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ABSTRACT
Ride-sharing services are gaining popularity and are crucial for

a sustainable environment. A special case in which such services

are most applicable, is the last mile variant. In this variant it is

assumed that all the passengers are positioned at the same origin

location (e.g. an airport), and each have a different destination. One

of the major issues in a shared ride is fairly splitting of the ride cost

among the passengers.

In this paper we use the Shapley value, which is one of the most

significant solution concepts in cooperative game theory, for fairly

splitting the cost of a shared ride. We consider two scenarios. In

the first scenario there exists a fixed priority order in which the

passengers are dropped-off (e.g. elderly, injured etc.), and we show

a method for efficient computation of the Shapley value in this

setting. Our results are also applicable for efficient computation of

the Shapley value in routing games. In the second scenario there

is no predetermined priority order, and we show that the Shapley

value cannot be efficiently computed in this setting.
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1 INTRODUCTION
On-demand ride-sharing services, which group together passengers

with similar itineraries, can be of significant social and environmen-

tal benefit, by reducing travel costs, road congestion andCO2 emis-

sions. Indeed, the National Household Travel Survey performed in

the U.S. in 2009 [17] revealed that approximately 83.4% of all trips

in the U.S. were in a private vehicle (other options being public

transportation, walking, etc.). The average vehicle occupancy was

only 1.67 when compensating for the number of passengers. The

deployment of autonomous cars in the near future is likely to in-

crease the spread for ride-sharing services, since it will be easier

and cheaper for a company to handle a fleet of autonomous cars

that can serve the demands of different passengers.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Most works in the domain of ride-sharing are dedicated to the

assignment of passengers to vehicles, or to planning optimal drop-

off routes [1, 9, 12, 16]. In this paper we study a fair allocation of

the cost of the shared ride in the last mile variant [4]. That is, we

analyze the cost allocation when all passengers are positioned at

the same origin location. We concentrate on the Shapley value [18]

as our notion of fair cost allocation. The Shapley value is widely

used in cooperative games, and is the only cost allocation satisfy-

ing efficiency, symmetry, null player property and additivity. The

Shapley value has been even termed the most important normative

division scheme in cooperative game theory [20]. However, the

Shapley value depends on the travel cost of a ride of each subset of

the passengers. Therefore, as stated by Özener and Ergun [13], “In

general, explicitly calculating the Shapley value requires exponen-

tial time. Hence, it is an impractical cost-allocation method unless

an implicit technique given the particular structure of the game

can be found”.

There are two possible general structures of the last-mile ride-

sharing problem. In some cases there is a priority order in which the

passengers are dropped-off. Such prioritization may be attributed to

the order in which the passengers arrived at the origin location, or

the frequency of passenger usage of the service; the latter is similar

to the different boarding groups on an aircraft. Other rationales

for prioritization may include urgency of arrival or priority groups

in need (e.g. elderly, disabled, pregnant women, and the injured).

Clearly, in such cases, the prioritization is preserved when deter-

mining the travel cost of a ride with a subset of the passengers. We

denote this problem as the prioritized ride-sharing problem. Indeed,

in some scenarios there is no predetermined prioritization order. In

such cases it is assumed that a ride with a subset of the passengers

is performed using the shortest (or cheapest) path that traverses

their destinations. We denote this problem as the non-prioritized
ride-sharing problem.

The prioritized and the non-prioritized ride-sharing problems

are closely related to traveling salesman games [15]. In these games,

a service provider makes a round-trip along the locations of sev-

eral sponsors, where the total cost of the trip should be distributed

among the sponsors. Specifically, the prioritized ride-sharing prob-

lem is similar to the fixed-route traveling salesman game, also

known as routing game [21], while the non-prioritized ride-sharing

problem is similar to the traveling salesman game. Most of the

works on traveling salesman games concentrated on finding an ele-

ment of the core, a solution game concept which is different from

the Shapley value. One exception is the work of Yengin [21], who

has studied the Shapley value of routing games and has conjectured

Extended Abstract  AAMAS 2020, May 9–13, Auckland, New Zealand

1895



that there is no efficient way for computing the Shapley value in

routing games.

In this paper, we show an efficient computation of the Shap-

ley value for the prioritized ride-sharing problem. Our method is

based on smart enumeration of the components that are used in

the computation of the Shapley value. Furthermore, our approach

can be generalized to routing games, and we thus also provide an

efficient way for computing the Shapley value in routing game. We

then move to analyze the non-prioritized ride-sharing problem and

show that, unless P=NP, there is no polynomial time algorithm for

computing the Shapley value.

