAV’s altitude. Intuitively, SEFD checks if features that are sup-
posed to be correlated display an uncorrelated behavior that was
not previously observed in past normal operations.

Thus, SEFD consists of 3 parts: (1) correlation detection, (2)
thresholds learning, and (3) online fault detection. Parts 1 and 2
are done offline as a pre-processing phase, and part 3 is an online
algorithm.

Algorithm 2 depicts the online detection process. Given D we
learned offline, and the current values 𝑉𝑡 we apply the same algo-
rithm with the exception that if 𝑧 (𝑑) > 𝑑𝑖 and 𝑑 is greater than the
max value in 𝐷 (line 5) then alert there is a possible fault associated
with 𝑓𝑖 and 𝑓𝑖𝐶 . Recall that as a result another FD algorithm, which
is potentially more accurate but heavier on resources, is triggered
to determine the occurrence of the fault. Thus, we aim to signifi-
cantly reduce the computational load while still having high fault
detection accuracy.

Note that we need to check that 𝑑𝑖 > 𝑚𝑎𝑥 (𝐷) to prevent a false
alarm for a case where the point (x,y) suddenly got closer to the
45°line. This case indicates an increase of correlation which is not
a symptom of a fault, yet it may cause a high z-score value, as
discussed above.

If a point (x,y) slowly drifts from the line then the corresponding
values of d remain similar and, in turn, the z-scores of d will remain
low and an alarm will not be raised. However, a rapid drift of (x,y)
form the 45°line leads 𝑑 to be different than its previous values. As a
result the z-scores of d may increase above the acceptable threshold
𝑑𝑖 (learned from normal operations) and an alarm will be raised.

Algorithm 2: Online Fault Detection of SEFD

Input:
𝑉𝑡 = {𝑣𝑡,1, 𝑣𝑡,2, . . . , 𝑣𝑡,𝑛} – values of features 1..n at time-step t.
Output:
Alerts of possible detected faults

1. For Each feature 𝑓𝑖
2. IF 𝑓𝑖𝐶 exists THEN
3. (𝑥,𝑦) ←− ((𝑛𝑜𝑟𝑚(𝑣𝑖,𝑡), 𝑛𝑜𝑟𝑚(𝑣𝑖𝐶,𝑡))
4. 𝑑 ←− |𝑦 − 𝑥 |
5. IF 𝑧 (𝑑) > 𝑑𝑖 AND 𝑑𝑖 > 𝑚𝑎𝑥 (𝐷) THEN
6. Alert "possible fault associated with 𝑓𝑖 , 𝑓𝑖𝐶 "

The time complexity of the above online part of SEFD is𝑂 (𝑛)
where 𝑛 is the number of features.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1884

2 EXPERIMENTAL SETUP AND RESULTS
The Competing Approaches are the following. Incremental LOF [5]
– a very popular density based outlier detection algorithm, which
is able to detect local outliers by utilizing the K-Nearest-Neighbor
algorithm. In our experiments, fault symptoms can be regarded as
local outliers.

ODDAD [2] – uses a sliding window to detect correlations on-
line and utilizes the Mahalanobis Distance (Mahalanobis, 1936) to
detect faults. Mahalanobis Distance is actually a z-score function
for multi-dimensions. As such, it requires to invert the variance-
covariance matrix of the selected features. This increases the time
of calculations. In addition, not every resulting matrix is invertible.
As a result this method will be insensitive to some faults.

SFDD [3][1] – uses a sliding window to detect correlations on-
line and a heuristic fault detection function that sates that if two
correlated features display different behaviors (e.g., one drifts while
the other is stuck) then it alerts a fault.

The Domains of our experiments consists of one simulated do-
main (for comprehensive testing) and 3 real-world domains: a phys-
ical robot, a Boeing 737 aircraft and a helicopter.

The first domain is the flight simulator FlightGear [4]. FlightGear
is an open source high fidelity flight simulator designed for research
purpose and is used for a variety of research topics.The injected
faults affect the behavior of the aircraft [4].

We sampled 23 features in a frequency of 4Hz. These features
present 5 flight controls (actuators), and 18 attributes of flight in-
struments (sensors). The data set contains one flight which is free
from faults and 5 subsets that each contains 12 recorded flights in
which different faults were injected. In total, the data set contains
62 recorded flights with almost 90,000 data instances (the flights
duration is 6 minutes). We injected faults to 7 different instruments
and to 4 different subsystems. These faults led their corresponding
features to be stack on the same value or to slowly drift. Table 1
depicts the results for the competing fault detection algorithms for
the FlightGear domain.

