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ABSTRACT
Market Making is high frequency trading strategy in which an
agent provides liquidity simultaneously quoting a bid price and
an ask price on an asset. Market Makers reaps profits in the form
of the spread between the quoted price placed on the buy and
sell prices. Due to complexity in inventory risk, counterparties
to trades and information asymmetry, understanding of market
making algorithms is relatively unexplored by academicians across
disciplines. In this paper, we develop realistic simulations of limit or-
der markets and use it to design a market making agent using Deep
Recurrent Q-Networks. Our approach outperforms a prominent
benchmark strategy from literature, which uses temporal-difference
reinforcement learning to design market maker agents. The agents
successfully reproduce stylized facts in historical trade data from
each simulation.
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1 INTRODUCTION
The electronification of securities trading has transformed tradi-
tional human-drivenmarkets into predominantly automated, where
high frequency trading (HFT) typically exceeds 80% of total volume
traded in U.S listed equities [12, 13]. HFT is a form of automated
trading in which security positions are turned over very quickly
by leveraging advanced technology and the associated extremely
low latency rates [14]. Market Making is HFT based strategies con-
tributing to market liquidity by matching buyer and seller orders.
The profit is earned as the spread between the quoted price placed
on the buy and sell prices. With every-growing minuscule limit
order book (LOB) data, complexity in inventory risk, counterpar-
ties to trades and information asymmetry, understating of market
making algorithms is relatively shallow [2, 3, 20]. This paper uses
a variant of Deep Recurrent Q-Networks (DRQN) to design market
making agents interacting with realistic limit order book simulation
framework.
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1.1 Related Work
A number of market making strategies have been proposed across
disciple, including finance [3, 6], econophyics [12] and machine
learning[2, 4, 20]. Earlier work in finance considers maker making
as a problem of stochastic optimal control, where order book dy-
namics are designed using control algorithms after developing the
arrival and execution model [3, 5] to understand the price impact,
adverse selection, risk measures, and inventory constraints.

Another prominent approach, agent based model (ABM), rang-
ing from zero intelligence to intelligent variants are used to study
market making, but are typically evaluated in simulated markets
without using real market data. It gives the modeler flexibility to
churn out potentially emergent phenomenon as a result of interac-
tion between agents. With evolving technology-based disruption
in HFT, the existing learning models and empirical models are defi-
cient and may no longer be appropriate. Reinforcement learning
(RL) has been applied for market making [20], algorithmic trad-
ing [22], optimal execution [16], and foreign exchange trading [8].
However, defining hand-crafting features in reinforcement learning
for agents to learn while interacting within a dynamic environment
is a major throttle block. Also, RL could be slow to learn in large
state spaces and the methods did not generalize (across the state
space).

Deep learning eliminates the need for manual feature design,
thus finding compact representations in high-dimensional data.
It also helps to generalize across states improving the sample effi-
ciency for large state-space RL problems. Augmenting deep learning
with reinforcement learning, deep reinforcement learning (DRL),
enables RL to scale to problems with high-dimensional state and
action spaces. The outstanding success stories of DeepMind’s, kick-
starting with superhuman level performance in Atari 2600 video
games [15], AlphaGo [19], and AlphaStar [21] proves the effec-
tiveness of DRL. However, only a few works is featured optimal
execution [17], market making [9], and high frequency trading [22]
as compared to the games.

The success of such single DRL’s can be accredited to the use of
experience replay memories, which legitimate Deep Q-Networks
(DQNs) to be trained efficiently through sampling stored state transi-
tions. However, despite the ever-increasing performance on popular
benchmarks such as Atari 2600 games, DQN struggle to generalize
when evaluated in different environments. It does not perform well
in partially observable domains [11], overestimate action values
under certain conditions [10], and not efficient when experience
replay needs to be prioritized [18]. Deep Recurrent Q-Networks
(DRQN) [11] proposed using recurrent neural networks, in particu-
lar, LSTMs (Long Short-Term Memory) solves the above problem
by replacing the first post-convolutional fully connected layer with
an LSTM layer in DQN setting. With this incorporation, DRQN
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has memory capacity so that it can even work with only one input
rather than a stacked input of consecutive frames. Double DQN
[10] obliterate the overestimation problem in DQN, resulting in
more stable and reliable learning. By prioritizing experience, au-
thors [18] achieved a new state of art human-level performance
across benchmark Atari games.