We note that the term ride-sharing is used in the literature with

different meanings. We consider only the setting where the vehicle

operator does not have any preferences or predefined destination.

Instead, the vehicle’s route is determined solely by the passengers’

requests. In addition, the context of our work is that the assignment

of the passengers to the vehicle has already been determined, either

by a ride-sharing system or by the passengers themselves, and we

only need to decide on the cost allocation. Since we focus on the

case where the assignment has already been determined, we do

not consider the ability of passengers to deviate from the given

assignment and join a different vehicle, which is acceptable since

either they want to travel together or no other alternative exists.

To summarize, the contributions of this paper are two-fold:

(1) We show an efficient method for computing the Shapley

value of each user in a shared-ride when the priority order is

predetermined. Our solution entails that the Shapley value

can be computed in polynomial time in routing games as

well, which is in contrast to a previous conjecture made.

(2) We show that there exist no polynomial algorithm for com-

puting the Shapley value of the non-prioritized ride-sharing

problem (unless P=NP).

2 RELATEDWORK
The ride-sharing cost allocation problems that we study are closely

related to traveling salesman games [15]. Specifically, the prioritized

ride-sharing problem is similar to the fixed-route traveling salesman

game [2, 6, 15], also known as routing game [21].

One variant of routing game is the fixed-route traveling salesman

problems with appointments. In this variant the service provider is

assumed to travel back home (to the origin) when she skips a spon-

sor. This variant was introduced by Yengin [21], who also showed

how to efficiently compute the Shapley value for this problem but

stated that his technique does not carry over to routing games.

The prioritized ride-sharing problem can also be interpreted as

a generalization of the airport problem [11] to a two dimensional

plane. In the airport problemwe need to decide how to distribute the

cost of an airport runway among different airlines who need run-

ways of different lengths. In our case we distribute the cost among

passengers who need rides of different lengths and destinations. It

was shown that the Shapley value can be efficiently computed for

the airport problem, however achieving efficient computation of

the Shapley value in our setting requires a different technique.

The problem of fair cost allocation was also studied in the con-

text of logistic operation. In this domain, shippers collaborate and

bundle their shipment requests together to achieve better rates from

a carrier [8]. The Shapley value was also investigated in this domain

of collaborative transportation [7, 19]. In particular, Özener and

Ergun [13] stated that “we do not know of an efficient technique for

calculating the Shapley value for the shippers’ collaboration game”.

Indeed, Fiestras-Janeiro et al. [5] developed the line rule, which is

inspired by the Shapley value, but requires less computational effort

and relates better with the core. However, the line rule is suitable for

a specific inventory transportation problem. Özener [14] describes

an approximation of the Shapley Value when trying to simulta-

neously allocate both the transportation costs and the emissions

among the customers. Overall, we note that the main requirements

from a cost allocation in the context of logistic operation is stability,

and an equal distribution of the profit, since the collaboration is

assumed to be long-termed. The type of interaction is our setting

is inherently different, as it is an ad-hoc short term collaboration.

In another domain, Bistaffa et al. [3] introduce a fair payment

scheme, which is based on the game theoretic concept of the kernel,

for the social ride-sharing problem (where the set of commuters

are connected through a social network).

3 RESULTS
We first assume that the passengers are ordered according to some

predetermined priority order, and we show that we can efficiently

compute the payment for every passenger using the Shapley value.

Unlike other related work [15], we do not require that the priority

order will be the optimal order that minimizes the total cost. For

the exact definitions and proofs, see [10].

Theorem 3.1. The Shapley value in the prioritized ride-sharing
problem can be computed in polynomial time.

We note that the prioritized ride-sharing problem is very similar

to the setting of routing games [15]. Indeed, our approach can be

generalized to routing games.

Theorem 3.2. The Shapley value in routing games can be com-
puted in polynomial time.

Note that this is an unexpected result, since it refutes the conjec-

ture in [21] that there is no efficient way for computing the Shapley

value in routing games.

In essence, the computation of the Shapley value for the pri-

oritized ride-sharing problem and routing games could be done

efficiently since most of the travel distances cancel out, and only

a polynomial number of terms remain in the computation. Unfor-

tunately, this is not the case with the non-prioritized ride-sharing

problem, where the Shapley value cannot be computed efficiently

unless P = NP .

Theorem 3.3. There is no polynomial time algorithm that com-
putes the Shapley value for a given passenger in the prioritized ride-
sharing problem unless P = NP .
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