Our algorithm (appears first) is SEFD. SEFD achieved a higher
TPR (True Positive Rate) and significantly lower FPR (False positive
Rate) than LOF and ODDAD. The SFDD got the highest TPR, yet
with at the cost of almost 15 times more false positives compared to
our algorithm. The very low FPR can be explained by the way our
algorithm chooses the threshold – themaximum z-score observed in
the normal operation. Since the normal operation contains similar
noise to the faulty operations, then the threshold is set above the
noise – which, in turn, lowers false alarms. In addition for being
lighter on computational resources, the SEFD proved to be more
accurate and thus it is more suited for being the trigger to a heavier
FD algorithm.

Robotican1 is a robot that has 2 wheels, 3 sonar range detectors
in the front, and 3 infrared range detectors which are located above
the sonars. This redundancy reflects real world domains such as
unmanned ground vehicles. In addition, Robotican1 has 5 degrees
of freedom arm. Each joint has two electrical motors which provide
a feedback value.

We applied the following scenario 11 times: the robot slows its
movement as it approaches an object. Concurrently, the robot’s arm
is adjusted to grasp the object. We injected faults of type stuck or

Algorithm TPR FPR
SEFD 0.90 0.0042

Incremental LOF 0.87 0.075
ODDAD 0.88 0.13
SFDD 0.98 0.06

Table 1: Results for the FlightGear domain.

Algorithm TPR FPR
SEFD 0.80 0.03

Incremental LOF 0.70 0.08
ODDAD 1 0.017
SFDD 0.56 0.067

Table 2: Results for the Robotican1 domain.

Algorithm Boeing 737 Apache Helicopter
SEFD 0.32sec 6.7sec
SFDD 20.7sec 19.6sec

Table 3: Timemeasurements for high-dimensional domains.

drift to different type of sensors (motor voltage, infrared and sonar)
in 10 operations. We sampled 15 sensors in 8Hz. Scenarios duration
lasted only 10 seconds where faults lasted only 1.25 seconds. In total,
the test set contains 800 instances out of which 90 are expression
of faults.

Table 2 depicts the results for the competing fault detection
algorithms for the Robotican1 domain. In this domain ODDAD
produced the best results, and SEFD came second in both TPR and
FPR. This can be explained by the short duration of the faults (1.25s,
9-10 instances long).

Some robots have very complex machinery and provide high-
dimensional data where scalability becomes an issue. The Flight-
Gear and Robotican1 domains do not offer such a challenge due to
their small number of features and short time of operations. The
Boeing 737 domain is a dataset comprised of two flights: a normal
flight, and an identical flight that the manufacture injected a fault to
one of the sensors (altitude stack). 63 features were sampled at 8Hz
for a duration of over 2 hour flight. In total, 7,980 data instances per
flight. The domain is relevant for robotics due to its sensor redun-
dancy and due to the autopilot. The Apache Helicopter domain
is a dataset comprised of a normal flight, and a flight that ended
with an unfortunate crash of the vehicle. 267 features were sampled
at 10Hz for a duration of over 1.5 hour flight. In total, 58,080 data
instances per flight. The large amount of features requires a fault
detection approach to be very scalable.

The relevant competing approach for the scalability test is the
SFDD. The disadvantage (w.r.t time) is the online correlation de-
tection but the fault detection is based on a simple heuristic. We
measured the time it took the SEFD and SFDD to compete the task
of fault detection on these two domains (under the same conditions).
Table 3 depicts the results.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1885

REFERENCES
[1] Eliahu Khalastchi and Meir Kalech. 2018. A sensor-based approach for fault

detection and diagnosis for robotic systems. Autonomous Robots 42, 6 (2018),
1231–1248.

[2] Eliahu Khalastchi, Meir Kalech, Gal A Kaminka, and Raz Lin. 2015. Online data-
driven anomaly detection in autonomous robots. Knowledge and Information
Systems 43, 3 (2015), 657–688.

[3] Eliahu Khalastchi, Meir Kalech, and Lior Rokach. 2013. Sensor fault detection and
diagnosis for autonomous systems. In Proceedings of the 2013 international con-
ference on Autonomous agents and multi-agent systems. International Foundation

for Autonomous Agents and Multiagent Systems, 15–22.
[4] Alexander R Perry. 2004. The flightgear flight simulator. In Proceedings of the

USENIX Annual Technical Conference.
[5] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. 2007. In-

cremental local outlier detection for data streams. In 2007 IEEE symposium on
computational intelligence and data mining. IEEE, 504–515.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1886

	Abstract
	1 A Simple and Efficient Fault Detector - SEFD
	2 Experimental Setup and Results
	References