1.2 Contributions
The main contribution of this paper is to develop realistic simula-
tions of limit order markets and use it to design a market making
agent using DRQN. The simulation framework takes account of
the agent’s latency and have build-up maker/taker fees as defined
in NYSE. We modify the classical DQRN architecture and incorpo-
rate double Q-learning and prioritized experience to take account
of volatile, illiquid and stagnant markets. Our approach outper-
forms a prominent benchmark strategy from literature, which uses
temporal-difference reinforcement learning to design market maker
agents.

2 EXPERIMENTS AND RESULTS
We run themodel for 1000 iterations to find relevant hyper-parameter
using random search. After that, we train the models for some ten
million time steps for intervals of 10000, which is equivalent to
500 trading days to collect data, monitor and visualize the learn-
ing of the agent. Then, testing the environment on the benchmark
to see the agent’s learning pattern. We use a spread-based bench-
mark strategy proposed by [20], which uses temporal-difference
reinforcement learning to design market making agents. All the
analysis was done using single market making agents with multiple
market-takers.

To evaluate the performance of agents, we use profit and loss
with exponential transaction cost and maker-taker fee (PnL) com-
puted for each hour. The trading strategy’s efficiency to capture the
spread is evaluated by normalized daily PnL (NPnL) [20]. We also
use the mean absolute position (MAP) to capture the important
characteristic of market makers where agents avoids large invento-
ries [20]. We report the NPnL and MAP with the standard deviation
and mean respectively.

2.1 Results and Analysis
The performance of the agents is compared in Figure 1. In-spite
of handcrafted strategy, where actions with various quantities are
taken at different states, the RL agent performs badly and not stable
as compared to DRQN and DQN agents. It is to be noticed that
the trading strategy which RL agents follow doesn’t take account
of order size, cancellation, adverse selection, transaction cost and
volatility, which the current simulator introduces while interaction.
Adding to the same, the order matching is subject to market-takers,
who trades on market trends as described in agent’s trading strate-
gies. DQN performance is stable , but fails to outperform the DRQN.
The reasoning may be linked to not efficient state representation,
overestimated action values, partial observability and pritorized
experience, which DRQN incorporates. To understand the perfor-
mance better, we need to action selection with respect to limit order
book dynamics, which we plan to do next.
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Figure 1: Trading agent performace.

2.2 Validation
In agent-based models of financial markets, it is standard practice
to measure the validity of the model by investigating whether
the order-book data have particular characteristics, known as the
"stylized facts" [1]. We present some of the stylized facts reproduced
from historical trade data.

To reproduce stylized facts concerning price, we first calculate
return, which is given by r (t) = log(pt ) − log(pt ). The heavy tails
(HT) in the distribution of returns is depicted in Figure 2a. The
normalized return distribution has a fatter tail than green Gaussian
distribution. Furthermore, the cumulative distributions function
[1, 7], shown as the blue (positive tail) and red (negative tails) in
Figure 2b, exhibits power law (PL). The violet line is the asymptotic
power-law function with tail exponent 4.

(a) HT. (b) PL. (c) LOS. (d) LOC.

Figure 2: Stylized facts.

We now switch from price to order size. The Figure 2c illustrates
the probability density distribution (PDF) f (τ/τ̄ ) of limit order size
(LOS) τ , where τ̄ is mean order size of individual stock. The green
line is Gamma distribution fit to the normalized order size. It is
evident from the figure that the Gama distribution fits remarkably
good to empirical PDF. This is in line with the existing literature
[1], confirming the existence of heavy tail in limit order size. The
limit order cancellation (LOS) also follows Gama distribution which
can be seen in Figure 2d. The fitting procedure is the same as the
limit order size.

3 CONCLUSIONS
In this paper, we have designed a market making agent using deep
recurrent Q-network that outperforms a prominent benchmark
strategy, which uses temporal-difference reinforcement learning.
The market making agents interact with highly realistic simula-
tion of the limit order book, which till now is non-existence in
the academic research. The suitable modification in the exciting
DRQN network architecture [11] and training procedure allowed
our agents to yield predominant performance. The future extension
of this work would be to incorporate order book data with deep re-
inforcement learning, and extend it to a multi-agent setting, where
all agents learn and trade simultaneously.
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